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Abstract
The diagnosis of Parkinson’s disease (PD) still lacks objective
diagnostic markers independent of clinical criteria.
Cerebrospinal fluid (CSF) samples from 36 PD and 42 age-
matched control patients were subjected to inductively
coupled plasma-sector field mass spectrometry and a total
of 28 different elements were quantified. Different machine
learning algorithms were applied to the dataset to identify a
discriminating set of elements yielding a novel biomarker
signature. Using 19 stably detected elements, the extreme
gradient tree boosting model showed the best performance in
the discrimination of PD and control patients with high
specificity and sensitivity (78.6% and 83.3%, respectively),
re-classifying the training data to 100%. The 10 times 10-fold
cross-validation yielded a good area under the receiver
operating characteristic curve of 0.83. Arsenic, magnesium,

and selenium all showed significantly higher mean CSF levels
in the PD group compared to the control group (p = 0.01,
p = 0.04, and p = 0.03). Reducing the number of elements to
a discriminating minimum, we identified an elemental cluster
(Se, Fe, As, Ni, Mg, Sr), which most importantly contributed to
the sample discrimination. Selenium was identified as the
element with the highest impact within this cluster directly
followed by iron. After prospective validation, this elemental
fingerprint in the CSF could have the potential to be used as
independent biomarker for the diagnosis of PD. Next to their
value as a biomarker, these data also argue for a prominent
role of these highly discriminating six elements in the patho-
genesis of PD.
Keywords: Biomarker, Cerebrospinal fluid, Iron, Parkinson’s
disease, Selenium.
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The diagnosis of idiopathic Parkinson’s disease (PD) is still
based on purely clinical criteria, which were recently refined
by the Movement Disorder Society (Postuma et al. 2015). A
current meta-analysis on the accuracy of the clinical diag-
nosis of PD shows that still only 8 of 10 patients are
diagnosed correctly (Rizzo et al. 2016). Most studies
evaluating the value of alpha-synuclein in the cerebrospinal
fluid (CSF) as a potential biomarker show that its mean levels
are lower in PD compared to controls; however, individual
alpha-synuclein levels lack discrimination power and speci-
ficity (Mollenhauer et al. 2011). As an alternative approach,
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other features contributing to the pathogenesis of PD could
be used as potential biomarkers. The levels of several
bioelements are shown to be altered in PD patients’ brains.
For example, an increase in iron content and reduction in
copper was demonstrated in the Parkinsonian substantia
nigra (Dexter et al. 1989; Davies et al. 2014). While the idea
of metal-induced oxidative stress in neurodegeneration is
known for decades, current studies also link alpha-synuclein
pathology and bioelement dysregulation, since alpha-synu-
clein aggregation can also be triggered by iron, copper, zinc,
manganese, and arsenic (Uversky et al. 2001; Cholanians
et al. 2016). Alzheimer’s disease as another example also
shows bioelemental dysregulations, which might be associ-
ated with pathological protein aggregation and which are
reflected by changes in CSF levels of elements like
aluminum (Hozumi et al. 2011; Virk and Eslick 2015).
However, results on bioelements in the CSF of PD patients
are often not reproducible potentially because of variable
detection methods, insufficiently characterized patients, and
insufficiently controlled blood contamination. Although the
levels of more common elements, such as iron, copper and
manganese, were analyzed by several groups yielding
inconclusive results, there is insufficient data on less
abundant elements (Jim�enez-Jim�enez et al. 2014). In fact,
because of the plethora of mechanisms involved in the
pathogenesis of PD, it is unlikely that one single element will
emerge as a diagnostic biomarker. We therefore studied the
concentrations of up to 28 elements in the CSF of PD
patients and age-matched controls. Our data yield an
elemental fingerprint, which allows differentiating PD from
controls with the potential to become a novel biomarker
signature for PD.

Material and methods

Participants

Thirty-six PD patients were consecutively selected from the CSF
Biobank of the Department of Neurology, University of Goettingen,
Germany. Only samples with a sufficiently high amount of CSF
required for elemental analysis were included. PD patients (based on
UK Brain Bank criteria, compliant with MDS criteria) were
arbitrarily recruited from the available patient pool of the out- and
in-patient clinics.

Additional clinical parameters increasing diagnostic accuracy
were available (32/36 MRI, 25/36 DatScan, 20/36 substantia nigra
ultrasound). The majority of the patients belong to a cohort, which
has regular scheduled follow-up assessments in the Parkinson’s
disease outpatient clinics (follow-up 13–40 months). Thirty-three
patients were under anti-Parkinsonian medication including levo-
dopa, dopamine agonists, amantadine, MAO and COMT inhibitors,
while three patients were drug na€ıve.

All PD patients underwent a thorough clinical examination and
history taking, assessment of motor and non-motor symptoms
(MDS-UPDRS, PDNMS), and routine blood work. Disease duration
was defined as the time since the awareness of the first motor

symptoms. The levodopa equivalent dose was calculated according
to Tomlinson et al. 2010.

