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Abstract

Anaerobic degradation is a key process in many environ-
ments either naturally or anthropogenically exposed to pe-
troleum hydrocarbons. Considerable advances into the bio-
chemistry and physiology of selected anaerobic degraders
have been achieved over the last decades, especially for the
degradation of aromatic hydrocarbons. However, research-
ers have only recently begun to explore the ecology of com-
plex anaerobic hydrocarbon degrader communities directly
in their natural habitats, as well as in complex laboratory sys-
tems using tools of molecular biology. These approaches
have mainly been facilitated by the establishment of a suite
of targeted marker gene assays, allowing for rapid and di-
rected insights into the diversity as well as the identity of
intrinsic degrader populations and degradation potentials
established at hydrocarbon-impacted sites. These are based
on genes encoding either peripheral or central key enzymes
in aromatic compound breakdown, such as fumarate-add-
ing benzylsuccinate synthases or dearomatizing aryl-coen-

zyme A reductases, or on aromatic ring-cleaving hydrolases.
Here, we review recent advances in this field, explain the dif-
ferent detection methodologies applied, and discuss how
the detection of site-specific catabolic gene markers has im-
proved the understanding of processes at contaminated
sites. Functional marker gene-based strategies may be vital
for the development of a more elaborate population-based
assessment and prediction of aromatic degradation poten-
tials in hydrocarbon-impacted environments.

© 2016 S. Karger AG, Basel

Introduction: Anaerobic Aromatic Hydrocarbon
Degradation by Microbes

Petroleum hydrocarbons are among the most impor-
tant and ubiquitous contaminants in aquatic and terres-
trial systems. Hydrocarbons typically occur as complex
mixtures of aliphatic compounds (alkanes, alkenes and
cycloalkanes), monoaromatic hydrocarbons (i.e. classical
BTEX compounds like benzene, toluene, ethylbenzene
and xylenes) and polycyclic aromatic hydrocarbons
(PAHs, e.g. naphthalene, anthracene, etc.) in the environ-
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ment. Petroleum hydrocarbons are generally harmful for
organisms and can be very persistent in the environment
[Wilkes and Schwarzbauer, 2010], especially with in-
creasing molecular complexity. Hydrocarbons with a
high molecular weight or long-chain aliphatic com-
pounds (>C) are mostly hydrophobic, solid waxes with
a low mobility and bioavailability. Aromatic hydrocar-
bons are generally stabilized by high-resonance energy
levels within the delocalized nt-electron system of the aro-
matic ring. Notwithstanding, many bacteria are in fact
able to utilize aromatic hydrocarbons as electron donors
and carbon sources under a variety of redox conditions
[Fuchs et al., 2011; Schink, 2002; Widdel et al., 2010].
Since aromatic compounds lack functionalization by car-
boxyl, hydroxyl or amine groups to facilitate biochemical
attack [Wilkes and Schwarzbauer, 2010], degraders have
evolved a number of catabolic pathways allowing them to
capitalize on such substrates.

Catabolic Pathways

Under oxic conditions, aromatic compounds are first
activated by the addition of hydroxyl groups to destabilize
the aromaticity by various mono- or dioxygenases [Pérez-
Pantoja et al., 2010]. Oxygen is strictly necessary as a co-
substrate for ring activation reactions. The ring systems
of the activated compounds are then metabolized by var-
ious peripheral pathways into a few di-hydroxylated cen-
tral intermediates. The ring structure is then opened by
either meta- or ortho-cleavage, and breakdown products
are further degraded before entering central metabolism,
mostly as succinyl- or acetyl-coenzyme A (CoA). Due to
the superior redox potential of the H,O/O, redox couple,
molecular oxygen is a thermodynamically and kinetically
preferred electron acceptor for biodegradation [Fuchs et
al,, 2011].

In contrast, when hydrocarbon loads exceed the avail-
ability of oxygen, anaerobic biodegradation of aromatic
hydrocarbons becomes a pivotal process, particularly in
contaminated subsurface environments (i.e. groundwa-
ter). However, the microbes involved in anaerobic degra-
dation and their biochemistry eluded scientific investiga-
tors for most of the last century. Beginning from the late
1980s, the first systematic insights became apparent [Ev-
ans and Fuchs, 1988]. Similar to aerobic pathways, an-
aerobic aromatic compound degradation involves a num-
ber of peripheral funnelling pathways, where the crucial
initial activation occurs (fig. 1). The activated compounds
are then converted to central metabolites, which are then

Anaerobic Hydrocarbon Degradation

further degraded via conserved pathways to acetyl-CoA
for assimilation, complete oxidation to CO, or release to
methanogenic partners [Fuchs et al., 2011].

Currently, three alternative strategies for the anaero-
bic activation of aromatic hydrocarbons are known
[Heider, 2007; Widdel and Rabus, 2001]: (1) the addition
of a methyl or methylene group of substituted aromatic
compounds across the double bond of fumarate (so-
called ‘fumarate addition’), (2) hydroxylation indepen-
dent of molecular oxygen in the degradation of substi-
tuted benzenes such as ethylbenzene [Johnson et al., 2001;
Kniemeyer and Heider, 2001] and (3) carboxylation, de-
scribed for the activation of non-substituted naphthalene
and benzene [Abu Laban et al., 2010; Holmes et al., 2011;
Meckenstock and Mouttaki, 2011] and phenanthrene
[Davidova et al., 2007]. Fumarate addition was first de-
scribed for the activation of toluene catalyzed by the en-
zyme benzylsuccinate synthase (BSS) of Thauera aroma-
tica strain K172 [Biegert et al., 1996]. Benzylsuccinate is
then further degraded via CoA thioesters to benzoyl-
CoA, which is the central metabolite in anaerobic aro-
matic hydrocarbon degradation [Fuchs et al., 2011].

