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ABSTRACT

Instrumentation technology for metabolomics has advanced
drastically in recent years in terms of sensitivity and specificity.
Despite these technical advances, data analytical strategies are
still in their infancy in comparison with other ‘omics’. Plants are
known to possess an immense diversity of secondary metabo-
lites. Typically, more than 70% of metabolomics data are not
amenable to systems biological interpretation because of poor
database coverage. Here, we propose a new general strategy
for mass-spectrometry-based metabolomics that incorporates
all exact mass features with known sum formulas into the eval-
uation and interpretation of metabolomics studies. We extend
the use of mass differences, commonly used for feature annota-
tion, by redefining them as variables that reflect the remaining
‘omic’ domains. The strategy uses exact mass difference net-
work analyses exemplified for the metabolomic description of
two grey poplar (Populusx canescens) genotypes that differ
in their capability to emit isoprene. This strategy established a
direct connection between the metabotype and the non-
isoprene-emitting phenotype, as mass differences pertaining
to prenylation reactions were over-represented in non-
isoprene-emitting poplars. Not only was the analysis of mass
differences able to grasp the known chemical biology of poplar,
but it also improved the interpretability of yet unknown bio-
chemical relationships.
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malondialdehyde; MDEA, mass difference enrichment analy-
sis; MDiA, mass difference analysis; MDiN, mass difference
network; MEP, methylerythritol phosphate; MS, mass spec-
trometry/mass spectrometer; MS/MS, tandem mass spectrome-
try; NE, non-isoprene emitting; OPLS-DA, orthogonal partial
least squares discriminant analysis; PcISPS, isoprene synthase;
PEP, phosphoenolpyruvate; POP, poplar metabolome; PP, py-
rophosphate; MDB, mass-difference-based building block;
rpairs, KEGG reaction pairs; SIM, selected ion monitoring;
SIM-MS/MS, selected ion monitoring tandem mass spectrome-
try; TCA, tricarboxylic acid; WT, wild type.

INTRODUCTION

From genes via transcripts to proteins and finally to metabo-
lites is the ‘classical’ view of the cellular information cascade.
These days, this flow of information is interpreted as a cellu-
lar network in which the different layers (genes, transcripts,
proteins and metabolites) interact with, and influence, each
other. Nonetheless, the nature and direction of these interac-
tions are under constant debate. The scientific discipline that
aims to understand these cellular bionetworks globally is
called systems biology (Ideker et al., 2001). The integration
of genomic, transcriptomic, proteomic and metabolomic data
is a major challenge as all of these domains have their own
timescale and are measured using different analytical
techniques.

Well-known methods for metabolic pathway/network analy-
sis are as follows: (1) constraint-based modelling such as flux
balance analysis (e.g. Boyle & Morgan, 2009); (2) stable isotope
feeding (e.g. Masakapalli ez al., 2010); or (3) the reconstruction
of the differential biochemical Jacobian from a predefined fluc-
tuation matrix and the covariance matrix of metabolomics mea-
surements (Steuer et al., 2003; Nagele et al., 2014).

Recently, a comprehensive study showed how more than
80% of 2435 Arabidopsis thaliana metabolic features were al-
tered owing to cytoplasmic genome variation (Joseph et al.,
2013). Notably, 91.2% of these features were unknown, which
means that the known partition that would have been available
for prior-knowledge-driven metabolic network analysis
amounted to 8.8% of all features. If the proportion of unknown
molecular features is reported at all, their proportion is consis-
tently documented to vary between 70 and 90% (e.g. Walker
et al., 2014a; Witting et al., 2015).
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As simultaneous identification and quantification of the
entire metabolome is not possible using state-of-the-art instru-
mentation, there is also no data analytical method available
that incorporates these 90% of unknowns into phenotypic de-
scriptions and interpretations. There have been approaches
that use Gaussian graphical models towards a stepwise incor-
poration of yet unidentified features into bioinformatic evalua-
tions (Krumsiek et al., 2011).

In recent years, mass spectral analysis has been extended
using mass difference networks (MDiNs) whose reconstruction
requires accurate m/z features or molecular masses as nodes,
which can be connected by mass-difference-based building
blocks (MDBs) as edges.

The concept was first introduced by Breitling et al. (2006a,
2006b) where they proposed two scientific applications of the
concept. Firstly, MDiNs enable ab initio pathway detection;
therefore, reasonably, metabolic pathways must be subgraphs
of MDIiNs, given the detection of the corresponding metabo-
lites. Secondly, the common biochemical ancestry of connected
metabolites in conjunction with metabolic difference analysis
can support feature identification if one of the metabolites is
known.

This database-driven exploitation of MDiNs was refined by a
series of papers (Gipson et al., 2008; Rogers et al., 2009; Weber
& Viant, 2010; Watrous et al., 2012; Morreel et al., 2014). How-
ever, ultimately all approaches leave features that can be
neither identified by tandem mass spectrometry (MS/MS) nor
be mapped into metabolite databases apart. Doing so is per-
fectly appropriate when high-confidence molecular formula as-
signments to unknown/unidentified features are not possible.
Despite the fact that ultra-high-resolution (UHR) mass spec-
trometers have become commonplace, the majority of assigned
molecular formulas do not match metabolite databases, while
their detected m/z peaks in direct infusion mode are amenable
to neither immediate MS/MS identification nor isotopic pattern
matching. Moreover, non-targeted liquid chromatography
(LC) MS methods have too low sensitivities and require duty
cycles that are too fast for true LC-UHR-MS.