In addition, 42 age-matched controls without signs of neurode-
generative, neuroinflammatory, or acute ischemic central nervous
diseases were included, in most cases having a lumbar puncture for
exclusion diagnosis (e.g., headache, dizziness, functional disorders).
No specific method of patient randomization was employed. CSF
samples were collected in the scope of a local monocentric research
project. Except for local ethics approval, no specific trial pre-
registration was performed. Sample sizes were chosen in similarity
to previously published studies (Jim�enez-Jim�enez et al. 2014).
Because of the lack of pre-existing learning curves for our machine
learning algorithms, there was no definite sample size predetermi-
nation available, which would be required to realize more precise
sample size considerations for classification models (Mukherjee
et al. 2003). A permission of the local ethics committee has been
obtained prior to the initiation of the study (Ethics committee of the
University Medicine G€ottingen, No. 13/11/12). Written consent was
provided by all patients or care givers. The study conforms to the
Code of Ethics of the World Medical Association (Declaration of
Helsinki).

CSF-Procedures

All patients underwent a lumbar puncture, where 10 mL of CSF
were collected in polypropylene tubes and treated in a standard
procedure. Routine testing included WBC and RBC count, protein
and lactate levels. CSF was immediately centrifuged (2000 g;
20 min; 4°C) within 30 min of collection and frozen at �80°C until
further analysis. Patients were non-fasting. Patients with severe
hepatic or renal failure, and those taking mineral supplements or
chelating agents were excluded. Samples with a RBC count > 100/
lL in the routine testing sample were excluded.

Sample preparation and analysis by ICP-OES and ICP-sf-MS

Frozen aliquots were transported overnight on dry ice to the
Research Unit Analytical BioGeoChemistry of the Helmholtz
Zentrum, Muenchen for further investigation. The samples were
thawed slowly at 4°C before being diluted 1:4 with Milli-Q water.
The diluted samples were directly used for element measurements.
An inductively coupled plasma optical emission spectrometry (ICP-
OES) ‘Spectro Ciros Vision’ system (SPECTRO Analytical Instru-
ments GmbH & Co. KG, Kleve, Germany) was used for element
determination. An ELEMENT 2, Thermo-Electron (Bremen, Ger-
many) ICP-sf-MS instrument was employed for determination of
elements which were below the LOQ from ICP-OES. The determi-
nation method had been validated previously by regular laboratory
intercomparison studies. Certified single element standards were
used after every 10 measurements (see supplementary methods).
Additionally, reference materials were analyzed together with the
sample batch. The investigators who performed the elemental
analysis (ICP-OES/ICP-sf-MS) were blinded during the entire
analytic process and data processing by working with pseudony-
mized samples, which did not permit to draw conclusions about the
group affiliation.

Sample analysis by ICP-OES

Sample introduction was carried out using a peristaltic pump
connected to a Meinhard nebulizer with a cyclonic spray chamber.
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Measured spectral element lines (nm): Ba: 455.404, Ca: 183.801,
Fe: 259.941, Li: 670.770, Mg: 279.079, Na: 589.592, P: 177.495, S:
180.731, Si: 251.612, Sr: 407.771, Zn: 213.856. The RF power was
set to 1400 W, the plasma gas was 13 L Ar/min, whereas
the nebulizer gas was approximately 0.6 L Ar/min after daily
optimization.

Sample analysis by ICP-sf-MS
103Rh was administered to each sample at a concentration of 1 lg/L
as internal standard. Sample introduction was carried out using a
peristaltic pump connected to a Seaspray nebulizer with a cyclonic
spray chamber. The RF power was set to 1300 W, the plasma gas
was 15 L Ar/min, whereas the nebulizer gas was approximately
0.9 L Ar/min after daily optimization. Measured element isotopes:
27Al, 75As, 114Cd, 140Ce 59Co, 52Cr, 63Cu, 202Hg, 127I, 55Mn, 98Mo,
60Ni, 208Pb, 77Se, 120Sn, 48Ti, 204Tl, 51V.

Statistical analysis

Only elements with more than 60 measurements within the
collective group of 78 patients were considered. Measurements
were log-transformed and values below the limit of quantification
were imputed using model-based robust Expectation-Maximization
and data imputed this way was used for all analyses if not stated
otherwise. The concentrations of each element were compared using
regression by maximum likelihood estimation for left-censored data
are given, which specifically handles left-censored data (see
Supplementary Methods). As reference values, randomly imputed
data were compared using t-tests. Resulting p-values were adjusted
using Holm’s procedure to control the family-wise error rate at a
0.05 level.

A heat map was constructed using correlation as measurement of
similarity. Different machine learning methods were applied to the
data (see Supplementary Methods). The performance was assessed
via 10 times 10-fold cross-validation. The resulting estimates for the
area under the area under the receiver operating characteristic curve
(ROC) curve were visualized. The consensus specificity and
sensitivity across the 10 repeats was calculated according to the
Youden Index. Random forest and extreme gradient tree boosting
models have been trained on all available test data. A shared scatter
plot was constructed showing the interaction of Se and Fe.

