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SUMMARY

Phenotypic drug discovery offers some advantages
over target-basedmethods, mainly because it allows
drug leads to be tested in systems that more closely
model distinct disease states. However, a potential
disadvantage is the difficulty of linking the observed
phenotype to a specific cellular target. To address
this problem, we developed DePick, a computational
target de-convolution tool to determine targets
specifically linked to small-molecule phenotypic
screens. We applied DePick to eight publicly
available screens and predicted 59 drug target-
phenotype associations. In addition to literature-
based evidence for our predictions, we provide
experimental support for seven predicted associa-
tions. Interestingly, our analysis led to the discovery
of a previously unrecognized connection between
the Wnt signaling pathway and an aromatase,
CYP19A1. These results demonstrate that the
DePick approach can not only accelerate target de-
convolution but also aid in discovery of new function-
ally relevant biological relationships.

INTRODUCTION

Target and phenotype-based high-throughput chemical screens

are commonly used in the drug discovery field to detect chemical

modulators of protein targets and disease phenotypes, respec-

tively. Due to the limited success of target-based methods on

the discovery of newmedicines, the phenotypic high-throughput

chemical strategy is re-emerging as a valuable drug discovery

approach (Swinney and Anthony, 2011). The advantage of

phenotypic methods over target-based approaches lies in the

in vivo and more physiological conditions of the experiments,
1302 Cell Chemical Biology 23, 1302–1313, October 20, 2016 ª 2016
which allows distinct disease states to be modeled. This facili-

tates the discovery of chemical leads for disease treatment

and presents chemical phenotypic screens as a promising

technology for uncovering pharmacological targets of disease

phenotypes. The development of publicly available tools to

determine protein targets underlying readouts of chemical

phenotypic screens, also called target de-convolution (Nijman,

2015) could thus rapidly expand the current druggable target-

phenotype knowledge.

A target de-convolution approach requires two steps. The first

consists of the identification of the interacting targets of active

compounds in a screen (Gujral et al., 2014). Due to the polyphar-

macological property of compounds, that is, the well-known

tendency of small molecules to bind multiple targets (Hopkins,

2008; Mestres et al., 2008; Paolini et al., 2006), a subsequent

step is required. This involves the identification of the compound

targets actually linked to the phenotype, since not all targets of a

compound might be responsible for the phenotype.

Several strategies have been followed to determine targets of

compounds, including direct biochemical, genetic interaction

and computational inference methods (reviewed in Schenone

et al., 2013). The identification of targets of compounds by

experimental methods is a slow and arduous process, often

restricted to a limited number of compounds with proven biolog-

ical activity. In contrast, recently developed computational

methods, including ligand and structured based prediction ap-

proaches (reviewed in Koutsoukas et al., 2011), allow prediction

of targets for a large number of compounds. Ligand-based pre-

diction methods such as the Similarity Ensemble Approach

(SEA) (Keiser et al., 2007), SwissTargetPrediction (Gfeller et al.,

2014), PASS (Poroikov et al., 2007), SOM-based prediction of

drug equivalence relationships (SPiDER) (Reker et al., 2014), ap-

proaches using multiple-category Bayesian models (Nidhi et al.,

2006), and support vector machines (Wale and Karypis, 2009)

cluster compounds based on similarities in a multidimensional

space of structure features. Structure-based methods including

the docking approaches INVDOCK (Chen et al., 2003) and

TarFisDock (Li et al., 2006) exploit protein structural information
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Figure 1. Steps of the DePick Method for the Identification of Drug Targets Associated with Phenotypic Screens
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to predict ligand-target interactions. Other methods combine

similarity methods such as TarFisDock (Li et al., 2006) and

HitPick (Liu et al., 2013). An in silico target prediction approach

followed by a statistical approach to determine targets linked

to phenotypic screens offers huge potential for unraveling novel

relationships between druggable targets and phenotypes in a

fast and inexpensive manner, even for previously analyzed

screens such as those stored in public repositories. Several of

these target prediction methods have been applied to individual

screens of anti-bacterial (Martı́nez-Jiménez et al., 2013), anti-

malaria (Plouffe et al., 2008; Spitzmüller and Mestres, 2013),

and anti-cancer activities (Flachner et al., 2012; Liggi et al.,

2014; Lo et al., 2015) to propose links between pharmacological

targets and phenotypes. However, a systematic analysis of the

potential of de-convolution approaches to uncover relationship

between targets and phenotypes has not yet been carried out.

To enable the systematic determination of protein targets

linked to phenotypic screen readouts, we have developed a

target de-convolution tool for phenotypic screens, DePick. This

tool determines targets specifically linked to chemical pheno-

typic screens of mammalian organisms. DePick first identifies

the compounds with specific activity on a screening assay and

predicts their targets taking advantage of HitPick, an in silico

target prediction method recently developed by our group (Liu

et al., 2013). Then, it determines the predicted targets that are

statistically enriched in the set of specific compounds.