While the methods described above have a tremendous
potential to consolidate and elaborate on presently known
metabolomes and to extend this knowledge (if m/z peak abun-
dances are sufficiently large), they are bound to miss the impact
of enzymatic promiscuity (Pichersky & Lewinsohn, 2011) and
as of yet unassigned enzyme specificities. Particularly, in plant
secondary metabolism, enzymes can either utilize multiple sub-
strates or produce a variety of products from one substrate, for
example, terpene synthases (Kampranis et al., 2007) and
O-methyltransferases (Schwab, 2003). Metabolites coexist in
very concentrated solutions, and it has even been hypothesized
they form deep eutectic fluids in a cell (Choi et al.,2011). More-
over, chemical activity is a function of compound concentra-
tion, meaning spontaneous reactions between metabolites are
likely to occur. Global descriptions of molecular (metabolite)
pools are therefore unlikely to be reflected by measurements
of free metabolites alone.

Focusing on the assignment of molecular formulas, rather
than on metabolite identification, Tziotis et al. (2011) general-
ized molecular formula propagation through MDiNs as a

means of database-independent molecular formula assignment
for UHR-MS features. The given method was applied on a
multitude of analytical matrices (Miiller et al., 2013; Walker
et al., 2014b; Zhang et al., 2014; Forcisi et al., 2015; Moritz
et al., 2015; Witting et al., 2015), and extensions to low-
resolution mass spectrometry have been described (Forcisi
et al., 2015).

Previously analysed Populus x canescens (grey poplar) lines
knocked down in isoprene synthase (PcISPS; EC 4.2.3.27)
(Behnke er al, 2007) revealed large phenotypic changes.
The resulting lack of isoprene (2-methyl-1,3-butadiene) emis-
sion in poplar results in large metabolic (Behnke ez al.,
2010a; Way et al., 2013; Velikova et al., 2015), transcriptomic
(Behnke et al., 2010b), proteomic (Velikova et al., 2014) and
physiological modifications (Behnke et al, 2007, Behnke
et al., 2012). However, as interpretations of KEGG-based
m/z feature annotations related to merely 3% of all molecu-
lar formulas, we aimed to explore the remaining 97% of the
dataset. In the spirit of gene set enrichment analysis
(Subramanian et al., 2005), we used mass difference enrich-
ment analysis (MDEA) as a tool for mass difference analysis
(MDiA), which mines MDBs that are associated with statisti-
cally important m/z features with molecular formulas of both
known and unknown metabolites (Zhang et al., 2014; Moritz
et al., 2015).

We used a Fourier transform ion cyclotron resonance MS
(FT-ICR-MS) dataset on P, x canescens isoprene-emitting (IE)
and non-isoprene-emitting (NE) poplar lines published re-
cently (Kaling ef al., 2015). We show that—regardless of the
proportion of knowledge on single metabolic features—MDiA
(i.e. MDEA) mines MDBs that are in agreement with prior
knowledge, and we confirm them to be the major building
blocks of the given poplar metabolome using selected ion mon-
itoring (SIM) stitch MS/MS experiments. We show that the
approaches of Breitling ez al. (2006a, 2006b) and Weber and
Viant (2010) can easily be integrated and how an extension to
the work of Walker et al. (2014b) enables the formulation of
hypotheses that can serve as a basis for hypothesis-driven
research in future endeavours.

MATERIALS AND METHODS
Plant material

The dataset of an ultraviolet (UV) experiment described by
Kaling et al. (2015) was used. In brief, the four genotypes
consisted of the following: (1) two NE RNAI lines Ra2 and
Rb7 and (2) two IE lines wild type (WT) and empty vector
control (EV) grey poplar. Each group (NE and IE) had a total
of 16 plants, where half of the pants were exposed to high UV
radiation for 13d. Sample preparation was performed as
described by Kaling ez al. (2015).

Fourier transform ion cyclotron resonance mass
spectrometry measurements

Fourier transform ICR-MS measurements were performed as
described by Kaling et al. (2015).
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Data annotation

The 211 FT-ICR-MS spectra were internally calibrated,
aligned, exported as ASCII files and combined with an error
of 1ppm using an in-house written program (Lucio et al.,
2011). Peaks that were present in just one spectrum were re-
moved from the matrix. m/z features whose mass defect can-
not be realized on the basis of any valid combination of C, H,
N, O, P and S, given their m/z, were omitted. Isotopologues
of one molecular species must correlate across samples if
the samples’ origin is comparable. Deisotoping was per-
formed in two steps: firstly, searching for commonly known
mass differences (e.g. *C-"2C=1.003355Da) within an error
window of 3ppm and, secondly, omission of the heavy
isotope candidate if its ion abundance correlates with the
monoisotopic candidate peak (r>0.95).

Molecular formula assignment was performed on the basis of
the work of Tziotis et al. (2011) with an additionally applied Se-
nior (1951) filter and a box for search direction randomization.
Both edges and annotations were allowed to be rejected by the
overall MDIN context so as to maximize the overall consensus
of all formulas and MDBs. Molecular formula assignment was
performed using the manually curated MDB list described
herein. The overall error tolerance was set to 5 ppm, and the er-
ror tolerance for MDB assignment was set to 0.2 ppm. The error
over m/z distribution was centred on 0.04 ppm with a standard
deviation of 0.1 ppm at 7/z =200 and 0.25 ppm at m/z >300 ppm
(Supporting Information Fig. S1).

Each mass spectrum contained 2276 + 886 non-randomly oc-
curring m/z peaks. On average, 1579 £ 487 successful monoiso-
topic molecular formula assignments were obtained per
spectrum, which amounted to 4335 annotated molecular for-
mulas over all 211 mass spectra (Supporting Information Table
S1). The central composition of molecular formulas was CHO
(1499), N (2205), S (1938) and P (892). Overall, low-mass de-
fects indicated a high proportion of desaturation and oxygena-
tion (not shown). A comparison of all 4335 empirical molecular
formulas to KEGG yielded 129 matches. Database queries of
molecular formulas were performed manually as error-bound
m/z queries amount to substantial proportions of false hits.
As exemplified in Supporting Information Fig. S1, the empiri-
cal error distribution (1) was not continually centred on
Oppm as it is not linear and (2) shows systematic oscillations
of error values. At mass spectral regions that are systematically
not centred on 0 ppm, false database matching occurs by de-
fault if minimal errors are considered as a criterion of annota-
tion goodness. Corresponding database query strategies are
especially prone to false-positive annotations if the error distri-
bution is not centred and prone to false-negative annotations if
the correct formula is not listed in the database.