The area under the curve (AUC) results from the 10 times repeated
10-fold cross-validation is used as a feature selection criterion to
determine the optimal set of elements for a good classifier. A
step-wise procedure removing the least informative element one after
the other was applied. To choose the final feature set, starting with
the last remaining element, a bigger feature set was considered if the
AUC increased or if the AUC decreased less than 0.01 for only one
bigger feature set. The feature importance –measured as information
gain – for each element of the optimal set was quantified via 10 times
10-fold cross-validation of a classifier trained on those elements only.
The performance of the feature selection proceeded classification was
assessed by yet another 10 times repeated 10-fold cross-validation
that included the feature selection.

Demographical characteristics were compared between control
patients and patients with PD using t-test and chi-square-test.
Correlations between the concentration levels and clinical data
(disease duration, age, levodopa equivalent dose, MDS-UPDRS part
III and sum score, MDS-PDNMS) were tested using Pearson

product moment after adjusting for multiple testing according to
Bonferroni. Using a logistic regression model, the grouping (PD vs.
control patients) was modeled based on the concentration levels of
the elements in the final feature set as predictors. Patients were
assigned elemental scores using the resulting model (Figure S1).

Results

Demographics

Patients in the PD group were 67 � 11.0 years old, whereas
control patients were 65.5 � 13.1 years old (not signifi-
cantly different p > 0.05). Patients of different disease
durations were included with a mean disease duration of
5.0 � 5.5 years. There was no significant difference in sex
distribution between the two groups (p > 0.05) (Table 1).

Detection of the elemental profile in the CSF

A total of 28 elements were quantified in the CSF samples
(Table 2). Ba, Cd, Ce, Hg, Li, Sn, Tl, and V had measure-
ments over the limit of quantification for less than 60 patients
and have been eliminated from the analysis. In addition,
iodine was excluded because of extremely high spread of
measured values, which most likely was attributed to external
factors, such as unreported dietary supplementation, applica-
tion of radiographic contrast agents, or antiseptic agents.

CSF levels of arsenic, magnesium, and selenium are

significantly higher in Parkinson’s disease
The elements arsenic (control 585 � 630 ng/L; PD
884 � 634 ng/L; p = 0.01), magnesium (control 21 �
1.2 mg/L; PD 22 � 1.3 mg/L; p = 0.04), and selenium
(control 5.9 � 6.6 lg/L; PD 9.4 � 7.6 lg/L; p = 0.03) –
all show significantly higher mean CSF levels in the PD
group compared with the control group after multiple
adjustments (Table 2, Fig. 1a).

Hierarchical clustering with correlation as measurement of
similarity

There is evidence for cluster formation, which partially
discriminates PD patients and controls but also shows

Table 1 Demographical and clinical characteristics of the study
population. Data on age, disease duration, and clinical scores are
presented as median, (standard deviation), range

Control PD

Number of patients 42 36
Age, years 65.5 (13.1) 38–93 67 (11.0) 45–87
Male/female (% female) 24/18 (42.9) 24/12 (50)

Disease duration, years n.a. 5.0 (5.5) 1–25
MDS-UPDRS total n.a. 35 (29.8) 15–144
MDS-UPDRS III n.a. 19 (13.0) 9–53
MDS-PDNMS n.a. 9 (5.3) 0–24

PD, Parkinson’s disease.
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pronounced overlaps (Fig. 1b). Arsenic and selenium, which
present with significantly higher CSF levels in the single
comparison (Fig. 1a) show highly similar profiles and thus
are represented directly next to each other. Magnesium,
which also presents with significantly higher CSF levels, is
directly encompassed by iron and strontium, two elements,
which like magnesium itself also contribute to the final
discrimination subset of elements described below.

Random forest and extreme gradient tree boosting
differentiate best Parkinson’s disease from controls

The random forest and tree boosting algorithms showed the
best overall performance in the discrimination of PD and
control patients and both have a consensus area under the
receiver operating characteristic curve (AUROC) over 80%
(Fig. 2a and b). The random forest algorithm showed an
average AUROC of 82.7%. Sensitivity and specificity at the
Youden index are estimated as 66.7% and 88.1%. The tree

boosting algorithm showed the best average AUROC of
83.9%. At the Youden index, the achieved sensitivity is
83.3% and the achieved specificity is 78.6%. If trained on the
available data, both models can perfectly re-classify the
training data.

Selenium, iron, arsenic, nickel, magnesium, and strontium

are sufficient for classification

We were seeking to reduce the number of elements to a
plausible minimum, which still results in a sufficient
classification of our samples. This procedure proposed that
only six features – Se, Fe, As, Ni, Mg, and Sr – are sufficient
to achieve good classification performance (cross-validated
AUROC: 0.90, Fig. 3a).