In the last decade, an extensive number of chemical pheno-

typic assays have been deposited in public databases such as

PubChem BioAssay (Wang et al., 2010) and ChemBank (Seiler

et al., 2008), paving the way for a systematic analysis linking mo-

lecular and phenotypic information from phenotypic screens.
Toward this aim, we have applied DePick to eight mammalian

chemical phenotypic screens stored in the ChemBank reposi-

tory where control screens were available, and therefore the

specificity of the active compounds could be determined, and

identified 59 target-phenotype relations. Manual curation of the

scientific literature found direct support for 16 associations and

strong indirect evidence for 20 additional connections. To rein-

force the reliability of these predicted associations, we provide

experimental support of the effect of pharmacological modula-

tors of seven targets on the ‘‘Lipid Transfer’’ and ‘‘Wnt Inhibitors’’

screens. The results presented here confirm the feasibility of a

target de-convolution approach applied to publicly available

chemical phenotypic screens to confidently identify relation-

ships between drug targets and phenotypes. Furthermore, the

newly identified target-phenotype links open new therapeutic

opportunities for diseases.

RESULTS

To facilitate the systematic determination of pharmacological

targets linked to readouts of chemical phenotypic screens,

we have devised a straightforward approach named DePick

that detects the specific chemical hits of an assay (hereafter

referred to as ‘‘selective hits’’), confidently predicts targets

for compounds using HitPick, and then identifies the predicted

targets that are statistically associated with the specific hits of

the screens (see Figure 1 and Experimental Procedures for

details).

To test the capability of DePick to unravel drug target-pheno-

type links from chemical phenotypic screens, we applied our

approach to chemical phenotypic assays from the ChemBank
Cell Chemical Biology 23, 1302–1313, October 20, 2016 1303



Table 1. All the Predicted Targets of the Eight Assay Projects

Projects Targets Associations Projects Targets Associations

Lipid Transfer NCOA2 direct E-Cadherin Synthetic Lethal ATP1A1 direct

RXRA direct ATP1B1 direct

APP indirect CALM1 direct

AGPAT2 indirect ESRRG direct

FLT3 indirect CALY indirect

Wnt Inhibitors MAOB indirect VDR indirect

ALDH2 indirect TOP1 unexpected

APP direct TOP2B unexpected

MCHR1 direct Ribosome unexpected

ABL1 direct CYP11A1 unexpected

MTOR direct SLCO1A2 unexpected

HMGCR direct SLCO1B3 unexpected

CYP19A1 unexpected SLCO1C1 unexpected

CYP1B1 unexpected SLCO4C1 unexpected

AR-NCoR Binding APP indirect PGC1 Expression (Pre-adipocytes) Ribosome direct

TUBB indirect TUBB indirect

TUBA4A indirect JUN indirect

ELANE indirect PRKCE indirect

HSD17B3 indirect TUBA4A indirect

ALDH2 indirect MT-ND4 unexpected

MAOB unexpected ABCC6 unexpected

GSI Synthetic Lethal PLA2G2A unexpected ABCB4 unexpected

KCNH2 unexpected ABCC1 unexpected

HTR2A unexpected ABCB1 unexpected

ADRA2B unexpected KCNJ1 unexpected

CALM1 unexpected PGC1 Expression (PSM) NR3C1 direct

Glioblastoma Modulators HDAC3 direct Ribosome direct

HDAC2 direct SERPINA6 indirect

HDAC1 indirect PLA2G4A indirect

CYP3A4 unexpected

Please cite this article as: Liu et al., Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens, Cell Chemical
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repository. This resource stores raw data of an increasingly var-

ied set of measurements derived from cells and other biological

assay systems treated with small molecules (Seiler et al., 2008).

In order to be able to detect drug targets modulating specifically

phenotypes, we selected chemical phenotypic screens from

ChemBank for which control assays accounting for non-specific

hit effects were included. Then, we restricted the analysis to as-

says performed in mammalian organisms (see Supplemental

Experimental Procedures) since HitPick, the target prediction

method underlying DePick, can predict protein targets of human

and evolutionarily close mammalian species for which a high

conservation of human ligand-target binding associations has

been reported (Gfeller and Zoete, 2015; Kruger and Overington,

2012). We could predict targets confidently for eight assays ful-

filling these criteria. These include screens for disease areas for

which pharmacological points of intervention are sought such as

cancer (‘‘Glioblastoma Modulators’’, ‘‘Wnt Inhibitors’’, ‘‘E-Cad-

herin Synthetic Lethal’’, ‘‘Androgen Receptor - Nuclear Receptor

Corepressor (AR-NCoR) Binding’’, ‘‘Gamma Secretase Inhibitor

(GSI) Synthetic Lethal’’), cardiovascular (‘‘Lipid Transfer’’), and
1304 Cell Chemical Biology 23, 1302–1313, October 20, 2016
metabolic diseases (‘‘PGC1 Expression’’). We applied DePick

to these assays and detected a total of 59 target-phenotypic

screen associations (Table 1).

Analysis of the Hits and Predicted Targets
We found that an average of 30% of the selective hits of these

screens interact or are predicted to bind to the significant targets

detected by DePick, implying that for these compounds, we can

propose the molecular mechanism underlying the phenotypes.

This number contrasts with the marginal amount of information

on the molecular mechanisms driving phenotypes that can be

gained based only on statistical enrichment of only the known

targets of the specific hits (Figure 2). This illustrates the potential

of target prediction information to capture a large fraction of the

molecular space covered by specific hits of a phenotypic screen.