Generation of mass-difference-based building
block lists

The Breitling et al. (2006a, 2006b) approach

Mass-difference-based building blocks were defined to cover
the following: (1) the functional list as described by Tziotis
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et al. (2011) and further exchanges of small functionalities; (2)
amino acids; (3) their corresponding ketoacids; (4)
even-chained fatty acids (FAs) (C2-C16); (5) dicarboxylic
acids (DCAs); (6) phenylpropanoids; (7) cofactors and
nucleotides/nucleosides; and (8) derivatives of pentoses, hex-
oses and their disaccharides. Furthermore, multiple prenylation
steps were added. Coenzymes were implicitly considered in the
formulation of the reaction classes that they catalyse. The trans-
formation of the aforementioned compound classes into MDBs
was performed by modifications according to the following re-
action classes: condensation/hydrolysis [type A, coenzyme A
(CoA); M-H,O], decarboxylative condensation (type B, CoA,
pyridoxal phosphate; M-H,O-CO,) and hydrogenation of car-
bonyls with consecutive condensation (type C, CoA, NADH,
pyridoxal phosphate; M+ H,-H,0). The full list of MDBs
and reaction types is given in Supporting Information Table S2.

The Weber and Viant (2010) approach: mining of
Kyoto Encyclopedia of Genes and Genomes
reaction pairs from the Kyoto Encyclopedia of
Genes and Genomes Application Programming
Interface

Mass-difference-based building blocks that span two KEGG
reaction pairs (rpairs) because 13 shortest paths of a length of
k=2 were obtained between D-glucose and B-D-fructose-6-
phosphate after removal of metabolite entries such as ‘elec-
tron’, ‘proton’ or H,O. Such multiplicity is problematic if the
aim is to describe an MDB class that is intended to serve as a
class of variables. The full list of MDBs and reaction types is
given in Supporting Information Table S2.

Statistical analysis

The molecular formula/intensity matrix of annotated features
was used for principal component analysis (PCA) and orthog-
onal partial least squares discriminant analysis (OPLS-DA)
using SIMCA-P (v13.0.0.0, Umetrics, Umed, Sweden). Iso-
prene emission was utilized as the Y variable, and the molecu-
lar formulas and their respective intensities were defined as X
variables. Based on the principal component 1 loadings of the
OPLS-DA model [R2Y(cum)=0.957, Q2(cum) =0.767, Fig. 2
and Supporting Information Fig. S1], 10% of the most impor-
tant molecular formulas for the characterization of NE and
IE were extracted and used for MDEA (Supporting Informa-
tion Fig. S4).

Mass difference enrichment analysis

Mass difference enrichment analysis was performed by sepa-
rately using the two MDB lists described herein. MDiNs were
reconstructed using the theoretical neutral masses of the 4335
molecular formulas annotated earlier. Assuming them to be er-
ror free, MDiNs were reconstructed at a networking error of
0.01 ppm to accommodate for mass deviations that derive from
rounding. Given CHNOPS, there are usually no isobaric anno-
tations at errors <0.05 ppm. However, exceptions do exist.
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The MDIiN, which was built using the curated MDB list,
contained 63 608 edges, 15537 and 18143 of which were inci-
dent to IE nodes and NE nodes, respectively. The KEGG rpair
MDIN comprised 65180 edges, 16072 and 19102 of which
were incident to IE nodes and NE nodes, respectively. The en-
tire results are provided as ‘.xlsx’ files in Supporting Informa-
tion Table S2. An inference pertaining to whether an MDB is
over-represented/under-represented among nodes of interest
requires testing as to whether it was observed more or less
frequently than should be expected by chance given the entire
model dataset. The Fisher exact test, which assumes a
hypergeometric distribution, was used as follows: (1) recon-
struct an MDIN from a population of nodes, P, and a set of
edges, E; (2) define a sample set S that contains nodes of inter-
est; (3) count the set of edges, Eg, that are connected to S; (4)
count the number of edges of one MDB type R in E; and (5)
count the corresponding number of edges, Rs, that are
connected to S. The probability for Rg edges to be connected
to S, given E, R and Eg, is calculated as follows (using the
MATLAB function hygecdyf):

o)

p=F(Rs|E,R Es) = }.

o)

With the MATLAB function hygestat, it was possible to cal-
culate the values u and o, which are the expected amount of Rg
and the expected standard deviation given E, R and Ejg:

M

EsR
& o)
and
 [EBRE_RIE_Ey
U\/ E(E—-1) ®)

The values 4 and ¢ were used to calculate a Z-score that is
indicative for enrichment or depletion of an MDB in S:

z-Bs—n (4)
o

The preceding equations assume a hypergeometric distribu-
tion, a discrete probability distribution that is very commonly
used for modelling discrete problems as the one stated earlier.
Equations 1 to 4 enable the calculation of the expected fre-
quency, u, of an R, given a number of randomly selected edges
that equal the number of edges that was found in association to
a given MDB (Rgs). The equations for the calculation of the
hypergeometric standard deviation of u, and the expression
of the depauperation or enrichment of an MDB in terms of
Z-scores (deviation of the MDB frequency from x in multiples
of ). As an approximation, Z-scores of z =2 and z = 2.5 asso-
ciate to the P-values P~ (.05 and P = 0.01, respectively. Natu-
rally, there is no guarantee for Ry to follow a hypergeometric
distribution, and as Eg becomes smaller, both P-values and
Z-scores become biased (overestimated). The Matlab code
that was used to calculate the MDEA statistics is available as

Supporting Information Table S5. Cross-validation via
bootstrapping of § was performed 10 000 times to obtain an ad-
ditional frequentist measure of significance. Notably, the pres-
ent concept is entirely data driven, as it does not differentiate
whether compounds/metabolites are known to metabolic data-
bases or not. The general workflow towards MDEA can be
viewed in Supporting Information Fig. S5.