Selenium and iron contribute most to sample discrimination

Based on the six remaining elements from the feature
selection analysis, the feature importance analysis presents

Table 2 Single element comparison: Comparison of CSF concentrations based on regression by maximum likelihood estimation for left-censored
data (column ‘Value censored MLE’)

Element

Mean � SD Median (min; max) p value

Control PD Control PD Raw Adjusted
Value
censored MLE

Value censored
MLE adjusted

Al [ng/l] 2.4 � 0.34 2.4 � 0.33 2.4 (1.9; 3.4) 2.4 (1.8; 3.4) 0.69 1.00 0.68 1.00
As [ng/l] 2.5 � 0.56 2.8 � 0.32 2.4 (1.5; 3.3) 2.9 (2; 3.5) < 0.01 0.01 < 0.01 0.01
Ba [lg/l] 3.1 � 0 3.1 � 0.011 3.1 (3.1; 3.1) 3.1 (3.1; 3.2) 0.90 0.29

Ca [mg/l] 7.6 � 0.028 7.6 � 0.019 7.6 (7.5; 7.7) 7.6 (7.5; 7.6) 0.95 1.00 0.95 1.00
Cd [ng/l] 0.92 � 0.94 0.3 � 0.86 0.63 (�1.4; 3.1) 0.2 (�2.4; 2.4) < 0.01 < 0.01
Ce [ng/l] 0.48 � 0.18 0.42 � 0.02 0.42 (0.42; 1.3) 0.42 (0.42; 0.54) 0.64 0.03

Co [ng/l] 1 � 0.38 0.97 � 0.33 0.93 (0.46; 2.1) 1 (0.46; 1.6) 0.53 1.00 0.56 1.00
Cr [ng/l] 1.7 � 0.29 1.7 � 0.32 1.7 (1.1; 2.4) 1.7 (1; 2.4) 0.75 1.00 0.74 1.00
Cu [lg/l] 4.1 � 0.098 4.1 � 0.1 4.1 (3.9; 4.3) 4.1 (3.9; 4.3) 0.17 1.00 0.16 1.00

Fe [lg/l] 4.1 � 0.17 3.9 � 0.33 4.1 (3.6; 4.4) 4 (3.1; 4.3) 0.84 1.00 0.30 1.00
Hg [ng/l] 0.92 � 0.63 0.95 � 0.68 0.7 (0.7; 3) 0.7 (0.7; 3.1) 0.68 0.81
Li [lg/l] 3.1 � 0 3.2 � 0.51 3.1 (3.1; 3.1) 3.1 (3.1; 6.2) 0.02 0.03 0.02

Mg [mg/l] 7.3 � 0.024 7.3 � 0.026 7.3 (7.3; 7.4) 7.3 (7.3; 7.4) < 0.01 0.05 < 0.01 0.04
Mn [ng/l] 2.6 � 0.11 2.6 � 0.11 2.6 (2.4; 2.8) 2.6 (2.5; 2.9) 0.79 1.00 0.79 1.00
Na [g/l] 9.6 � 0.054 9.6 � 0.029 9.6 (9.4; 9.7) 9.6 (9.5; 9.7) 0.12 1.00 0.12 1.00
Ni [ng/l] 2.2 � 0.83 2.2 � 0.48 2.2 (0.31; 4) 2.3 (0.42; 2.8) 0.97 1.00 0.89 1.00

P [mg/l] 7.2 � 0.046 7.2 � 0.05 7.1 (7.1; 7.3) 7.2 (7; 7.3) 0.54 1.00 0.53 1.00
Pb [ng/l] 1.3 � 0.46 1.3 � 0.52 1.3 (0.46; 2.3) 1.3 (0.46; 2.3) 0.74 1.00 0.69 1.00
S [mg/l] 7 � 0.11 7.1 � 0.095 7 (6.9; 7.4) 7.1 (6.9; 7.3) 0.25 1.00 0.25 1.00

Se [lg/l] 3.6 � 0.34 3.9 � 0.33 3.5 (3.3; 4.5) 3.8 (3.3; 4.6) < 0.01 0.04 < 0.01 0.03
Si [lg/l] 4.8 � 0.2 4.7 � 0.15 4.8 (4.1; 5.1) 4.7 (4.3; 5) 0.08 1.00 0.08 1.00
Sn [ng/l] 0.81 � 0.42 1.1 � 0.45 0.65 (0.43; 1.7) 1.2 (0.43; 2) < 0.01 < 0.01 < 0.01

Sr [lg/l] 4.5 � 0.3 4.4 � 0.36 4.5 (4; 5.1) 4.3 (3.9; 5.2) 0.03 0.43 0.02 0.36
Ti [ng/l] 1.7 � 0.24 1.7 � 0.32 1.6 (1.3; 2.4) 1.6 (1.2; 2.9) 0.78 1.00 0.77 1.00
Tl [ng/l] 0.48 � 0.058 0.48 � 0.06 0.46 (0.46;0.73) 0.46 (0.46; 0.78) 0.19 0.47