Interestingly, we observed that although the target prediction

tool HitPick predicts at least one target confidently (50% preci-

sion) for an average of 55.6% of the selective hits in the eight

screens (Figure 2), not all predicted targets appear to be respon-

sible for the measured phenotype, highlighting the need to



Figure 2. Known and Predicted Targets of the Specific Hits of the

Assays

The number of specific hits in each assay project is displayed in brackets. The

percentage of hits with at least one known target, the percentage of hits

predicted to bind predicted targets with high confidence (>50%), and the

percentage of hits binding the significantly known and predicted targets are

displayed.
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determine the causal relationships between targets and pheno-

types in these screens.

The analysis of the targets involved in the 59 predicted target-

phenotype associations revealed that 43 distinct protein targets

are linked to only one phenotypic screen, implying that only a mi-

nority of the targets is associated with multiple screens. Among

those, we found ribosomal proteins, amyloid-b precursor protein

(APP), the tubulin, b class I (TUBB) and tubulin, a 4a (TUBA4A),

monoamine oxidase B (MAOB), calmodulin 1 (CALM1), and alde-

hyde dehydrogenase 2 (ALDH2). (In this article, we use human

gene names provided by EntrezGene to refer to genes as well

as proteins.) Interestingly, the proteins APP, MAOB, and
ALDH2 are linked to ‘‘AR-NCoR Binding’’, an assay that seeks

enhancers of binding of androgen receptor to nuclear receptor

corepressor, and also to the ‘‘‘Wnt Inhibitors’’ screen. This points

to the existence of common molecular links between the

androgen receptor and Wnt pathways. Indeed, it is known that

the crosstalk between androgen receptor signaling and b-cate-

nin plays a notable role in prostate cancer (reviewed in Kypta

and Waxman, 2012). APP was furthermore linked to an assay

searching for modulators of the SR-BI lipid transporter process,

denoting a more pleiotropic function of APP than its well-known

role in Alzheimer’s disease. Consistent with the key role of the

ribosome in growth-related biological processes, ribosomal

proteins were found to be associated with a screen searching

for modulations with synergistic effects on cell growth upon

E-cadherin inhibition (‘‘E-Cadherin Synthetic Lethal’’) and two

assays searching for modulations of PGC1-a gene expression,

a key regulator of mitochondria biogenesis (Wu et al., 1999).

The distinct and shared targets linked to these screens empha-

size the potential of the approach to formulate hypotheses on

specific as well as broad pharmacological modulators of disease

phenotypes.

Literature Validation
In order to evaluate the reliability of our drug target-phenotypic

screen pair’s predictions, we first performed a manual curation

of the scientific literature to retrieve the experimentally validated

evidence on the relationship of drug targets and phenotypes. In

the literature, we found experimental support that directly relates

a chemical or genetic modulation with the phenotype (‘‘direct’’

link) for 27% (16) of the connections. The links between the pro-

teins calmodulin (CALM1) and estrogen-related receptor gamma

(ESRRG) to the ‘‘E-Cadherin Synthetic Lethal’’ assay exemplify

these relations. The former association is supported by

the known effect of the calmodulin antagonist CGS9343B on

E-cadherin adhesion (Li et al., 1999) and the latter by the induc-

tion of E-cadherin by the ectopic expression of ESRRG in

mammary carcinoma cells, respectively (Tiraby et al., 2011).

Interestingly, for 34% (20) additional associations, we found liter-

ature support linking an intermediate common protein or metab-

olite both to the drug target and the phenotype (‘‘indirect’’ link).

The connection between the drug target phospholipase A2,

group IVA (PLA2G4A), and ‘‘PGC1 Expression (PSM)’’, a screen

that searches for modulators of the PGC1-a gene expression in

primary skeletal muscle cells, is one of these links. PLA2G4A and

the phenotype are both related to the transcription factor CREB1

(cAMP responsive element binding protein 1). CREB1 is acti-

vated by the enzyme PLA2G4A (Hazan-Eitan et al., 2006) and

is also known to modulate the promoter activity of PGC1-a,

increasing the mRNA expression levels of the gene (Karamitri

et al., 2009). Detailed information on ‘‘direct’’ and ‘‘indirect’’

relations are shown in Table S1 and Figure S1. Careful analysis

of the literature reports supporting the ‘‘direct’’ and ‘‘indirect’’

links revealed that indirect mechanisms encompassing tran-

scriptional processes, intermediate metabolites, or proteins are

often involved in the modulation of the phenotype by the target.

This illustrates that the de-convolution of chemical phenotypic

screens can uncover a large variety of biological mechanisms

that interfere with disease phenotypes that can be exploited

pharmacologically.
Cell Chemical Biology 23, 1302–1313, October 20, 2016 1305
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Figure 3. Analysis of the ‘‘Lipid Transfer’’ Screen
(A) Relationships between significantly predicted protein targets and the lipid transfer mediated by the SR-BI transporter phenotype assay. This interaction

network has been created using the CIDeR database (Lechner et al., 2012) where all the human gene names are provided by EntrezGene. White and green

rectangles indicate background proteins and chemicals related to the assay.

(B) Gene expression of SR-BI in SV-LECs was analyzed in the presence of anti-BACE1 neutralizing antibody or media alone (control). The experiment was

repeated twice with the same observations (error bars represent SD).