Incidence matrix

Even if database coverage is poor, it is possible to describe em-
pirical metabolomics datasets by MDB-based transformations
of molecules from metabolomic databases. MDiNs that encom-
pass database entries and empirical data contain an interface
between both metabolome spaces. Molecular formulas that
were assigned to empirical m/z features can be expressed as
combinations of molecular formulas from databases and
MDBs. So that we can analyse and visualize whether specific
MDBs are used to generate arbitrary groups of non-annotated
empirical features, it is necessary to convert the given data into
an appropriate structure.

The adjacency matrix (Harary, 1962), the Laplacian matrix
(Merris, 1994), and the incidence matrix (IM) (Fulkerson &
Gross, 1965) are structures that represent a graph. IM rows
pertain to nodes v, and IM columns pertain to edges e. Each
edge is listed as a distinct variable. Non-zero entries imply the
incidence of a node v; and an edge e;. This structure was chosen
for the representation of a transformation map that explains
the data as a function of KEGG database entries.

Firstly, the 854 KEGG nodes and the 4206 POP nodes were
co-networked. As the aim was the description of the produc-
tion of POP metabolites that are not a subset of the KEGG me-
tabolome, 129 POP molecular formulas found in KEGG were
omitted. Both previously described MDB lists were combined
into one list of 450 MDBs. The MDIN consisted of 117693
edges (the 129 omitted features would have amassed 8644 ad-
ditional edges). Four hundred ninety-two KEGG formulas
(substrates) were directly connected to 2316 POP formulas
(products) by means of 16109 edges. Connected to IE nodes
and NE nodes were 2138 and 1988 edges, respectively
(Supporting Information Table S3).

Secondly, MDEA was used to analyse which MDBs were
specifically associated to IE and NE nodes. Z-scores major 2
were obtained by 20 and 31 MDBs for their association to IE
and NE, respectively.

Thirdly, 42 human metabolome database (HMDB, Wishart
et al., 2007) compound classes were assigned to 486 out of 492
KEGG formulas that served as substrates. Multiple compound
class assignments were considered as independent variables.
Edges are replaced by MDBs, and compound classes replace
nodes in the KEGG-POP-IM. Non-zero values indicate the
sum of incidences a compound class has to a given MDB class.
Figure 5 was created using the clustergram function within
MATLAB over the KEGG-POP-IM. The KEGG-POP-IM is
a generic extension to Walker et al. (2014b), who annotated
an unknown metabolite of major impact by in silico conjuga-
tion of empirical data.

© 2016 John Wiley & Sons Ltd, Plant, Cell and Environment, 40, 1057-1073



Empirical null distributions

To accommodate for an inappropriate assumption of the
hypergeometric null distribution, we empirically determined
a-values determined by performing MDEAs over 10000
bootstrapped marker sets of the same size as the original set
of markers. a-Values for over-representation and under-
representation are provided as ‘.xIsx’ files (Supporting Infor-
mation Table S2).

Tandem mass spectrometry experiments

One IE leaf and one NE leaf were investigated by fragmenta-
tion experiments that were performed using the multiple adja-
cent SIM method (Southam et al, 2007). Electrospray
ionization (ESI) parameters were set as described earlier.
The spectra were acquired over a time domain transient of
4 megawords and an ion accumulation time of 1.3s. The SIM
window size was set to 30Da. The SIM window was first
centred around 260 m/z and was then shifted towards 440 m/z
values in 15Da steps (13 windows). Fragmentation of each
SIM window was performed with four different fragmentation
energies: (1) 0eV; (2) 5eV; (3) 10eV; and (4) 15eV. Each spec-
trum was acquired for 56 scans.

Data were calibrated and aligned following spectral overlap.
Annotation was performed as described earlier. Each spec-
trum was then divided into parent and daughter sections.
MDiNs were created using KEGG rpairs and the manually cu-
rated MDB list. For MDEA, only valid parent — daughter
(P— D) pairs were considered. The MDEA variables were
generated as follows. E represents the sum of all MDBs that
were P— D pairs in IE and NE; R is the sum of all MDBs that
were P— D pairs with P being a marker for either NE or IE;
Eg defines the frequency of P— D pairs for each MDB; and
Rg gives the frequency of P— D pairs with P being a marker
for each MDB.

RESULTS
Interpretation of m/z feature statistics

The grey poplar dataset contains 211 mass spectra, each of
which encompasses 2276 + 886 non-randomly occurring #n/z
peaks after calibration, alignment and exclusion of exported
noise peaks. An MDiN-based annotation strategy according
to Tziotis et al. (2011) resulted in an average of 1579 + 487 suc-
cessful monoisotopic molecular formula assignments per spec-
trum, with a final amount of 4335 annotated molecular
formulas across all spectra. The quality of the formula assign-
ment is displayed as errors over m/z plots (Supporting Informa-
tion Fig. S1), indicating a good spectral alignment, as well as a
slightly non-linear systematic error distribution.

Prior to the application of any further statistics, it was neces-
sary to drop all m/z features that could not be annotated
successfully, as they are potential artefacts by nature. Further-
more, knowing that the 4335 assigned molecular formulas per-
tain to m/z features, both terms will be used interchangeably
across the remainder of this work. Multivariate statistical
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approaches are common practice in metabolomics, as they
are appropriate in screening large datasets for features that
are potentially associated to a given experimental intervention.
Here, OPLS-DA modelling was used, and the top 10% of most
important features were used for the characterization of molec-
ular formulas in NE and IE genotypes (Fig. 2 and Supporting
Information Figs S1 and S2).