Activation by fumarate-adding enzymes (FAEs) is not
only found for aromatic compounds such as toluene, xy-
lenes and ethylbenzene [Heider, 2007; Widdel and Rabus,
2001]. The same mechanism is also used for the activation
of 2-methylnaphthalene by naphthylmethylsuccinate
synthases (NMS) [Annweiler et al., 2000; Musat et al.,
2009], for the degradation of cresols [Miiller et al., 1999]
and also for the activation of p-cymene in certain denitri-
fiers [Strijkstra et al., 2014]. Fumarate addition is also
known to be involved in the activation of non-aromatic
compounds. These include short- and long-chain alkanes
[Callaghan et al., 2008; Grundmann et al., 2008; Knie-
meyer et al., 2007; Kropp et al., 2000; Rabus et al., 2001],
cyclic alkanes [Musat et al., 2010; Rios-Hernandez et al.,
2003] and also linear alkylbenzenesulfonate detergents
[Lara-Martin et al., 2010]. A dual nomenclature is in use
for alkane-activating enzymes: alkylsuccinate synthases
(ASS) [Callaghan et al., 2008] and 1-methylalkylsuccinate
synthases (MAS) [Grundmann et al., 2008]. In summary,

Fig. 1. Overview of important peripheral and central pathways in
the anaerobic degradation of aromatic hydrocarbons. Genes of key
enzyme in use as marker genes for degraders in the environment
are as follows: BssA — BSS a-subunit; NmsA - NMS a-subunit;
BamB - ATP-independent benzoyl-CoA reductase B-subunit;
BcrA/BerC/BzdN - ATP-dependent BCR subunits; BamA - ring-
cleaving 6-oxocylcohex-1-ene-1-carbonyl-CoA hydrolase.

(For figure see next page.)
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the genes of FAEs can be considered as widely applicable
catabolic markers for anaerobic hydrocarbon degrada-
tion in the environment [von Netzer et al., 2013].

Though not yet directly demonstrated by in vitro
assays, numerous studies including the identification of
upregulated genes encoding carboxylases from the same
enzyme family as enzymes involved in decarboxylation
reactions in ubiquinone biosynthesis (UbiD-like carbox-
ylases) [Schiihle and Fuchs, 2004] support the concept of
carboxylation as a conserved initial reaction during an-
aerobic degradation of benzene and naphthalene [Abu
Laban etal., 2010; Bergmann etal., 2011a; Luo et al., 2014;
Meckenstock and Mouttaki, 2011; Mouttaki et al., 2012].
Upon carboxylation of benzene, benzoate can be directly
funnelled into the central benzoyl-CoA degradation
pathway by the action of an ATP-dependent benzoate
CoA ligase. An alternative activation mechanism, anaer-
obic hydroxylation of benzene to phenol, has been report-
ed for Geobacter metallireducens [Zhang et al., 2013].
However, the enzymes or genes involved in such a reac-
tion are still unknown.

Allknown peripheral pathways for anaerobic degrada-
tion of aromatic compounds converge at the level of ben-
zoyl-CoA or benzoyl-CoA analogues as central interme-
diates (fig. 1). In the so-called benzoyl-CoA degradation
pathway, the aromatic ring is first desaturated by benzo-
yl-CoA reductases. There are two enzyme classes known
for the initial dearomatization step [Boll et al., 2014;
Fuchs et al.,, 2011]: either the ATP-dependent benzoyl-
CoA reductase (BCR) BcrCBAD/BzdNOPQ/BadDEFG
(class I BCR) in facultative anaerobes like T. aromatica,
Azoarcus and Aromatoleum spp. and Rhodopseudomonas
palustris, or the ATP-independent benzoyl-CoA reduc-
tase BamBCDEFGHI (class II BCR) in strict anaerobes
like G. metallireducens. Subsequently, the ring-cleaving
hydrolase (BamA/BzdY/Oah) precedes successive p-oxi-
dation-like reactions, yielding CO, and three molecules
of acetyl-CoA which can be funnelled into central me-
tabolism (fig. 1).

The degradation of PAHs substantially differs from
that of monocyclic aromatic compounds and has so far
only been studied for the bicyclic model compound naph-
thalene (fig. 1). Here the 2-naphthoic acid formed by car-
boxylation is thought to be activated by an ATP-depen-
dent, 2-naphthoyl-CoA forming ligase. The subsequent
degradation pathway involves three different aryl-CoA re-
ductases, one of which is ATP dependent [Eberlein et al.,
2013a, b]. The 2-naphthoyl-CoA reductase (NCR) is a
member of the old yellow enzyme (OYE) family, which are
flavoproteins with a flavin mononucleotide cofactor [Stott
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et al., 1993]. The NCR dearomatizes the non-activated
ring of the bicyclic 2-naphthoyl-CoA by a two-electron
reduction to 5,6-dihydronaphthoyl-CoA (DHNCoA).
The latter is subsequently reduced by a second OYE to
5,6,7,8-tetrahydronaphthoyl-CoA (THNCoA) [Estel-
mann et al., 2015]. The reduction of the activated ring of
THNCOoA is then accomplished by an ATP-dependent
THNCoA reductase forming a hexahydronaphthoyl-CoA
product [Eberlein et al., 2013b]. The genes encoding an
ATP-dependent class I benzoyl-CoA reductase of the Azo-
arcus type are present in the genome of the sulphate-re-
ducing enrichment culture N47 [Bergmann et al., 2011b],
as well as the pure culture NaphS2 [DiDonato et al., 2010].
The ATP dependence of THNCoA reduction was addi-
tionally demonstrated in vitro [Eberlein et al., 2013b]. The
degradation of the hexahydronaphthoyl-CoA has not
been demonstrated in vitro yet, but is likely to proceed via
cyclohexane ring-containing intermediates, as evidenced
by metabolite analyses [Annweiler et al., 2002].