V [ng/l] 0.54 � 0.19 0.54 � 0.15 0.44 (0.43; 1.1) 0.48 (0.39; 1) 0.69 0.46
Zn [lg/l] 3.9 � 0.36 3.9 � 0.16 3.8 (3.5; 5.2) 3.9 (3.7; 4.6) 0.50 1.00 0.78 1.00

p-values are adjusted using Holm’s procedure (column ‘Value censored MLE adjusted’). Raw and adjusted p-values resulting from t-tests on
randomly imputed data are given for reference (columns ‘raw’ and ‘adjusted’). PD = Parkinson’s disease.
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Fig. 1 (a) Distribution of the elements selenium, iron, arsenic,
nickel, magnesium, and strontium. The elements As, Mg, and Se
are significantly different when compared individually between

controls and Parkinson’s disease patients on a 0.05 level after
multiple adjustment. The element levels are presented on a log10
scale. (b) Hierarchical clustering with correlation as measurement of

similarity. Patients and elements are hierarchically clustered so
that patients with similar element level profiles as well as
elements with similar patterns across patients are located close to

each other. The one gray-coded rectangle represents a missing
value for sodium (Na). PD = Parkinson’s disease (n = 36), Control
(n = 42).
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selenium with the highest impact in this model, directly
followed by iron (Fig. 3b).

Iron and selenium show a strong interaction within the

decision tree

Unlike selenium, iron levels did not differ significantly
regarding the single element comparison (Fig. 1a). However,
iron appears to be a highly informative feature within the
discrimination models. While the main effect is clearly
contributed by selenium, a second split induced by iron
levels can be visualized (Fig. 4).

Clinical parameters do not significantly correlate with

elemental levels

There was no significant correlation between the 28 single
elements neither for the motor or non-motor symptoms
(MDS-UPDRS total score and part III, MDS-PDNMS) nor
for the disease duration and H&Y stages (p > 0.05). The
combined regression model also showed no correlations
(Figure S1). There was also no correlation between the final
six elements and the parameter age and levodopa equivalent
dose (Figure S2).

Discussion

Although several studies on the levels of single elements in
the CSF have been published, the data are inconclusive
because of variable detection methods, inadequately defined

patients, and insufficiently controlled blood contamination
impacting elemental composition (Mariani et al. 2013;
Jim�enez-Jim�enez et al. 2014). Multiple factors influence
the levels of single elements, that is, dietary habits, drug
intake, competing diseases, geographical factors, which
makes it highly unlikely that one single element will function
as disease marker. To overcome this problem focusing on
elemental patterns rather than single elements may increase
the robustness of results. After quantification of a total of 28
elements, eight were excluded because of low detection
levels and one because of diet- and medication-dependent
variability (iodine). Using a total of 19 stably detected
elements, we were able to create a unique elemental
fingerprint, which was able to differentiate PD patients from
age-matched controls with high specificity and sensitivity
(78.6% and 83.3%, respectively), perfectly re-classifying the
training data. Even though our analysis was based purely on
the chemical properties of the CSF and did not take into
account additional clinical features or supportive diagnostics,
the 10 times 10-fold cross-validation yielded an AUROC of
0.83. In contrast, CSF alpha-synuclein shows a low speci-
ficity of ~25% with a corresponding AUROC of 0.69, even
when taking age as the biggest risk factor for the develop-
ment of PD into account (Mollenhauer et al. 2011). Since the
analysis of a large number of elements is not economical and
might prevent clinical translation, we aimed to reduce the
number of required elements to an optimal subset. This
resulted in the identification of a cluster of six single

Fig. 2 (a) Performance of different machine learning algorithms, ROC
curves. Nine different machine learning methods were applied to the

data. The performance was assessed via 10-times 10-fold cross-

validation. (b) Performance of different machine learning algorithms,
AUROC. The area under the ROC curve (AUROC) was estimated in

each 10-fold cross-validation.
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elements (Se, Fe, As, Ni, Mg, Sr), which most importantly
contributed to the sample discrimination.
Within this most determining cluster, selenium was

identified as the element with the highest impact for the
overall score directly followed by iron. The knowledge about
selenium in neurodegenerative disorders has especially
emerged in the last few years. As essential bioelement,
dietary selenium converted into selenide (Se2-) serves as a
donor for the incorporation into selenoproteins like the
glutathione peroxidases family (GPx) or Selenoprotein P
(Sepp1), which are expressed in the CNS (Cardoso et al.
2015). Both proteins have anti-oxidative activity protecting
against reactive oxygen species-induced cell stress, which is
known to contribute to dopaminergic neuron damage in PD
(Kaur and Andersen 2004; Bellinger et al. 2012). In PD
brains, GPx1-positive microglia are co-localized with Lewy
bodies (Power and Blumbergs 2009). GPx4 is also elevated
in PD brains and is regulated by DJ-1, a protein deglycase
involved in genetic forms of PD (PARK7) (Blackinton et al.
2009). Sepp1, a selenium transport protein and antioxidant,
also co-localizes with the core of the Lewy bodies (Bellinger

et al. 2012). This could contribute to increased levels of
selenium in the CSF, which have been observed in patients
with PD (Aguilar et al. 1998; Qureshi et al. 2006). Thus,
although selenoproteins appear to be important in PD
pathogenesis, the reason for elevated selenium levels is not
fully understood. Both, etiologically causative as well as
compensatory mechanisms could be involved.
As the second most important discriminator in our

algorithm iron is the most abundant bioelement in humans
and has been linked to disease mechanisms in PD for
almost one century (Lhermitte et al. 1924). Iron catalyzes
the formation of reactive oxygen species through Fenton
reactions contributing to neuronal protein, lipid, and DNA
damage (Kaur and Andersen 2004). Alterations in blood
iron levels seem to modulate the risk of developing PD as
was shown in a Mendelian randomization study (Pichler
et al. 2013). Despite the importance of iron in the
pathogenesis of PD, CSF iron levels alone are not sufficient
as diagnostic biomarkers. A meta-analysis showed no
variation between PD patients and healthy controls (Mariani
et al. 2013). This is also confirmed by our data showing no