Comparing the assigned molecular formulas of our grey
poplar dataset with the KEGG database resulted in only 129
database hits (3%), which limits the interpretation of metabo-
lomics results and may result in false statements.

Initial observation of differences in the molecular formula
annotations (compositional space) revealed that pure CHO,
CHOP and CHOS compositions are by trend up-regulated in
the NE genotypes, while a majority of N-containing composi-
tions were IE specific (Fig. 1 and Supporting Information Fig.
S2). The average cyclomatic number u according to Senior
(1951; later termed double-bond equivalent or degree of
unsaturation) was significantly lower in NE than in IE
(uNE=6.6, ulE=9.1, P=22%10"). Consequently,
compounds in the IE genotypes are characterized by a higher
amount of double bonds, which is supported by significantly
lower H/C ratios and H/(C + N) ratios in IE (pH/C=1.4 %102,
pH/(C+N)=2.2%10">). These general analyses imply there
are a lower amount of C-aromatics and N-aromatics in NE, as
well as a higher amount of nitrogen-free compounds.

Among the 129 KEGG molecular formula hits (242 KEGG
compounds), 17 molecular formulas (55 KEGG entries) and 22
molecular formulas (47 KEGG compounds) were accumulated
in NE and IE, respectively (Supporting Information Table S1).
Itis common to describe and interpret metabolomes in terms of
statistics over the KEGG pathway map participation of desig-
nated markers (Kankainen et al., 2011). The present analysis
shows that 97% of the assigned molecular formulas in leaf ex-
tracts of IE and NE poplars do not match with KEGG listed
compounds, indicating a more general problem in plant meta-
bolomics: a lack of structural information. Of the 17 molecular
formulas found for the NE genotypes, two were related to
downstream products of the methylerythritol phosphate
(MEP) pathway where the PcISPS knock-down was induced
[CsH,07P, for dimethylallyl pyrophosphate/isopentenyl
pyrophosphate (DMAPP/IPP, pyrophosphate=PP) and
C10H,007P; for geranyl pyrophosphate (GPP)]. Five formulas
were related to saccharide metabolism, glycolysis or pentose
phosphate metabolism (CsH,Og4 for hexose, C,H,,0;; for
hexose disaccharide, C¢H;¢O7 for hexuronic acid, C¢H;309P
for hexose-P and C;H;s0,0P for heptose-P). Furthermore,
the formulas for malate, C, and C,, FAs, two flavonoids, two
hydroxybenzoate derivatives and one phytosterol were found.
Five flavonoid molecular formulas, three unsaturated FAs/a-
linoleic acid derivatives including linoleic acid, three
phenylpropanoid derivatives, two glucosyl flavonoids, three
quinic acid derivatives, and hexose bisphosphate and dihy-
droxyacetone phosphate (DHAP) were found on the side of
IE genotypes. Phosphoenolpyruvate (PEP) and glycerol-3-
phosphate, the isomer of DHAP, are the first substrates for
the non-mevalonate or 2-C-methyl-D-erythritol 4-phosphate
(MEP) pathway. Higher amounts of DMAPP, the substrate
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of PcISPS, were observed in NE genotypes. This is consistent
with the corresponding RN Ai knock-down of this enzyme. Fur-
thermore, flavonoid metabolism, which is derived from
phenylpropanoid metabolism, is pronounced in IE plants
(Supporting Information Table S1 and Supporting Information
Figs S2 and S3). While hexose and hexose-P are enriched in
NE, hexose bisphosphate is depleted; this implies feedback
regulation in this genotype on the level of phosphofructokinase
(PFK, EC 2.7.1.11), which is inhibited either by aberrant
ATP/AMP ratios or by PEP (Kelly & Latzko, 1977; Stitt,
1990). Furthermore, differential behaviours of these three hex-
ose derivatives imply that the classification of features is not
primarily driven by matrix effects as they have similarly strong
hydrophilicity and polarizability; that is, they are features that
are typically suppressed by more surfactant molecules in ESI.
KEGG metabolic pathway hits that were markedly enriched

in the NE genotype are ‘ubiquinone and other terpenoid-
quinone biosynthesis’ as well as ‘starch and sucrose metabo-
lism’. Major changes in general terpenoid metabolism were
not indicated. The IE-specific pathway hits ‘biosynthesis of
amino acids’, ‘flavonoid biosynthesis’, ‘phenylalanine, tyrosine
and tryptophan biosynthesis’, ‘anthocyanin biosynthesis’ and
‘phenylpropanoid biosynthesis’ in turn agree with the composi-
tional results presented earlier (Supporting Information Table
S1 and Supporting Information Figs S2 and S3).

Mass-difference-based building blocks and mass
difference networks

A total of 4335 molecular formulas could be assigned globally.
The MDIiNs were reconstructed over the set of theoretical
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monoisotopic exact masses that pertain to the 4335 neutral
molecular formulas of the poplar dataset (POP formulas). Lit-
erature proposes two ways to generate lists of MDBs. The
first one (Breitling et al., 2006a) formulates MDBs by means
of manual inspection of biochemical reactions. Subtracting
the masses of substrate A from product C in a biochemical re-
action A+B— C will result in an MDB that describes sub-
strate B, notwithstanding the existence of various reaction
mechanisms (Fig. 1a,b). Such a list of MDBs will be termed
as ‘manual MDBs’. With this approach, enzyme-catalysed
and spontaneous reactions were curated manually and con-
verted into a first set of 248 mass differences (Supporting
Information Table S2). The second approach (Weber &
Viant, 2010) mines MDBs from biochemical reactions listed
in databases.