Anaerobic Degraders

A wide diversity of bacterial cultures and enrichments
is known to mineralize aromatic hydrocarbons under an-
oxic conditions using various electron acceptors. Gener-
ally, hydrocarbons can be metabolized by single organ-
isms or by syntrophic consortia. Organisms capable of
initially attacking and metabolizing aromatic hydrocar-
bons are typically to be found within the Rhodocyclaceae
(Betaproteobacteria), Geobacteraceae, Desulfobacterace-
ae, Syntrophobacteraceae (Deltaproteobacteria) and Pep-
tococcaceae (Clostridia) [Heider and Schiihle, 2013; Wee-
link et al., 2010; Widdel et al., 2010]. Betaproteobacteria
(especially Thauera and Azoarcus strains) are recognized
as key organisms for BTEX degradation under nitrate-
reducing conditions [Weelink et al., 2010]. The strains
described so far activate toluene or xylene isomers by fu-
marate addition and ethylbenzene by anaerobic hydrox-
ylation of the side chain [Weelink et al., 2010]. Notably,
Betaproteobacteria have also been reported as secondary
degraders in two benzene-degrading enrichment cul-
tures, apparently drawing on metabolites produced by
the initial degradation of benzene by bacteria within the
Peptococcaceae [Luo et al., 2014; van der Zaan et al., 2012]
(see below).

Several sulphate-reducing Deltaproteobacteria en-
riched from the terrestrial subsurface have been described
to mineralize BTEX compounds [Abu Laban et al., 2015;
Beller et al., 1996; Bombach et al., 2010; Bozinovski et al.,
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2012; Sun and Cupples, 2012; Weelink et al., 2010] or
PAHs [Meckenstock and Mouttaki, 2011]. Members of
the Geobacteriaceae (Geobacter spp.), also belonging to
the Deltaproteobacteria, are generally recognized as key
organisms for BTEX mineralization under iron-reducing
conditions [Weelink et al.,, 2010]. However, distinct
members of the Rhodocyclaceae (Georgfuchsia sp.) within
the Betaproteobacteria have also recently been substanti-
ated as respective iron-reducing degraders [Pilloni et al.,
2011; Weelink et al., 2009].

Gram-positive Peptococcaceae also represent a major
group involved in anaerobic aromatic compound degra-
dation under various electron acceptor conditions. Sul-
phate-reducing or iron-reducing Peptococcaceae have
been described as being capable of mineralizing and as-
similating carbon from toluene, benzene, xylenes and
cresols [Abu Laban et al., 2009; Kunapuli et al., 2010; Pil-
loni et al., 2011; Sun et al., 2014b; Weelink et al., 2010;
Winderl et al., 2010].

Additionally, several Peptococcaceae have been identi-
fied as primary degraders of BTEX compounds in syn-
trophic consortia under different electron acceptor con-
ditions, for example for benzene degradation coupled to
nitrate reduction [Luo et al., 2014; van der Zaan et al.,
2012], sulphate reduction [Herrmann et al., 2010; Tau-
bert etal., 2012] or iron reduction [Kunapuli et al., 2007],
or for toluene degradation under methanogenic condi-
tions [Abu Laban et al., 2015; Fowler et al., 2014; Sun et
al., 2014b].

Gene Markers for Anaerobic Aromatic Hydrocarbon
Degradation

The discovery and functional identification of a num-
ber of key enzymes involved in the catabolic pathways
detailed above has led to the successful establishment of
several specific functional marker gene assays now wide-
ly used to detect natural populations of anaerobic aro-
matic compound degraders in the environment. In the
following, these are reviewed for both peripheral and cen-
tral reactions of anaerobic aromatic compound catabo-
lism.

Detection Assays for Markers of Peripheral Pathways
The detection of FAE genes is arguably the most com-

monly used strategy for detecting anaerobic aromatic
compound degraders because of their well-defined func-
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tional affiliation and widespread occurrence [Callaghan
et al.,, 2010; von Netzer et al., 2013; Winderl et al., 2007].
Their unique reaction mechanism - the addition of a hy-
drocarbon substrate radical to fumarate - is linked to
conserved protein motifs, facilitating the development of
specific functional marker gene PCR assays. Indeed, sev-
eral primer sets targeting genes of the BSS a-subunit (par-
tially detecting also ASS) have been developed (table 1).
The first primers for a qualitative (and quantitative) de-
tection of a relatively short (~130 bp) fragment of the
bssA gene were published for denitrifying Betaproteobac-
teria by Beller et al. [2002]. Later, this assay was extended
also towards recovering bssA of sulphate-reducing aro-
matic compound degraders [Beller et al., 2008]. While the
primers of Washer and Edwards [2007] were specifically
designed for fermenting toluene degraders within a meth-
anogenic enrichment culture, the PCR assay of Winderl
etal. [2007] (generating an amplicon of ~800 bp) was the
first to recover a wide diversity of catabolic gene lineages
affiliated to iron- and sulphate-reducing Deltaproteobac-
teria from several contaminated aquifers. Staats et al.
[2011] targeted a distinct ~500 bp fragment of the bssA
gene using primers modified from Botton et al. [2007] to
detect a diversity of iron- and nitrate-reducing aromatic
compound degraders in a landfill leachate plume.

The utility of the bssA gene as a functional marker for
anaerobic aromatic compound degraders has also been
demonstrated for a wider diversity of contaminated field
samples and enrichment cultures from terrestrial and
marine systems, along with the introduction of a number
of new primers capable of detecting assA [Callaghan et al.,
2010] and also nmsA genes [von Netzer et al.,, 2013].
However, the optimization of existing FAE detection as-
says for a more comprehensive recovery of catabolic gene
diversities at contaminated sites is still ongoing today
[von Netzer et al., 2013].