Please cite this article as: Liu et al., Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens, Cell Chemical
Biology (2016), http://dx.doi.org/10.1016/j.chembiol.2016.08.011
For the remaining 39% (23) drug target-phenotype associa-

tions, we could not link the drug target to the phenotype by

‘‘direct’’ or ‘‘indirect’’ literature evidence (‘‘unexpected’’ link).

However, literature reports provide hints of possible connections

between drug targets and the measured phenotype that merit

further investigation. For example, DePick predicted that several

members of the solute carrier organic anion transporter family

(SLCO1A2, SLCO1B3, SLCO1C1, SLCO4C1) are related to the

‘‘E-Cadherin Synthetic Lethal’’ assay. These proteins increase

the transport of the metabolite estrone 3-sulfate (Geyer et al.,

2004; Maeda et al., 2010; Pizzagalli et al., 2002; Yamaguchi

et al., 2010), a precursor of estradiol. Estradiol, in turn, has

been shown to decrease the expression of E-cadherin (Oester-

reich et al., 2003). Taken together, these pieces of evidence

suggest that the synergistic effect of modulators of these trans-

porters and inhibitors of E-cadherin activity on growth inhibition

might be triggered by the modulation of intracellular estradiol

levels by these transporters.

Case Studies: ‘‘Lipid Transfer’’ and ‘‘Wnt Inhibitors’’
Assays
The results from the literature validation of drug target-pheno-

type links provide strong support for the reliability of these

predictions and indicate that the modulation of the phenotype

by the alteration of the predicted targets is often due to indirect

molecular effects. In order to provide experimental support for

the predictions and prove this hypothesis experimentally, we in-

spected the ‘‘Lipid Transfer’’ and ‘‘Wnt Inhibitors’’ screens (see

Table S2 for detailed information on these assays, including

specific hits, inactive compounds, and predicted targets). These

assays aim to detect modulators of the cholesterol transport
1306 Cell Chemical Biology 23, 1302–1313, October 20, 2016
mediated by the scavenger receptor, class B, type I, SR-BI

(also known as SCARB1) and the canonical (b-catenin depen-

dent) Wnt signaling pathway, respectively. We analyzed the

five and nine targets significantly linked to these assays, respec-

tively, and chose interesting drug target-phenotype links to be

validated experimentally. We first tested if some of the ligand-

target associations predicted by HitPick, the first step of the

DePick target de-convolution method, could be confirmed

experimentally. For that, we measured the activity of ten

commercially available selective hits on five of the predicted

targets for which commercially in vitro binding and enzymatic

assays exist. These compounds were tested first at a single

concentration of 10 mM in duplicate (Table S3). Four compounds

showed an activity higher than 35%. Those were subsequently

tested in dose-response curves to determine the half maximal

inhibitory concentration (IC50). The IC50 values obtained were

in the micromolar and nanomolar range (35 mM, 6.7 mM,

2.9 mM, and 2 nM) (Figure S2), thus confirming the predicted

compound-target associations. Afterwards, we sought literature

evidence supporting the relationship of the targets to the screens

reported by DePick. Lastly, we followed a pharmacological

approach using potent ligands of predicted targets in experi-

mental tests to support the predicted target-phenotype associ-

ations. The results of the literature and experimental analysis

for the two assays are described below.

‘‘Lipid Transfer’’ Assay

The ‘‘Lipid Transfer’’ phenotypic screen aimed to find selective

modulators of the transfer of lipids mediated by the high-density

lipoprotein (HDL) receptor SR-BI (SCARB1), which modulates

both the selective uptake of cholesterol esters from HDL into

cells and the efflux of cholesterol from cells to lipoproteins



Figure 4. Analysis of ‘‘Wnt Inhibitors’’ Screen

Relationships between significantly predicted protein targets and the ‘‘Wnt Inhibitors’’ phenotype assay. This interaction network has been created using the

CIDeR database (Lechner et al., 2012) where all the human gene names are provided by EntrezGene. White and green rectangles are proteins and chemicals

related to the assay.
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(Nieland et al., 2002). The five targets significantly enriched

among the selective hits of this assay are nuclear receptor coac-

tivator 2 (NCOA2), retinoid X receptor alpha (RXRA), 1-acylgly-

cerol-3-phosphate O-acyltransferase 2 (AGPAT2), APP, and

fms-related tyrosine kinase 3 (FLT3) (Figure 3A).

Two of the predicted proteins, namely NCOA2 and RXRA,

are known to regulate SR-BI-mediated lipid transfer. NCOA2,

a coactivator of steroid receptors, interacts with the complex

formed by the peroxisome proliferator-activated receptor

gamma (PPARG) and RXRA (Osz et al., 2012), thereby

inducing the expression of SR-BI (Jeong et al., 2006). A third

predicted protein, AGPAT2, which is mutated in patients with

congenital generalized lipodystrophy, is indirectly influencing

SR-BI activity via the modulation of PPARG (Subauste et al.,

2012). These pieces of evidence provide strong support for

the pharmacological modulation of SR-BI function by these

predicted targets.