This approach is the basis for a second MDB set, which is
created from KEGG rpairs that were downloaded from
KEGG Application Programming Interface (API) (similar to
Weber & Viant, 2010; http://www.KEGG.jp/KEGG/rest/
KEGGapi.html). This set will be termed as ‘rpair-MDBs’ for
convenience. Ultimately, 301 unique rpair-MDBs shared 99 en-
tries with the list of manual MDBs. The MDiNs that were gen-
erated by cross-linking the POP formulas with either manual or
rpair-MDBs encompassed 63 608 (NE: 18 143, IE: 15537) and
65180 (NE: 19102, IE: 16072) edges, respectively. As MDBs
are derived from biochemical reactions, the following sections
will interpret and discuss them as both building blocks and
reactions.

It was then possible to investigate whether the edges of spe-
cific MDBs were significantly associated to all IE and NE for-
mulas as compared to their frequencies across the entire
MDiNs. These specific up-regulated or down-regulated MDBs
form the basis of MDEA. In MDEA, the MDiN itself is the ref-
erence population, and as MDB frequency counts are discrete,
MDB-NE/IE association can be tested against a
hypergeometric distribution (Fisher exact test; see the Mate-
rials and Methods section for a detailed description).

Prenylation mass-difference-based building blocks
directly link the metabolism to the modification of
isoprenoid biosynthesis

Mass difference enrichment analysis was used to attribute each
MDB with a Z-score expressing the over-representation
(Z=2) or under-representation (Z<—2) of MDBs with either
IE or NE nodes (molecular formulas). A scatter plot of Z(IE)
over Z(NE) scores (Fig. 2B) enables a swift visual summary
of the types of MDBs associated to either genotype. Forty
MDBs out of 248 (16%) of the manually curated MDB list
were observed to be over-represented in the NE genotype
(Fig. 2B and Supporting Information Fig. S2).

Three of the MDBs describe mass differences that pertain to
mono-prenylation, di-prenylation and tri-prenylation reac-
tions, with mono-prenylation yielding the highest Z-score
(Z=4.54) of the entire dataset. The molecular formulas of
two hemiterpene glucosides (HTGs) were annotated, namely
4-hydroxy-2-methyl-2-buten-1-yl-O-glucopyranoside (C;;H007)
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(Ward et al, 2011) and 2-C-methyl-D-erythritol-O-4-b-D-
glucopyranoside (Gonzalez-Cabanelas et al., 2015), which
were recently characterized in Arabidopsis. Both com-
pounds were up-regulated in the NE genotype (Supporting
Information Table S1) and possessed a high incidence with
the three aforementioned mentioned prenylation MDBs
(Figs 2C and 3A).

Our analysis revealed that hexose and other discriminant
sugars in the isoprene-free cellular background frequently
connect to nodes of unknown identity and strong phenotypic
discrimination by means of prenylation MDBs; reasonably,
the molecular formulas fit to prenylated glycosides (Fig. 2C,
Fig. 3A). The same three prenylation reactions, plus two
KEGG-specific carotenoid epoxide rpair-MDBs, were
observed to be associated to the NE genotype, using both
MDB sets.

Mass-difference-based building blocks mirror
oxidative stress responses in the
non-isoprene-emitting genotype

Dicarboxylic acids form an MDB class that is present only in
the manually curated list. Eight out of 10 DCA MDBs were cal-
culated to be enriched in the metabolome of the NE genotype
(Fig. 2B), a finding that would have been missed by conserva-
tive database-driven analysis. The DCAs azelaic acid
(Z=2.13) and pimelic acid (Z=3.37) are produced either by
lipoxygenases or via spontaneous fragmentation of oxidized
lipids (Zoller et al., 2012). The manually curated MDBs in-
cluded 15 FA reactions, 11 of which (73%) were over-
represented in NE, while four were simultaneously depleted
in the IE genotype (Fig. 2B). The majority of these FA MDBs
were acids with less than 10 carbon atoms, which is a chain
length that corresponds well with the expected residuals of
oxylipin breakdown (Supporting Information Table S2). Al-
though biochemical functions regarding the remaining DCAs
are not yet described, their corresponding MDBs can be hy-
pothesized to be markers for variants of the oxylipin pathway,
which is the primary known source for plant DCAs. Corre-
sponding DCA precursors can be unsaturated FAs other than
linoleic acid, likely with alternative double-bond positions
(Zoller et al., 2012). High oxidative stress in plants leads to in-
creased concentrations of malondialdehyde (MDA), a marker
for lipid hydroperoxidation (Moore & Roberts, 1998). MDA is
formed through a spontaneous radical reaction (Pryor et al.,
1976), which was translated into an MDB (Supporting Infor-
mation Table S2). Its over-representation (Z=2.77) in
isoprene-free lines (Fig. 2B) matches previously published
work, which shows the accumulation of MDA and H,O, in
the NE plants (Behnke et al., 2010a). MDA itself is too small
and too unstable to be detected using FT-ICR-MS. Oxidative-
stress-related MDBs also dominate the KEGG-based MDEA
results and therewith confirm both the ‘curated MDB’-based
interpretations and literature-based knowledge/hypotheses.
MDBs that pertained to a-linoleic acid residuals (three out of
four MDBs) and oxylipin metabolism (three out of three
MDBs), one of three MDA reactions and one of two
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Figure 2. The results obtained by mass difference enrichment analysis. (A) Z-score plot of the curated mass-difference-based building block (MDB)
list and (B) the Z-score plot of Kyoto Encyclopedia of Genes and Genomes (KEGG) reaction pairs (rpairs); red: enriched in non-isoprene emission
(NE); blue: enriched in isoprene emission (IE); light green: depleted in NE; dark green: depleted in IE. KEGG, Kyoto Encyclopedia of Genes and
Genomes. (C) Extracted subgraph laid out using prenylation, geranylation, ketohexanoic acid type B, adipic acid type B, decanoic acid type A,
condensation and hydroxylation. Subgraph contains NE nodes and their adjacent nodes. Red nodes: up-regulated in NE; blue nodes: down-regulated
in NE; grey nodes: not significant. (D) Triangle motif containing adipic acid type B, prenylation and hydroxylation. (E) Triangle motif containing
decanoic acid type A, di-prenylation and condensation. (F) Triangle motif containing ketohexanoic acid type B, prenylation and condensation. Arrows
indicate the mass direction from smaller to bigger masses. Oxoacids, ©; fatty acids, A; terpenes, ¥<; phenolics, (J; other MDBs, O; dicarboxylic acid
(DCA), V; amino acids, []: symbols with non-grey filling are significantly enriched or under-represented; IE up-regulated node, @; NE up-regulated

node, @; unregulated node, @; glucose node in C, @.

peroxidation reactions, were significantly enriched in associa-
tion to NE nodes.