Detection Assays for Markers of Central Pathways of
Monocyclic Aromatic Compound Degradation

Apart from FAE genes, functional markers targeting
conserved enzymes of the benzoyl-CoA degradation
pathway have also been successfully employed to detect
anaerobic mono-aromatic compound degraders. These
assays allow insights into the diversity and identity of de-
grader populations even when fumarate addition is not
involved in upstream catabolism. The first primers intro-
duced for a qualitative detection of subunits of class I
BCRs (bcr/bzd) were published by Hosoda et al. [2005]
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Table 1. Overview of marker genes assays and primers currently used for the targeted detection of anaerobic aromatic hydrocarbon de-

graders
Reference Primer name Target  Target lineage Primer sequence Amplicon, qPCR
gene (5'-3") bp appli-
cable
Beller et al., bssA  denitrifying Betaproteobacteria ACGACGGYGGCATTTCTC 130 tested
2002 GCATGATSGGYACCGACA
Winderl et al., 7772f bssA  Beta- and Deltaproteobacteria, Clostridia GACATGACCGACGCSATYCT 800 tested
2007 8546r TCGTCGTCRTTGCCCCAYTT
Beller etal.,  SRBf bssA  sulphate-reducing Deltaproteobacteria. = GTSCCCATGATGCGCAGC 100
2008 SRBr CGACATTGAACTGCACGTGRTCG
Callaghan Primer set 1 assA  targets also bssA TTTGAGTGCATCCGCCAYGGICT 700
etal, 2010 TCGTCRTTGCCCCATTTIGGIGC
Staats etal.,  bssA3f bssA  denitrifying and iron-reducing TCGAYGAYGGSTGCATGGA 500 tested
2011 bssAr Betaproteobacteria (G. toluolica) TTCTGGTTYTTCTGCAC
von Netzer FAE-B 7768f bssA  Clostridial bssA, bssA s.l., nmsA CAAYGATTTAACCRACGCCAT 800
etal, 2013 8543r s.l. TCGTCRTTGCCCCAYTTNGG
FAE-N 7363f nmsA  nmsA s.str. TCGCCGAGAATTTCGAYTTG 1,200
7374f TTCGAYTTGAGCGACAGCGT
8543r TCGTCRTTGCCCCAYTTNGG
Fowler etal., MBssA1F bssA  Desulfosporosinus spp. ATGCCCTTTGTTGCCAGTAT 223 tested
2014 MBssAIR (methanogenic enrichment) GCTGCATTTCTTCGAAACCT
Song and bzAQ41F berA  berA homologues of Alpha-, Beta- and  GTGGGCACCGGNTAYGGNMG 450
Ward, 2005 bzAQ4R s.l. Gammaproteobacteria GGTTCTTGGCGAYNCCNCCNGT
Hosoda etal., ber-1f berA  T. aromatica, Azoarcus evansii, GTYGGMACCGGCTACGGCCG 480 tested
2005 ber-2r R. palustris TTCTKVGCIACICCDCCGG
Kuntze et al., bamA-SP9-f bamA  Alpha-, Beta- and Deltaproteobaceria CAGTACAAYTCCTACACVACBG 300 tested
2008 bamA-ASP1-r CMATGCCGATYTCCTGRC
Loffler etal., bamBf bamB  Deltaproteobacteria, Clostridia ATGMGGTAYGSAGARACHGG 320
2011 bamBr CCSGCRWRYTTCADYTCCG
Staatsetal., oah_f bamA iron reducers GCAGTACAAYTCCTACACSACYGABATGGT 350 tested
2011 oah_r (Rhodocyclaceae, Geobacteraceae) CCRTGCTTSGGRCCVGCCTGVCCGAA
Kuntze et al., bamA- (with  bamA GMT cluster TTTTCCTTGTTGVSRTTCC 800
2011 ASP23-r  bamA-
bamA- SP9-f) SA cluster CAKYYSGGGAASAGRTTKG 700
ASP33-r
bzdNf bzdN  Azoarcus-type GAGCCGCACATCTTCGGCAT 700 tested
bzdNr class I BCR TRTGVRCCGGRTARTCCTTSGTCGG
berCt berC - Thauera-type CGHATYCCRCGSTCGACCATCG 600
berCr class I BCR CGGATCGGCTGCATCTGGCC
Morris etal., Necr_for Ncr Deltaproteobacteria (N47, NaphS2) TGGACAAAYAAAMGYACVGAT 320 tested
2014 Ncr_rev GATTCCGGCTTTTTTCCAAVT

s.l. = Sensu lato; s.str. = sensu stricto.

and Song and Ward [2005]. However, the use of these as-
says was not straightforward, as non-BRC gene fragments
were also recovered at high frequency. To provide a more
reliable PCR-based approach targeting class  BCRs in en-
vironmental DNA, these assays were later modified by
Kuntze et al. [2011] with the design of two independent
primer pairs targeting Azoarcus-type BCRs (Azoarcus
spp. and ‘Aromatoleum aromaticum EbNT’), as well as
Thauera-type class I BCRs (Thauera, Magnetospirillum
and Rhodopseudomonas spp.). Specific primers were also
developed by Loffler et al. [2011], targeting the bamB
gene coding for the active site subunit of class II BCRs
from obligate anaerobes.

Anaerobic Hydrocarbon Degradation

The design of degenerate primer sets to amplify con-
served gene fragments of the ring-cleaving hydrolases of
Gram-negative monoaromatic compound degraders has
also been possible [Kuntze et al., 2008; Staats et al., 2011],
due to the conservation of respective bamA/bzdY/oah
genes. Two additional assays selective for two phyloge-
netic subclusters of bamA, the ‘GMT cluster’ (targeting the
genera Geobacter, Magnetospirillum, Thauera and Rhodo-
microbium) and the ‘SA cluster’ (Gram-negative/Gram-
positive sulphate-reducing degraders as well as Synthro-
phus, Azoarcus and Aromatoleum spp.) were designed lat-
er to recover a wider diversity of degraders, including also
Gram-positives [Kuntze et al., 2011]. Thus, in the mean-
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time, the bamA gene was also established as a widely ap-
plied biomarker for anaerobic degradation of monocyclic
aromatic compounds [Andrade et al., 2012; Li et al., 2012;
Porter and Young, 2013, 2014; Sun et al., 2014a].