We found indirect literature evidence linking FLT3 and APP to

SR-BI-mediated cholesterol transport via the common metabo-

lite ‘‘cholesterol’’. Several studies have related FLT3, a gene

frequently mutated in acute myeloid leukemia, to cholesterol

transport (Soufi et al., 2012; Westerterp et al., 2012). APP, in

turn, is known to bind cholesterol (Barrett et al., 2012) and inhibi-

tion of b-secretase (BACE1), the enzyme responsible for the pro-

cessing of APP into amyloid b peptide, causes an increase in the

membrane cholesterol level (Liu et al., 2009). We used a murine

lymphatic endothelial cell line (SV-LEC), where SR-BI is re-

sponsible for the cholesterol transport (Lim et al., 2013) and

also expressed APP (Figure S3) for experimental analysis (see
Experimental Procedures). After blocking BACE1-mediated

APP processing with a BACE1-neutralizing antibody, SR-BI

expression increases up to 2-fold after 12 hr (Figure 3B). This

result is in line with the involvement of APP on the regulation of

SR-BI expression.

‘‘Wnt Inhibitors’’ Assay

The Wnt signaling pathway is a highly conserved signaling

pathway involved in organ growth and maintenance, which

has also been implicated in several pathologies, including can-

cer and organ fibrosis (Baarsma et al., 2013). This screen seeks

for chemicals modulating the canonical Wnt pathway using a

reporter-based assay measuring the transcriptional response

of the Wnt/b-catenin signal modulation in the colorectal adeno-

carcinoma cell line DLD1. We predicted nine targets specifically

linked to this pathway, namely APP, ABL proto-oncogene 1,

non-receptor tyrosine kinase (ABL1), mammalian target of

rapamycin (MTOR), aldehyde dehydrogenase 2 (mitochondrial)

(ALDH2), melanin-concentrating hormone receptor 1 (MCHR1),

monoamine oxidase B (MAOB), two members of the

cytochrome P450 family (i.e., cytochrome P450, family 1, sub-

family B, polypeptide 1 [CYP1B1] and aromatase [CYP19A1]),

and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)

(Figure 4).

Our literature review confirmed the pharmacological, genetic,

or physical relationships of five of these proteins with the canon-

ical Wnt pathway, namely ABL1, MCHR1, APP, HMGCR, and

MTOR. ABL1 interacts with and stabilizes b-catenin (CTNNB1)

(Coluccia et al., 2007). A positive effect on Wnt signaling

has also been described for melanin-concentrating hormone
Cell Chemical Biology 23, 1302–1313, October 20, 2016 1307



Figure 5. Fold Change of the Expression of the Wnt TCF/LEF

Reporter Activity in A549 Cells after Treatment with Chemical

Compounds Targeting the Predicted Targets

n = 4–6; *p < 0.05, **p < 0.01. p Values were calculated using a paired t test

relative to the corresponding control. Error bars represent SD.
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(MCH), the ligand of MCHR1 (Nagel et al., 2012). In addition,

overexpression of APP as well as its processing products amy-

loid b peptide and amyloid precursor protein intracellular domain

result in a significant reduction of b-catenin (Chen and Bodles,

2007; Magdesian et al., 2008). HMGCR is a central enzyme of

the cholesterol biosynthesis pathway. A regulatory effect of sta-

tins, pharmacological inhibitors of HMGCR, on theWnt signaling

pathway is well described in the literature (Robin et al., 2014).

Furthermore, there is experimental evidence for the activation

as well as the inhibition of the pathway using the MTOR inhibitor

rapamycin in H9 cells (Zhou et al., 2009) and hepatocellular car-

cinoma (Feng et al., 2011), respectively.

For the ALDH2 and MAOB proteins, indirect evidence from

the literature suggests that the mechanism driving modulation

of the canonical Wnt pathway by these proteins involves the in-

termediate metabolite serotonin (Rooke et al., 2000). This

metabolite, in turn, is known to inhibit the central Wnt signaling

inhibitor GSK3B (Sibilia et al., 2013). For the cytochrome P450

family members, CYP19A1 (aromatase) (Tao et al., 2007) and

CYP1B1 (Li et al., 2000), an indirect connection to the pheno-

type involving only one intermediate molecule could not be

established.

We opted to test the regulation of the canonical Wnt

signaling experimentally by predicted targets involved in

‘‘direct’’ (MTOR, HMGCR, MCHR1, APP), ‘‘indirect’’ (MAOB),

and ‘‘unexpected’’ (CYP19A1) associations in a Wnt TOPflash

reporter assay using the human alveolar epithelial cell line

A549 (see Experimental Procedures). We observed that the
1308 Cell Chemical Biology 23, 1302–1313, October 20, 2016
MTOR inhibitor rapamycin and HMGCR inhibitor simvastatin

significantly attenuated canonical Wnt signaling (Figure 5).