Network triangle motifs aid lifting curation-induced
biases

The curation of MDB lists induces biases towards the curator’s
assumptions; however, as MDBs are mass differences, there is
no guarantee for them to reflect the exact biochemical reaction
they were intended to describe. One MDB might likewise be
the sum of smaller MDBs, that is more elementary building
blocks or reactions.

Specific MDB patterns that were strongly enriched in the
NE genotype were detected: (1) the decarboxylative conden-
sation of adipic acid is equivalent to a prenylation followed
by a hydroxylation; (2) the condensation of decanoic acid
(Z=4.34) can alternatively be described by a di-prenylation
followed by H,O addition; and (3) the decarboxylative con-
densation of ketohexanoic acid (Z=4.42) is equivalent to a
two-step reaction involving prenylation and H,O addition. A
subgraph containing these MDBs was extracted while allowing

only nodes connected to at least one up-regulated NE node
(Fig. 2C). The three MDB groups formed triangle motifs,
which are similarity-indicating network motifs that are com-
monly used for the calculation of the clustering coefficient
(Figs 2D and 3) (Barabasi & Oltvai, 2004). These triangles
offer  alternative  biochemical interpretations:  the
decarboxylative condensation of adipate is isomeric to the
condensation of 2-methylbut-2-en-1,4-diol (detected in
Arabidopsis) (Ward et al., 2011), which might also occur in a
two-step reaction of prenylation (Zyg =4.54) followed by hy-
droxylation. Furthermore, the connection of the aforemen-
tioned HTG to glucose (an NE node) and C;1H,0O4 was
found using that exact triangle motif (Figs 2D and 3A). Addi-
tionally, nodes that participate in triangles (Figs 2D and 3A)
all share at least one characteristic composition, in this case
hexose. The highest FA Z-score (Z=4.34) was obtained by
the condensation of decanoic acid (depleted in IE
Z=-2.67), which forms a triangle motif with di-prenylation
and hydrolysis. Again, this triangle connected to molecular
formula annotations that fit prenyl glycosides, monoterpenes
and carbohydrates (Figs 2E and 3B). Consequently, the high
Z-score of decanoic acid is partly due to its close relationship
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Figure 3. Detailed explanations of nodes and edges that establish the triangle motifs involving the hemiterpene glucoside. (A) Triangle motif
containing adipic acid type B, prenylation and hydroxylation. (B) Triangle motif containing decanoic acid type A, prenylation and condensation. (C)
Triangle motif containing 2-ketohexanoic acid type B, prenylation and condensation. Up-regulated in NE node, @; unregulated node, @; enriched

mass-difference-based building block (MDB) edge,

to the geranylation MDB. Here, triangle motifs helped
overcome self-induced biases upon MDB interpretation.

Mass difference enrichment analysis reveals global
compositional reprogramming in the
non-isoprene-emitting genotype

Hemiterpene glucosides were identified in Arabidopsis when
plants were grown under nitrogen limitation, showing an inter-
dependent regulation of the N and C metabolism (Ward et al.,
2011). MDEA yielded a striking number of 96 under-
represented MDBs in the NE genotype (Fig. 2B and
Supporting Information Table S2), each of them containing
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nitrogen, with 56 of those pertaining to amino acids (56/59
amino acid MDBs). The compositional evaluations (Fig. 1
and Supporting Information Fig. S2) that indicate a loss of
CHNOP compounds in NE agree with these findings. Closely
linked to amino acids are the one-step and two-step transami-
nation MDBs, which were also depleted in the NE samples.
The major source for N metabolism is ammonia, which enters
primary metabolism in the form of carbamoyl phosphate
(Masclaux-Daubresse et al., 2010). The corresponding MDB
is strongly under-represented in the metabolome of NE
(Z=-4.71) while phosphorylation is enriched (Z=2.51). The
other  metabolic entry site for ammonia is
glutamine/glutamate (Bernard & Habash, 2009; Chellamuthu
et al., 2014). With a Z-score of —5.04, glutamine is the second
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most under-represented NE MDB, directly following
formimine transfer (Z=-5.15), which is tetrahydrofolate
dependent.

Mass-difference-based building blocks from the
non-isoprene-emitting genotype highlight
alterations in the phosphoenolpyruvate-dependent
metabolism

The tricarboxylic acid (TCA) cycle makes use of TCAs, DCAs
and 2-oxoacids. Eleven aliphatic and/or acidic 2-oxoacid
MDBs were enriched in the NE genotype (Fig. 2B). The
highest (second overall) Z-score (Z=4.42) of this MDB group
was obtained by the decarboxylative addition of ketohexanoic
acid. As previously stated, this mass difference forms a triangle
with the prenylation MDB (Figs 2F and 3C).