Assays for Functional Markers of Anaerobic PAH
Degradation

In comparison to the well-studied anaerobic degrada-
tion pathways of monocyclic aromatic hydrocarbons,
knowledge with respect to the genes/enzymes involved in
anaerobic PAH degradation is still rather limited. Until
very recently, the lack of any experimentally verified en-
zyme involved in anaerobic PAH catabolism largely ham-
pered the development of respective functional marker
gene assays. The recent discovery of the dearomatizing
NCR and its gene, ncr, has now opened a door for design-
ing targeted assays for detecting anaerobic naphthalene
degraders [Eberlein et al., 2013b]. NCRs are highly con-
served among the established naphthalene-degrading, sul-
phate-reducing cultures N47 and NaphS2 (amino acid
sequence identities >65%, highest amino acid sequence
identities to other enzymes <40%). They can therefore be
readily distinguished from other related enzymes of the
OYE family, which have different functions [Stott et al.,
1993]. Based on these findings, a primary PCR-based assay
has been developed for the targeted detection of ncr genes
in environmental samples, which reliably detected ncr
genes in the known sulphate-reducing, naphthalene-de-
grading pure cultures and enrichments: NaphS2, S3 and S6
and N47 [Morris et al., 2014]. False-positive results were
not obtained with DNA from organisms harbouring most
closely related genes (e.g. T. aromatica encoding a cyclo-
hexa-1,5-dienoyl-CoA oxidase) [Thiele et al., 2008]. The
new assay has been applied to degrader enrichments from
different contaminated groundwater systems, successfully
identifying ncr genes closely related to those of the naph-
thalene-degrading culture N47 [Morris et al., 2014].

Though this ncr-targeting assay can be regarded as a
pioneering tool for the monitoring of anaerobic PAH de-
graders, several limitations have to be taken into account.
First, this ncr assay was developed based on the very small
number of reference sequences of ncr genes available
(from naphthalene-degrading, sulphate-reducing Delta-
proteobacteria). Therefore, its utility for the detection of
ncr genes from other phylogenetic lineages still needs to
be demonstrated. Second, with the DHNCoA reductase
encoded by the dhncr genes of the naphthalene degraders
N47 and NaphS2, a second OYE-like enzyme involved in

186 ] Mol Microbiol Biotechnol 2016;26:180-194
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anaerobic naphthalene degradation has recently been
identified, which showed only 33-34% amino acid se-
quence similarity to NCR [Estelmann et al., 2015]. Future
studies should test whether dhncr genes can also be de-
tected by ncr assays. Moreover, a preliminary metage-
nome analysis of phenanthrene-degrading enrichment
cultures has suggested the presence of multiple sequences
of OYE-encoding genes [Boll et al., unpubl. data]. Wheth-
er they are detected by the ncr-targeting assay is also still
unknown.

Primer Selection

The primary amino acid sequence of FAEs is more
conserved towards the C-terminus [Lehtié and Goldman,
2004]. Therefore, conserved primer motifs are more read-
ily found towards the 3’-end of FAE genes. We currently
recommend the reverse primer 8543r (table 1), developed
for more optimal performance [von Netzer et al., 2013]
from previous permutations [Callaghan et al., 2010;
Washer and Edwards, 2007; Winderl et al., 2007], as the
most suited candidate for covering a wide diversity of
FAE gene lineages (fig. 2). The selectivity of the PCR assay
should thus be guided by the forward primer and also by
the annealing temperature [von Netzer et al., 2013]. For
detecting a wide range of bssA genes sensu stricto (s.str.,
fig. 2), the forward primer 7772f (table 1) has been suc-
cessfully used in numerous studies [Acosta-Gonzalez et
al., 2013; Herrmann et al., 2009; Sun et al., 2014b; Wind-
erletal.,2007,2010; Yagietal., 2010]. Other f-primers are
recommended to recover the more deeply branching bssA
genes sensu lato (s.1.), that s, the FAE-B f-primer for clos-
tridial bssA and homologues, or the FAE-N f-primers for
nmsA genes (table 1).

The primer pair bzdNf/bzdNr, designed for amplify-
ing a 700-bp fragment of the y-subunit of the Azoarcus-
type class I BCR, has been successfully applied to DNA
extracted from pure cultures and also contaminated sites,
as well as the berCf/berCr primer pair, designed for am-
plifying a 800-bp fragment from the y-subunit of the
Thauera-type class I BCR [Fahrenfeld et al., 2014; Kuntze
etal.,2011]. For class I BCRs, the developed bamBf/bam-
Br primers only yield a ~300-bp gene fragment of the ac-
tive subunit and several bamB homologues have been re-
covered [Loffler et al., 2011], suggesting its applicability
on a more general level of class II BCR detection rather
than as a detailed phylogenetic marker.

For a wide range of bamA/bzdY/oah genes, the for-
ward primer SP9F in combination with the reverse prim-
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Fig. 2. Overview of the phylogeny of known pure culture and environmental FAE gene sequences. Several lin-
eages are collapsed with only a few representatives named. Additionally, the demonstrated range of coverage for
selected primer pairs is indicated. Outgroup: related pyruvate formate lyase genes. The scale bar represents 10%
amino acid sequence divergence. The dendrogram was developed as in von Netzer et al. [2013].

er ASPIR [Kuntze etal., 2008], as well as the slightly mod-
ified combination oah_f/oan_r [Staats et al., 2011], has
been successfully used in numerous studies, thus demon-
strating its applicability for detecting a wide range of an-
aerobic monoaromatic compound degraders [Andrade et
al., 2012; Higashioka et al., 2011; Li et al., 2012; Porter and
Young, 2013; Sun et al., 2014a]. Two additional primer
sets were designed using the same forward primer SP9F
but different reverse primers ASP23R and ASP33R tar-
geting ring-opening hydrolase subclusters, including
Gram-positive anaerobic monoaromatic compound de-
graders, as described above [Kuntze et al., 2011].