Furthermore, safinamide, a potent reversible inhibitor of

MAOB, and MCH, the natural ligand of MCHR1, activated

canonical Wnt signaling. The relationship between MCHR1

modulation and the canonical Wnt signaling pathway is further

supported by the inhibition of the pathway after treatment with

the MCHR1 antagonist SNAP94847. Biochanin A, anastrozole,

and exemestane, which are inhibitors of CYP19A1 (aromatase)

also significantly diminished the activity of canonical Wnt

signaling. The same effect on the Wnt pathway was observed

with a BACE1-inhibitor that blocks APP processing. These

results substantiate the efficacy of the approach to detect

targets associated with phenotypic screening readouts. The

experimental results are in line with all tested predicted rela-

tionships of drug targets and phenotypes measured in the

two assays, thereby illustrating the effectiveness of the target

de-convolution approach in DePick to unveil novel targets of

biological processes measured in bioassays. Lastly, we tested

DePick in an assay from the PubChem BioAssay database

(AID: 1672) (Table S4) and observed that DePick is also appli-

cable to publicly available chemical screens from other repos-

itories, reinforcing the potential of DePick to uncover drug

target-phenotype links from phenotypic chemical screens.

In summary, we have demonstrated that application of the

in silico target de-convolution approach DePick to chemical

phenotypic screens reveals known and novel connections be-

tween molecular target and phenotypes. The application of this

tool (http://mips.helmholtz-muenchen.de/Depick/) in a system-

atic way to more chemical phenotypic screens promises to

expand the repertoire of target-phenotype links in an unprece-

dented manner.

DISCUSSION

The rapid increase of drug target information in the public

domain in recent years is accelerating the creation of efficient

computational methods for the prediction of targets for a large

fraction of compounds (Keiser et al., 2007; Liu et al., 2013; Nidhi

et al., 2006), facilitating the development of drug target de-

convolution approaches for chemical phenotypic screens. In

this study, we have shown that in silico de-convolution methods

such as DePick are fast and efficient approaches to extract drug

target-phenotype connections from chemical phenotypic

screens stored in public repositories.

Despite their advantages, target de-convolution approaches

for chemical high-throughput chemical screens face several

challenges (Table 2). These are not restricted to methodological

difficulties such as the development of efficient computational

methods to detect the chemical hits and their protein targets.

They also suffer limitations by the quality of information in chem-

ical screens, including the presence of screening artifacts such

as promiscuous compounds as well as by the availability of the

screen information. For example, raw data of the experiments

as well as control/counter screens are not always available,

which hampers determination of compound selectivity as well

as the specificity of the target-phenotype links. In the presented

approach, to be able to detect targets specifically linked to

phenotypic screens, we have analyzed screens with available

http://mips.helmholtz-muenchen.de/Depick/


Table 2. Advantages and Weakness of DePick

Advantages Weaknesses

Inexpensive, fast, and efficient

method for the extraction

of target-phenotype links from

chemical screens

Dependence on the quality

of the experimental data

(presence of artifacts)

Applicability to any chemical

phenotypic screens with

available ‘‘control/counter’’

screens

Control/counter screens,

essential to assess specificity,

are not always available

Allows the determination of

pharmacologically relevant

protein targets

Protein targets limited to

druggable targets (proteins

with known ligands)
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control assays in the ChemBank database. To determine selec-

tive compounds, we have removed compounds showing activity

in the control assays. This procedure also removes promiscuous

as well as non-specific compounds and is preferable over dis-

carding promiscuous compounds based on their promiscuity in-

dex (Gamo et al., 2010), because it avoids disregarding non-arti-

factual compounds with multi-target activity, thereby enlarging

the space of drug target information behind phenotypes.

We have tested DePick in eight phenotypic screens relevant to

diseases such as cancer, diabetes, and cardiovascular diseases

and have identified a total of 59 target-phenotype links. Around

30% of the specific hits are predicted to bind to the predicted

targets of those links. This modest number is expected, since

HitPick predicts at least one confident target only for 55.6% of

the selective hits. We anticipate that the growing information

on ligand-target pairs in the public domain will greatly contribute

to increase the coverage of proteins assigned to hits by target-

prediction methods, enabling the molecular space underlying

phenotypic screens to expand.

A literature inspection of the 59 connections confirmed and

provided strong indirect evidence relating the pharmacological

targets to the measured phenotype for 64% of the target-pheno-

type links. For example, we found ‘‘indirect’’ literature evidence

for the interesting connection between FLT3 and SR-BI. Overex-

pression of the SR-BI gene has been observed in 32Dcl3 cells

stably transfected with FLT3-ITD (Mizuki et al., 2003). Further-

more, expression of the cholesterol transporter ABCA1

(ATP-binding cassette 1) is reduced in FLT3-ITD mice (Wester-

terp et al., 2012), which is consistent with a low cholesterol

environment. Under low cholesterol conditions, the expression

of SR-BI is induced to improve cholesterol uptake (Soufi et al.,

2012). These findings suggest FLT3 as a novel potential target

of lipid metabolism mediated by SR-BI, and encourage further

research to elucidate the precise molecular mechanisms linking

FLT3 and SR-BI.

The results of the experimental pharmacological approach us-

ing potent modulators of predicted targets linked to the ‘‘Lipid

Transfer’’ and ‘‘Wnt Inhibitors’’ in cell lines are also aligned with

predicted target-phenotype connections. We observed an in-

crease in SR-BI mRNA expression after neutralizing with an

antibody recognizing the APP processing enzyme BACE1 in

SV-LEC cells. Similarly, chemical modulators of directly

(MTOR, HMGCR, MCHR1, APP) and indirectly (MAOB) related

targets to the regulation of either b-catenin or GSK3B activity
in the literature are active on Wnt TOPflash reporter assays in

A549 cells. Although these results are consistent with the pre-

dicted associations, they should be taken with caution since

off-targets are known for some of the modulators, such as butyr-

ylcholinesterase (Darvesh et al., 2004) for simvastatin, the sigma

non-opioid intracellular receptor 1 (SIGMAR1) for safinamide

(Fariello, 2007), as well as neural cell adhesion molecule L1-like

protein (CHL-1) as a BACE1 substrate (Barão et al., 2015).