Fig. 3 (a) Feature selection for determination of a minimal number
of elements to achieve a good classification performance. The AUC
results from the 10 times repeated 10-fold cross-validations were

used as a feature selection criterion to determine the optimal set of
elements for a good classifier. A step-wise procedure removing the
least informative (measured by AUC) element one after the other
was applied. AUC estimates (y axis) for the backward selected list

of feature sets (x axis) are shown. Highlighted in black is the feature

selection path starting from the remaining single element including
six elements until the AUC decreases again. The orange dot shows
the final selection. (b) Feature importance showing the impact of

each element of the final set within the decision tree boosting. The
feature importance – measured as information gain – for each of
these six elements is quantified via 10 times 10-fold cross-validation
of a decision tree boosting classifier trained on these six elements

only.
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significant difference in iron levels when considered as
single factor. Interestingly, our analysis suggests that there
is a relevant interaction of iron and selenium, which is
underlined by the high discriminating impact of both
elements in the machine learning algorithm. This underlies
the strength of this elemental biomarker signature in
contrast to the consideration of single elements. Arsenic
so far has not been studied in the CSF of PD patients, but a
recent study demonstrates that this metalloid induces
oligomerization of alpha-synuclein (Cholanians et al.
2016). As a chemical compound in pesticides it might
contribute to the increased risk of the development of PD
after occupational exposure (Elbaz et al. 2009). There is
less evidence linking nickel and neurodegeneration. The
metal is discussed to contribute to the development of
extrapyramidal signs in technical dentists by occupational
exposition (Fabrizio et al. 2007). In addition, mutations in
ATP13A2, which encodes a lysosomal ATPase protecting
against manganese and nickel toxicity, cause a genetic form
of PD (PARK9) (Covy et al. 2012). Again, our single
element analysis did not reveal significant changes in nickel
CSF levels, which is coherent with previous results
(Alimonti et al. 2007). However, nickel significantly con-
tributes to the discrimination algorithm as part of the highly
discriminating element cluster.
Magnesium was one of the three elements, which showed

significantly increased levels in the single element analysis in

the CSF of PD patients compared to controls. It has also been
shown to accelerate alpha-synuclein aggregation and lower
levels have been found in the cortex, white matter, basal
ganglia, and brain stem of PD patients (Yasui et al. 1992;
Lowe et al. 2004). Data for magnesium in the CSF are
contradictory but suggest elevated levels: although a recent
study showed increased Mg levels in PD, others detected
only a trend for an increase and yet two other studies showed
no significant changes (Forte et al. 2004; Alimonti et al.
2007; Hozumi et al. 2011; Sanyal et al. 2016). Interestingly,
there is also an increase in CSF magnesium levels in patients
with Lewy body dementia (Bostr€om et al. 2009).
Our analysis also reveals strontium as non-essential

element to contribute to the discrimination algorithm.
Strontium is mostly present in osseous structures, that is,
bones and teeth, and its levels were previously shown to be
unchanged in the CSF of PD patients compared to controls,
matching our results (Peltz-Cs�aszma et al. 2005; Alimonti
et al. 2007). Its function in the CNS is largely unknown, but
because of its size, strontium can replace synaptic calcium
and trigger neurotransmitter release, thus contributing to
synaptic transmission and plasticity (Xu-Friedman and
Regehr 1999). Interestingly a recent epidemiological study
reports a significant association between the PD mortality
rates and the soil concentrations of not only strontium but
also selenium and magnesium in the USA, highlighting three
of the six elements of the final subset (Sun 2017).

Fig. 4 Interaction of iron and selenium.

The abundances of iron and selenium [in
log (ng/L)] are plotted against each other.
Marginal densities for both elements are

plotted at each side of the plot. While the
main effect is clearly in Se, a second split by
Fe seems favorable when just assessing

the scatter plot visually. PD = Parkinson’s
disease (n = 36), Control (n = 42).
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Our analysis did not reveal a significant correlation neither
between single elemental levels nor between an elemental
score using the final set of elements and clinical parameters
(MDS-UPDRS part III and sum score, MDS-PDNMS, age,
disease duration, Hoehn and Yahr stages). There was also no
significant correlation between levodopa equivalent doses
and the six final elements after adjusting for multiple testing.
Since our PD cohort includes patients with variable disease
durations, our trial might not be sufficiently powered to
establish significant correlations to clinical parameters.
In conclusion, our study demonstrates that an elemental

fingerprint in the CSF can be used as novel and independent
biomarker for the diagnosis of PD. Our data also argue for a
prominent role of six highly discriminating elements in the
pathogenesis of PD.