Screening Methods

A qualitative check for the presence of potential an-
aerobic aromatic compound degraders within a DNA
sample should always start with a simple PCR for respec-
tive catabolic genes. However, more elaborate down-
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stream analyses of the amplicons are necessary for further
details. For a phylogenetic placement of degrader lineag-
es and a dissection of degrader diversity, the cloning and
sequencing of peripheral and central gene markers is well
established [Callaghan et al., 2010; Kuntze et al., 2008,
2011; Porter and Young, 2013; Staats et al., 2011; Winderl
et al., 2007]. However, it should be noted that amplicons
generated with the often highly degenerate catabolic gene
primers can be problematic in cloning [von Netzer et al.,
2013; Winderl et al., 2007], and that sequence yield will
be directly dependent on the specificity of the chosen
primer pair for the degraders present in a given sample
and on the abundance of possibly co-amplified PCR arte-
facts such as primer dimers or unspecific amplicons.
Moreover, fingerprinting based on terminal restric-
tion fragment length polymorphism analysis can be used
for the rapid screening of larger numbers of FAE gene
amplicons in a sequencing-independent manner [Pilloni
et al., 2011]. Although this analysis is not a strong diag-
nostic tool, the identity of distinct terminal restriction
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fragments can cautiously be elucidated via the cross-ref-
erencing of fragment lengths to reference sequences di-
gested in silico, possibly even based on dual digests to
increase discriminative confidence [von Netzer et al.,
2013]. Similarly, denaturing gradient gel electrophoresis
fingerprinting of bamA gene pools has also been applied
to analyse the community structure of anaerobic degrad-
ers [Andrade et al., 2012; Li et al., 2012].

qPCR with FAE, bzdN and bamA gene primers has
been repeatedly employed for the quantification of an-
aerobic aromatic hydrocarbon degraders in environmen-
tal samples [Beller et al., 2002, 2008; Fahrenfeld et al.,
2014; Staats et al., 2011; Sun et al., 2014a; Winderl et al.,
2008]. However, compared to cloning and sequencing,
qPCR reactions need to fulfil even more rigid stringency
criteria, while many of the primer sets used to date are
highly degenerate (table 1). This is why quantification is
often done for specific FAE sub-lineages, where less de-
generate primers can be employed. qPCR detection
chemistries have relied either on SYBR Green [Beller et
al., 2008; Staats et al., 2011; Sun et al., 2014a] or on lin-
eage-specific qQPCR probes [Beller et al., 2002; Winderl et
al., 2008].

As a more recent development, next-generation se-
quencing is also increasingly applied to characterize am-
plicon pools of environmental functional markers. In
contrast to next-generation sequencing of 16S rRNA gene
amplicons, which is already well established with many
standardized data-handling pipelines available [Capora-
so et al., 2010; Cole et al., 2009; DeSantis et al., 2006;
Schloss et al., 2009], next-generation sequencing of func-
tional markers is currently still emerging. While first re-
ports of the application of next-generation sequencing
strategies to aerobic hydrocarbon degradation genes
[Penton et al., 2013; Wallisch et al., 2014] and also to re-
ductive dehalogenase genes [Hug and Edwards, 2013]
have been published, a dedicated next-generation se-
quencing pipeline for peripheral or central genes in an-
aerobic aromatic compound degradation is currently still
unpublished.

Functional Marker Gene-Based Advances in the
Understanding of Biodegradation Processes

The notable suite of marker gene assays described
above has been instrumental in the investigation of an-
aerobic aromatic hydrocarbon degraders in diverse labo-
ratory cultures and directly in environmental samples.
Especially in combination with isotopic labelling strate-
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gies, the first has proven of value to identify novel degrad-
ers, affiliate novel catabolic genes and elucidate microbial
interactions (e.g. syntrophy) in defined degrader assem-
blages. In the field, relevant insights into degrader diver-
sity, the spatial distribution of degraders and the control
of their activity in natural settings have been provided.

Catabolic Marker Gene-Based Insights into Degrader
Cultures and Enrichments

In the laboratory, the detectability of Azoarcus-related
bssA sequence types was first demonstrated for denitrify-
ing toluene-degrading laboratory microcosms with aqui-
fer sediment by Beller et al. [2002]. BssA of iron-reducing,
toluene-degrading enrichments obtained from the land-
fill-contaminated Banisveld aquifer was affiliated to an
as-of-then unidentified betaproteobacterial lineage. This
was particularly interesting, as Deltaproteobacteria relat-
ed to Geobacter had been previously assumed to domi-
nate BTEX degradation at the site [Botton and Parsons,
2007]. In fact, the detected bssA phylotype was only later
identified to represent the novel iron reducer Georgfuch-
sia toluolica [Weelink et al., 2009], now evident as a key
toluene degrader in situ.

Under sulphate reduction, bssA genes affiliated to
members of the Desulfobulbaceae were detected in both
toluene- and xylene-degrading laboratory enrichments
from the BTEX-contaminated Zeitz aquifer [Herrmann
et al., 2009; Jehmlich et al., 2010]. Distinct and deeply
branching sequence types were found in xylene-degrad-
ing microcosms, which were related to known nmsA
genes and the ‘“T-cluster’ bssA homologues (fig. 2) first
discovered in the field [Winderl et al., 2007]. This dem-
onstrates how the detection of catabolic gene marker in
laboratory enrichments may help to affiliate previously
unidentified sequence types found directly in the field to
putative functions, albeit such interpretation must of
course be with caution.