Further research is needed to rule out unknown effects of these

additional drug targets on the phenotypes studied.

The activity of potent modulators of predicted targets linked to

the Wnt screen on human alveolar epithelia A549 cells provides

novel understanding of the regulation of the Wnt pathway in lung

cell lines. In this context, literature reports point to a cell-type-spe-

cific regulation (activation/inhibition) of some of the targets, such

as HMGCR and MTOR (Feng et al., 2011; Hwang et al., 2014;

Robin et al., 2014; Zhou et al., 2009). To our best knowledge, we

are the first to show that rapamycin and simvastatin inhibit the

Wnt signaling pathway in human alveolar epithelia A549 cells.

As a result, these drugsmight represent alternative pharmacolog-

ical tools for the treatment of lung diseases. In addition, we

observe for the first time that pharmacological modulation of

MAOB andCYP19A1 (aromatase) activity regulates the canonical

Wnt pathway. Although the exact molecular mechanism relating

the predicted protein CYP19A1 (aromatase) and Wnt pathway

merits further investigation, a possible mechanistic explanation

might involve regulation of cellular levels of estradiol and conse-

quently activation of estrogen receptor 1, a transcription factor

that is co-activated by b-catenin (Kouzmenko et al., 2004).

The experimental evidence of the effect of three different

aromatase inhibitors on Wnt activity supports the unexpected

connection between CYP19A1 (aromatase) and the Wnt

pathway, and reinforces the reliability of the 34% (20) ‘‘unex-

pected’’ drug target-phenotype associations lacking direct or

strong indirect support from the literature. Although we could

not explain some of the relationships based on the current

knowledge in the literature, such as the link between five pre-

dicted targets and the ‘‘GSI Synthetic Lethal’’ assay, we have

found distant yet plausible mechanistic explanations for other

relationships. These include the link between several members

of the solute carrier organic anion transporter family (SLCO1A2,

SLCO1B3, SLCO1C1, SLCO4C1) and the ‘‘E-Cadherin Syn-

thetic Lethal’’ assay and the association between four ATP-

binding cassette proteins (ABCB1, ABCB4, ABCC1, and

ABCC6) as well as MT-ND4, a component of the mitochondrial

respiratory complex, to the ‘‘PGC1 Expression (Pre-adipo-

cytes)’’ screen.We hypothesize that the changes in the intracel-

lular ADP levels and the AMP/ATP ratio by the four ATP-binding

cassette proteins and MT-ND4, respectively, are behind the

predicted association linking these proteins to the ‘‘PGC1

Expression (Pre-adipocytes)’’ screen. Changes of ADP and

AMP/ATP ratio levels are known to modulate the activity of

AMP-activated protein kinase (AMPK) (Sanders et al., 2007;

Xiao et al., 2011), an enzyme that regulates PGC1-a gene

expression (Bortin et al., 1992). These pieces of evidence

encourage further investigations to explore the pharmacolog-

ical validity of these predictions.

An interesting advantage of this de-convolution approach

(Table 2) is that the predicted targets are druggable proteins
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and, and remarkably, therapeutic drugs are known for the ma-

jority of them. Consequently, the results presented here not

only provide novel biological insights relating targets to pheno-

types but also allow straightforward rationalized therapeutic

strategies to interfere with diseases to be proposed. For

example, the PGC1-a gene plays a central role in the regulation

of cellular energy metabolism and has been proposed as a drug

target candidate to treat metabolic disorders such as diabetes.

Thus, the novel connections linking drug targets to PGC1-a

gene expression found here can enlighten the molecular mech-

anism underlying the regulation of PGC1-a as well as propose

therapeutic druggable hypotheses to modulate PGC1-a gene

expression. Furthermore, knowledge of the pharmacological

targets related to the same phenotype offers novel possibilities

for drug combination treatment, which has been increasingly

used to treat complex diseases such as cancer (Csermely

et al., 2005).

In summary, we have shown that DePick, a target de-convolu-

tion method for chemical phenotypic screens, is able to uncover

systematically hidden information on pharmacological targets

modulating phenotypes. We have applied DePick to eight public

phenotypic screens and discovered many potential molecular

players of these phenotypes. The novel target-phenotype links

increase current knowledge on the molecular mechanism con-

nected to phenotypes and more importantly, expand the phar-

macological possibilities to interfere with diseases related to

these phenotypes, including cardiovascular disease and cancer.

Our tool can help future research to focus on promising targets.

The high quality of the results makes DePick a bona fide tool for

investigation of cellular processes and the identification of novel

therapeutic drug targets.