Acknowledgments and conflict of interest
disclosure

The authors appreciate the participation of our patients in this
study. We thank Woori Koh and Anna Fischbach for their
contributions to the patient recruitment. We also thank our
Parkinson’s and study nurses Gudrun Leyerer and Elisabeth
Koch for their excellent assistance. Mathias B€ahr is a
handling editor for the Journal of Neurochemistry. The other
authors have no potential conflict of interest to disclose
regarding this manuscript. DFG Research Center for
Nanoscale Microscopy and Molecular Physiology of the
Brain (CNMPB) (Paul Lingor and Mathias B€ahr, Grant:
CNMPB III.I.9); Else-Kr€oner-Fresenius-Stiftung (Paul
Lingor).

Supporting information

Additional Supporting Information may be found online in the
supporting information tab for this article:

Figure S1. Summary of the clinical parameters.
Figure S2. Correlation of LED to the six final elements.
Figure S3. Diagram showing flow of patients through the study.
Table S1. Technical information about the Limit of quantification

(LOQ) for any measured element using ICP-OES and ICP-sf-MS.
Table S2. Levodopa equivalent dose (LED) for the PD patients.

References

Aguilar M. V., Jim�enez-Jim�enez F. J., Molina J. A. et al. (1998)
Cerebrospinal fluid selenium and chromium levels in patients with
Parkinson’s disease. J. Neural. Transm. 105, 1245–1251.

Alimonti A., Bocca B., Pino A., Ruggieri F., Forte G. and Sancesario G.
(2007) Elemental profile of cerebrospinal fluid in patients with
Parkinson’s disease. J. Trace Elem. Med Biol. 21, 234–241.

Bellinger F. P., Raman A. V., Rueli R. H. et al. (2012) Changes in
selenoprotein P in substantia nigra and putamen in Parkinson’s
disease. J. Parkinsons. Dis. 2, 115–126.

Blackinton J., Kumaran R., Brug M. P. der van, Ahmad R., Olson L.,
Galter D., Lees A., Bandopadhyay R. and Cookson M. R. (2009)

Post-transcriptional regulation of mRNA associated with DJ-1 in
sporadic Parkinson disease. Neurosci. Lett. 452, 8–11.

Bostr€om F., Hansson O., Gerhardsson L., Lundh T., Minthon L.,
Stomrud E., Zetterberg H. and Londos E. (2009) CSF Mg and Ca
as diagnostic markers for dementia with Lewy bodies. Neurobiol.
Aging 30, 1265–1271.

Cardoso B. R., Roberts B. R., Bush A. I. and Hare D. J. (2015)
Selenium, selenoproteins and neurodegenerative diseases.
Metallomics 7, 1213–1228.

Cholanians A. B., Phan A. V., Ditzel E. J., Camenisch T. D., Lau S.
S. and Monks T. J. (2016) Arsenic induces accumulation of
a-synuclein: implications for synucleinopathies and neuro-
degeneration. Toxicol. Sci. 153, 271–281.

Covy J. P., Waxman E. A. and Giasson B. I. (2012) Characterization of
cellular protective effects of ATP13A2/PARK9 expression and
alterations resulting from pathogenic mutants. J. Neurosci. Res. 90,
2306–2316.

Davies K. M., Bohic S., Carmona A. et al. (2014) Copper pathology in
vulnerable brain regions in Parkinson’s disease. Neurobiol. Aging
35, 858–866.

Dexter D. T., Wells F. R., Lee A. J., Agid F., Agid Y., Jenner P. and
Marsden C. D. (1989) Increased nigral iron content and alterations
in other metal ions occurring in brain in Parkinson’s disease. J.
Neurochem. 52, 1830–1836.

Elbaz A., Clavel J., Rathouz P. J., Moisan F., Galanaud J. P., Delemotte
B., Alp�erovitch A. and Tzourio C. (2009) Professional exposure to
pesticides and Parkinson disease. Ann. Neurol. 66, 494–504.

Fabrizio E., Vanacore N., Valente M., Rubino A. and Meco G. (2007)
High prevalence of extrapyramidal signs and symptoms in a group
of Italian dental technicians. BMC Neurol. 7, 24.

Forte G., Bocca B., Senofonte O., Petrucci F., Brusa L., Stanzione P.,
Zannino S., Violante N., Alimonti A. and Sancesario G. (2004)
Trace and major elements in whole blood, serum, cerebrospinal
fluid and urine of patients with Parkinson’s disease. J. Neural.
Transm. 111, 1031–1040.

Hozumi I., Hasegawa T., Honda A. et al. (2011) Patterns of levels of
biological metals in CSF differ among neurodegenerative diseases.
J. Neurol. Sci. 303, 95–99.

Jim�enez-Jim�enez F. J., Alonso-Navarro H., Garc�ıa-Mart�ın E. and
Ag�undez J. A. G. (2014) Cerebrospinal fluid biochemical studies
in patients with Parkinson’s disease: toward a potential search for
biomarkers for this disease. Front. Cell. Neurosci. 8, 369.