A novel deltaproteobacterial bssA sequence type, the
so-called ‘F1 cluster’, was affiliated to key toluene degrad-
ers within the Desulfobulbaceae by stable isotope probing
of DNA with aquifer sediments obtained from the tar oil-
contaminated Flingern aquifer [Pilloni et al., 2011], thus
excluding a role of presumed Geobacteraceae in toluene
degradation in situ. Dominating desulfobulbal bssA se-
quence types were also identified in toluene-degrading
sulphate-reducing enrichments obtained from less con-
taminated zones of the BTEX-contaminated Zeitz aqui-
fer, while distinct clostridial bssA sequences were detect-

von Netzer/Kuntze/Vogt/Richnow/Boll/
Lueders

Downloaded by:
Helmh Zent

chen Deutsches Forschungszentrum f

11:49:21 AM



http://dx.doi.org/10.1159%2F000441946

ed in parallel enrichments from highly contaminated
zones [Kuppardt et al., 2014]. This has allowed for first
insights into possible degrader niche partitioning de-
pending on contamination levels in situ.

Washer and Edwards [2007] were the first to demon-
strate the expression of deeply branching bssA sequence
types within a methanogenic, toluene-degrading enrich-
ment culture from a contaminated Pensacola aquifer. An
affiliation of this bssA lineage to degraders within the Pep-
tococcaceae (Clostridia) was suggested by Winderl et al.
[2010], who retrieved related ‘F2-cluster’ bssA phylotypes
form labelled DNA of sulfidogenic stable isotope-probing
incubations of tar oil-contaminated Testfeld Siid aquifer
sediments dominated by Desulfosporosinus spp. Later,
Fowler et al. [2012] substantiated the placement of this
bssA lineage upon catabolic analysis of a methanogenic,
toluene-degrading enrichment culture from the Fort
Lupton aquifer. Via RT-qPCR, Fowler et al. [2014] could
even show the active expression of clostridial bssA mRNA
in the same microcosms. Similar clostridial bssA sequenc-
es affiliated to Desulfosporosinus spp. were also recently
detected in methanogenic toluene-degrading micro-
cosms enriched from contaminated sludge and soil [Sun
et al., 2014b], as well as in methanogenic and sulphate-
reducing toluene-degrading enrichments prepared from
oil sands tailing ponds [Abu Laban et al., 2015]. All of
these studies highlight the paramount and previously un-
derestimated importance of clostridial anaerobic aromat-
ic compound degraders in contaminated terrestrial sys-
tems.

The ring-cleaving bamA genes were first shown to be
detectable in a number of sulphate-reducing [Kuntze et
al., 2008] or nitrate-reducing aromatic compound-de-
grading enrichment cultures [Li et al., 2012]. They have
also been found in a number of anaerobic monoaromatic
hydrocarbon-degrading pure cultures which do not have
a published genome yet, for example G. toluolica [Staats
etal., 2011], Desulfosarcina spp., Desulfobacterium anilini
and strains of the Gram-positive Desulfotomaculum gib-
soniae and Desulfotomaculum thermobenzoicum [Kuntze
et al., 2011], in p-xylene-degrading enrichment cultures
dominated by Desulfosarcina ovata [Higashioka et al.,
2011], as well as in toluene-degrading denitrifying en-
richments hosting bamA genes related to Thauera chlo-
robenzoica [Li et al., 2012]. In contrast, a diversity of dif-
ferent bamA genes has recently been reported for a num-
ber of sulphate-reducing, denitrifying and methanogenic
toluene-degrading enrichments obtained from various
soil and sludge samples [Sun et al., 2014a]. As mentioned
above, the applicability of a new detection assay for N47-
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related ncr genes has also been demonstrated for distinct
degrader enrichments from contaminated groundwater
[Morris et al., 2014]. In summary, functional marker gene
analysis is a highly useful tool for the rapid and targeted
screening of novel degrader isolates and enrichments for
their specific catabolic potentials.

Catabolic Marker Gene-Based Insights into
Environmental Systems

Directed catabolic gene approaches for anaerobic tolu-
ene degraders in the field were first applied for a number
of tar oil-contaminated aquifers in Germany, revealing
several hitherto unidentified and site-specific popula-
tions of intrinsic degraders, especially at sites dominated
by sulphate reduction [Winderl et al., 2007]. In a follow-
up depth-resolved study conducted at the Flingern aqui-
fer, Winderl et al. [2008] showed that degraders carrying
the F1-cluster bssA genes were quantitatively enriched at
the sulfidogenic lower fringe of the hydrocarbon plume,
consistent with the hypothesis that degraders are limited
by the dispersive mixing of electron donors and acceptors
in situ, and demonstrating the potential of quantitative
catabolic marker gene assays to identify hot spots of aro-
matic compound degradation in the field.

Atthe Vandenberg Air Force Base (Calif., USA), Beller
et al. [2008] used a qPCR assay designed to specifically
detect bssA genes of sulphate-reducing and syntrophic
BTEX degraders. They monitored comparative degrader
abundance and dynamics in two field lanes of artificial
BTX injection, one of them with additional ethanol
amendment. While initial stimulation of degraders by the
treatment was more pronounced for non-ethanol-
amended wells, a higher absolute abundance of bssA
genes was reached under simultaneous ethanol injection.
This indicates that at least some anaerobic aromatic com-
pound degraders may also have been thriving on the
amended ethanol.

Callaghan et al. [2010] have investigated intrinsic bssA
diversity in sediments from hydrocarbon contaminated
Fort Lupton (Colo., USA) and Casper (Wyo., USA) aqui-
fers, revealing a limited diversity of bssA sequence types
affiliated to the sulphate-reducing Desulfobulbaceae at
both sites. In contrast, a surprising diversity of intrinsic
bssA genes was demonstrated for the coal tar-contami-
nated South Glens Falls aquifer (N.Y., USA). Besides un-
known betaproteobacterial sequence types and such re-
lated to G. toluolica, clostridial bssA genes were also de-
tected directly in the field [Yagi et al., 2010].
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Investigating the landfill leachate-contaminated Ba-
nisveld aquifer, Staats et al. [2011] revealed a low diver-
sity of bssA sequence types, most of them related to bssA
genes from G. foluolica and other Betaproteobacteria, to
be found at elevated abundance within the plume. The
iron-reducing G. toluolica was originally isolated from
the same site [Weelink et al., 2009], thus demonstrating
how catabolic gene detection assays can be used to query
the relevance of specific degraders in situ. Similarly, Oka
etal. [2011] used comparative qPCR with assays specific
for bssA of betaproteobacterial (denitrifying) and delta-
proteobacterial (sulphate-reducing or syntrophic) an-
aerobic hydrocarbon degraders. In different monitoring
wells at a former coal gasification plant in Glassboro
(N.J., USA), hydrocarbon degraders were shown to be
enriched by up to two orders of magnitude in contami-
nated wells. Recently, a novel bssA lineage distinct from
previously known proteobacterial sequence types was
revealed in sediments of a Swedish lake not polluted by
aromatic compounds [Osman et al., 2014], thus empha-
sizing that untapped catabolic potentials and degrader
lineages may remain to be uncovered in pristine habi-
tats.