SIGNIFICANCE

In this work, we present DePick (http://mips.helmholtz-

muenchen.de/Depick/), a drug target de-convolution tool

to uncover pharmacological connections between drug

targets and phenotypes measured in high-throughput

chemical phenotypic screens. As a proof of concept, we

have tested DePick in eight assays of the ChemBank repos-

itory for disease areas for which pharmacological points of

intervention are sought such as cancer, cardiovascular,

and metabolic diseases. We have detected a total of 59

target-phenotypic screen associations including novel tar-

gets modulating PGC1-a gene expression and proteins

with synergistic effects on growth inhibition upon blockage

of g-secretase and e-cadherin function. An in-depth ins-

pection of the literature found direct and strong indirect

evidence for 27% and 34% of the links, respectively. These

results provide support for the predicted relations and high-

light the role of indirect molecular mechanisms connecting

the protein targets to the phenotypes. The relevance of the

predicted associations was further supported by experi-

mental evidence. Our work illustrates that the systematic

application of an in silico target de-convolution approach

to chemical phenotypic assays, such as those stored in

public repositories, offers huge potential for unraveling

novel relationships between protein targets and phenotypes

in a fast and inexpensive manner.
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EXPERIMENTAL PROCEDURES

Target De-convolution Scheme DePick

We first detected chemical hits in the ‘‘experiment’’ and the ‘‘control’’ assays of

a screen using the modified B-Score method (Liu and Campillos, 2014). The

‘‘experiment’’ and ‘‘control’’ assays measure the intended biological activity

and the unspecific activity, respectively. Then, to assess the specificity of

the chemical hits in a phenotypic screen, we defined the ‘‘Specific hits’’ and

the ‘‘Inactive compounds’’ sets. The ‘‘Specific hits’’ set is composed of the

compounds that specifically modulate the phenotypes of interest, that is, the

compounds active in the ‘‘experiment’’ assay and inactive in the ‘‘control’’

assay. The compounds inactive in the experiment assay form the ‘‘Inactive

compounds’’ set. Afterward, we applied HitPick (Liu et al., 2013) to predict

the molecular targets of compounds in the ‘‘Specific hits’’ and ‘‘Inactive

compounds’’ sets and selected those targets predicted with high confidence

(precision >50%). HitPick is a ligand-based target prediction method that

combines 1-nearest-neighbor (1NN) similarity searching and Laplacian-modi-

fied naive Bayesian machine learning to predict direct human binding targets

using the STITCH database (Kuhn et al., 2008). In order to determine the

targets of hits that are enriched in the specific hits of the assays, and thus,

more likely to be relevant to the phenotypic response, we subsequently

applied the hypergeometric test to detect predicted target(s) that are over-rep-

resented in the ‘‘Specific hits’’ set compared with ‘‘Inactive compounds’’ set.

We associated to the phenotype those protein targets with a resulting p value

lower than 0.05 after false discovery rate multiple testing correction (Benjamini

et al., 2001) (Figure 1).

Experimental Testing

SR-BI mRNA Expression Assay

The murine lymphatic endothelial cell line, SV-LEC, was provided by

Dr. J.S. Alexander (Shreveport, LA) and was cultured as previously described

(Ando et al., 2005). SV-LECs were grown to confluence with DMEM culture

medium containing high glucose (25 mM). In some experiments, cells were

pre-incubated with 10 ng/mL of anti-BACE1 antibody (R&D Systems), diluted

in media for 3, 6, or 12 hr prior to mRNA extraction for gene expression

analysis. Total RNA from SV-LECs was extracted using an RNA extraction

kit (NucleoSpin RNA II; Macherey-Nagel) and Maxtract tube (QIAGEN).

cDNAwas synthesized from 2 mg of RNAusing a Taqman reverse transcriptase

kit (Applied Biosystems). Real-time qPCR was performed in triplicate using

SYBR Green PCR Master Mix (Applied Biosystems) and analyzed on an Abi

Prism 7500 Detection System (Applied Biosystems). Data were normalized

to GAPDH and the primers used are listed in Table S5. Consistent with our

previous study (Lim et al., 2013), real-time qPCR analysis revealed the expres-

sion of SR-BI on SV-LECs, at similar levels as in the RAWmacrophage cell line,

which served as positive control (Lorenzi et al., 2008).

Canonical Wnt/b-catenin Activity Assay

Transcriptional activity of canonical Wnt signaling was determined with the

M50 Super 8x TOPflash and M51 Super 8x FOPflash vectors, which contain

a firefly luciferase gene under the control of seven TCF/LEF binding sites

(TOPflash) or mutated TCF/LEF binding sites (FOPflash). A549 cells were

plated in 48-well plates at a density of 1.5 3 105 cells per well. The next day,

cells were transfected with either 500 ng/well of M50 Super 8x TOPflash

plasmid or the negative control M51 Super 8x FOPflash using Lipofectamine

LTX with PLUS reagent (Life Technologies) in serum-free Opti-MEM medium

(Life Technologies). After 6 hr of transfection, cells were treated with the phar-

macological inhibitors or vehicle control (H2O or DMSO) diluted in DMEM/F12

medium supplemented with 0.1% (v/v) fetal calf serum. For each independent

experiment, stimulations were performed in duplicate or more repetitions.

After 24 hr of stimulation, the cells were lysed using Glo lysis buffer and

luciferase activity was assayed using the Bright-Glo luciferase assay system

(Promega). TOPflash activity was normalized to FOPflash activity and ex-

pressed relative to vehicle control conditions.
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