Kaur D. and Andersen J. (2004) Does cellular iron dysregulation play
a causative role in Parkinson’s disease? Ageing Res. Rev. 3,
327–343.

Lhermitte J., Kraus W. M. and McAlpine D. (1924) The Occurence of
abnormal deposits of iron in the brain in parkinsonism with special
reference to its localisation. J. Neurol. Psychopathol.V, 5, 195–208.

Lowe R., Pountney D. L., Jensen P. H., Gai W. P. and Voelcker N. H.
(2004) Calcium(II) selectively induces alpha-synuclein annular
oligomers via interaction with the C-terminal domain. Protein Sci.
13, 3245–3252.

Mariani S., Ventriglia M., Simonelli I., Donno S., Bucossi S., Vernieri
F., Melgari J. M., Pasqualetti P., Rossini P. M. and Squitti R.
(2013) Fe and Cu do not differ in Parkinson’s disease: a replication
study plus meta-analysis. Neurobiol. Aging 34, 632–633.

Mollenhauer B., Locascio J. J., Schulz-Schaeffer W., Sixel-D€oring F.,
Trenkwalder C. and Schlossmacher M. G. (2011) alpha-Synuclein
and tau concentrations in cerebrospinal fluid of patients presenting
with parkinsonism: a cohort study. Lancet Neurol. 10, 230–240.

Mukherjee S., Tamayo P., Rogers S., Rifkin R., Engle A., Campbell C.,
Golub T. R. and Mesirov J. P. (2003) Estimating dataset size
requirements for classifying DNA microarray data. J. Comput.
Biol. 10, 119–142.

© 2018 International Society for Neurochemistry, J. Neurochem. (2018) 10.1111/jnc.14316

Elements as Parkinson’s disease biomarkers 9



Peltz-Cs�aszma I., Andr�asi E., L�asztity A. and K€osel S. (2005)
Determination of strontium and its relation to other alkaline earth
elements in human brain samples. Microchem. J. 79, 375–381.

Pichler I., Del Greco M. F., G€ogele M. et al. (2013) Serum iron levels
and the risk of Parkinson disease: a Mendelian randomization
study. PLoS Med. 10, e1001462.

Postuma R. B., Berg D., Stern M., Poewe W., Olanow C. W., Oertel W.,
Obeso J. et al. (2015) MDS clinical diagnostic criteria for
Parkinson’s disease. Mov. Disord. 30, 1591–1601.

Power J. H. T. and Blumbergs P. C. (2009) Cellular glutathione
peroxidase in human brain: cellular distribution, and its potential
role in the degradation of Lewy bodies in Parkinson’s disease and
dementia with Lewy bodies. Acta Neuropathol. 117, 63–73.

Qureshi G. A., Qureshi A. A., Memon S. A. and Parvez S. H. (2006)
Impact of selenium, iron, copper and zinc in on/off Parkinson’s
patients on L-dopa therapy. J. Neural Transm. Suppl. 71, 229–236.

Rizzo G., Copetti M., Arcuti S., Martino D., Fontana A. and Logroscino
G. (2016) Accuracy of clinical diagnosis of Parkinson disease.
Neurology 86, 566–576.

Sanyal J., Ahmed S. S. S. J., Ng H. K. T., Naiya T., Ghosh E., Banerjee
T. K., Lakshmi J., Guha G. and Rao V. R. (2016) Metallomic

Biomarkers in Cerebrospinal fluid and Serum in patients with
Parkinson’s disease in Indian population. Sci. Rep. 6, 35097.

Sun H. (2017) Association of soil selenium, strontium, and magnesium
concentrations with Parkinson’s disease mortality rates in the USA.
Environ. Geochem. Health, 40, 349–357.

Tomlinson C. L., Stowe R., Patel S., Rick C., Gray R. and Clarke C. E.
(2010) Systematic review of levodopa dose equivalency reporting
in Parkinson’s disease. Mov. Disord. 25, 2649–2653.

Uversky V. N., Li J. and Fink A. L. (2001) Metal-triggered structural
transformations, aggregation, and fibrillation of human alpha-
synuclein: a possible molecular link between parkinson’s disease
and heavy metal exposure. J. Biol. Chem. 276, 44284–44296.

Virk S. A. and Eslick G. D. (2015) Aluminum Levels in Brain, Serum,
and Cerebrospinal Fluid are Higher in Alzheimer’s Disease Cases
than in Controls: a Series of Meta-Analyses. J. Alzheimer’s Dis. 47,
629–638.

Xu-Friedman M. A. and Regehr W. G. (1999) Presynaptic Strontium
Dynamics and Synaptic Transmission. Biophys. J . 76, 2029–2042.

Yasui M., Kihira T. and Ota K. (1992) Calcium, magnesium and
aluminum concentrations in Parkinson’s disease. Neurotoxicology
13, 593–600.

© 2018 International Society for Neurochemistry, J. Neurochem. (2018) 10.1111/jnc.14316

10 F. Maass et al.