Besides earlier work on intrinsic bssA lineages, the first
direct evidence for environmental nmsA gene pools has
recently also been reported for the Flingern site [von
Netzer et al., 2013]. Apart from hosting a toluene-domi-
nated plume, this site is also known to contain PAHs. In
fact, a previous study on key metabolites has indicated the
presence of naphthyl-2-methyl-succinic acid and methyl-
naphthyl-2-methylsuccinic acid, which would be expect-
ed upon the activation of 2- and 1-methylnaphthalene af-
ter fumarate addition [Jobelius et al., 2010]. Thus, the
deeply branching nmsA phylotypes may indeed represent
the intrinsic methylnaphthalene degraders at the site.

Genes for central aromatic compound catabolism
have also been utilized as functional markers for degrad-
ers in the field. Introduced by Song and Ward [2005] for
contaminated estuarine sediments, the concept was dem-
onstrated for a gasoline-contaminated aquifer in Juma-
moto (Japan) by Hosoda et al. [2005], thus demonstrating
that a substantial diversity of class I bcrA genes was de-
tectable at this site. BcrA was significantly enriched in
wells of high comparative contamination, evident also as
distinct communities found between differentially im-
pacted wells.

At the Banisveld site, the detection of bssA genes men-
tioned above was for the first time combined with a
screening for intrinsic, ring-cleaving bamA genes [Staats
et al,, 2011]. Not unexpectedly, the diversity of bamA
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genes was much larger than that of intrinsic bssA genes.
Interestingly, the abundance of markers in distinct plume
compartments shown by qPCR was inverted: bamA was
relatively more abundant outside plume. An even more
comprehensive assessment of BTEX catabolic genes
(bssA, berC, bamB and bamA) was performed for DNA
extracted from benzene-loaded in situ microcosms incu-
bated in two aquifers with high (Ruhr area) or low
(Gneisenau) benzene contamination in Germany domi-
nated by either iron- or sulphate-reducing conditions, re-
spectively [Kuntze et al., 2011]. The results revealed a
general consistency of key populations affiliated to known
degraders within the genera Azoarcus and Geobacter de-
tected via the different assays for the sites. Quantitative
site monitoring of class I BCR (bzdN) genes of facultative
anaerobes throughout the plume of the Bemidji crude oil
spill has also recently been reported [Fahrenfeld et al.,
2014], suggesting a significantly increased gene abun-
dance close to the oil spill. It must be noted, however, that
central catabolic genes such as bamA may be generally
much more readily detectable in anoxic habitats than spe-
cific peripheral markers of aromatic hydrocarbon degra-
dation, simply because benzoyl-CoA is a central interme-
diate not only in the anaerobic degradation of petro-
chemicals but also of humic acids, aromatic amino acids
and lignin monomers [Andrade et al., 2012; Porter and
Young, 2013].

Conclusions and Outlook

Anaerobic aromatic compound degradation can be re-
garded as a key process in reducing hydrocarbon con-
tamination in natural environments. For a better under-
standing of the microbes conveying these important eco-
system services, comprehensive functional marker assays
for their detection, identification and quantification are a
vital tool. The distinct marker strategies reviewed here,
spanning key mechanisms in anaerobic activation and
degradation of aromatic compounds, allow for a straight-
forward and targeted tracing of degrader populations in
space and time (4D’).

As detailed above, several key features of anaerobic ar-
omatic compound degradation have emerged from the
application of these detection strategies in the laboratory
and field. First, the importance of several novel or previ-
ously unrecognized degrader lineages, especially within
the Rhodocyclaceae, Desulfobulbaceae and Peptococca-
ceae, has been substantiated for numerous terrestrial sys-
tems, often hosting novel catabolic gene phylotypes. Sec-
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ond, clear patterns of the site-specific degrader popula-
tions have become apparent, driven by a selection of both
electron acceptors as well as the nature of the contamina-
tion. Third, the role of syntrophy is now recognized as a
key trait in many degrader enrichments, not only under
methanogenic conditions, where primary aromatic com-
pound degradation by fermenters would be expected, but
also under other anaerobic respiration modes. Potential-
ly, this represents an ecological stabilization of degrader
assemblages under the fluctuating availability of electron
donors or acceptors.

It is now relevant to consider how these advances can
become apparent at the level of contaminated site moni-
toring or bioremediation strategies. Here, functional
marker gene-based approaches are still awaiting a more
routine implementation. Nevertheless, a number of re-
cent respective advances should be mentioned. Already,
Kazy et al. [2010] have indicated a significant correlation
between anaerobic toluene degradation rates and qPCR
bssA counts in anaerobic microcosms prepared with ma-
terial from a hydrocarbon-contaminated aquifer. More
recently, toluene degradation activity stimulated by the
addition of nitrate was quantitatively monitored via bssA
transcript-to-gene ratios across a contaminant plume di-
rectly in the field [Brow et al., 2013]. Both represent rel-
evant advances towards the future implementation of a
marker gene- or transcript-based prediction of biodegra-
dation rates in complex natural systems. Here, the ob-
served substrate specificity of the peripheral markers in
particular may be vital to functionally and quantitatively
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