Four 2-oxoacid MDBs, pertaining to pyruvic acid,
hydroxypyruvic acid and 2-ketosuccinic acid, as well as
erythrose and transphosphorylation, are known to be re-
lated to PEP and pyruvate and were found to be enriched
in NE poplar leaves. Notably, transphosphorylation de-
scribes the biosynthesis of PEP from oxaloacetate, which
can be synthesized from malate. The latter TCA cycle me-
tabolite accumulated in NE leaves. The 2-ketosuccinic acid
MDB (Z=3.4) is equivalent to the decarboxylative addition
of oxaloacetate, which is strongly associated to the NE ge-
notype, while its free ion was not detected. Yet another NE
MDB pertained to 2-oxoglutarate, which next to oxaloace-
tate, malate and succinate represents a TCA cycle interme-
diate. Furthermore, the enrichment of the condensation and
decarboxylative addition of ketoisovaleric acid in the NE
genotype establishes an additional link to pyruvate and
the TCA cycle.

(A) CHNOS 3
- CHO ee?os.:o%o‘?
= OOOgou
- UDgcgq)nooo
O—o 5%8

Phenolic mass-difference-based building blocks
are characteristic for the isoprene-emitting
genotype

Seven out of 13 IE-genotype-associated MDBs pertained to
the metabolism of aromatics and shikimate (Fig. 2B and
Supporting Information Table S2). Earlier metabolomic and
transcriptomic experiments on NE poplars showed the dimin-
ished production of phenolics when isoprene is absent, com-
pared to their IE homologs (Behnke e al., 2010a; Kaling
et al., 2015). This result coincides with the up-regulation of
the IE nodes of dehydroquinate and quinate, two intermedi-
ates of the shikimate pathway (Fig. 2G).

Mass-difference-enrichment-analysis-driven
cropping of mass difference networks improves the
visual localization of metabolic pathways

Full MDINSs, reconstructed with hundreds of MDBs, often al-
low for neither visual nor graph-theoretical network analyses
as they tend to resemble a ball of wool and thus do not possess
any appreciable network structure/topology. MDB-based bio-
chemical interpretation aside, MDEA is helpful as a means of
data-driven dimensionality reduction for network visualization
(Fig. 4A). Here, hydroxylation and hydration were used in ad-
dition to the top six MDBs that were over-represented in the
NE genotype for the extraction of subgraphs enriched with
up-regulated NE nodes (Fig. 4A). This approach resulted in
the formation of five subgraphs (separated into the elemental
compositions CHO, CHOP, CHNO, CHOS and CHNOS),
which were affected by the genetic modification (Fig. 1 and
Supporting Information Fig. S2), whereby annotations of
CHO, CHOS and CHOP exhibited many discriminant nodes
that were up-regulated in the metabolome of isoprene-free

Figure 4. Subgraph laid out using hydration, hydroxylation and the top six over-represented mass-difference-based building blocks (MDBs) in non-
isoprene-emitting (NE) nodes. (A) The formation of compositional networks, namely CHO, CHOP, CHOS, CHNO and CHNOS; red: up-regulated
NE nodes; blue: down-regulated NE nodes; grey nodes: not significant. (B) Magnified view of the shikimate pathway. IE up-regulated node, @; NE

up-regulated node, @; unregulated node, @.
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lines. Breitling et al. (2006a) previously stated that MDiNs
might represent a means for the characterization of pathways
within the known metabolic realm. The MDiA approach en-
abled the visual detection of the shikimate pathway, which
underpinned its association with the IE genotype within the ex-
tracted CHO subgraph (Fig. 4B). Per definition, MDiNs must
contain metabolic pathways, and analysing how building blocks
are processed aside, MDEA and the introduced triangle motifs
(Fig. 2) are useful tools to narrow down pathways that are both
known and unknown.

The mass difference network incidence matrix
describes the origin of the unknown metabolic
space

Mass-difference-based building blocks were shown to be highly
valuable for the interpretation of metabolomic MS data, espe-
cially if the majority of molecular formulas are unknown. How-
ever, all results obtained so far describe relationships within
this poplar dataset itself. The next question of interest was
whether the same context held true if the poplar metabolome
(POP) was related to a widely accepted database (KEGG).
To this end, an IM was constructed, which is a network repre-
sentation where nodes are mapped against their respective
edges (Supporting Information Table S3). Figure 5 describes
how KEGG metabolites are transformed into discriminant un-
known compounds. Notable differences between the poplar
genotypes were found for terpene nodes (Fig. 5). The NE
plants displayed a more pronounced terpene metabolism
mainly conjugating different carbohydrates to terpenes and
vice versa (farnesylation and geranylation on carbohydrate-
containing compounds).

Isoprene-emitting plants preferentially conjugated aromatic
moieties with carbohydrates that likely resulted in (poly)phe-
nolic glycosides. Additionally, the IM shows that IE plants
use N-aromatics and amino acids more frequently, which corre-
sponds to the MDEA results that were mined in POP.

The initial molecular formula annotations already indicated
differences in phosphorous-containing compounds between
the genotypes (Fig. 1 and Supporting Information Fig. S2).
The IM confirmed this observation and additionally revealed
different usage patterns. Plants with missing isoprene bio-
catalysis performed FA condensations and geranylation,
whereas isoprene producers preferably conjugated aromatic
metabolites. The introduced methodology facilitates the defini-
tion of targeted strategies to investigate very specific aspects of
a largely unknown metabolism. Ultimately, it allows the mining
of candidate enzymes by querying databases for the combined
information of source compound class and acting MDB for fu-
ture studies on grey poplar.

Tandem mass spectrometric measurements
validate mass difference enrichment analysis
findings in the non-isoprene-emitting genotypes

As described in the introduction, the main focus of this work is
to demonstrate how MDiA can integrate the entirety of
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acquired m/z data, be it of high or low ion abundance, into
the analysis of biochemical building block usage patterns. Frag-
mentation experiments on single m/z species are only possible
if a given feature can be isolated using a quadrupole filter. For
this exact reason, Morreel et al. (2014) fragmented only the
most abundant mi/z signal per full FT-ICR-MS scan. One of
our initial hypotheses was that MDEA can reveal information
about the rate at which a building block/metabolite is invested
by distinct genotypes to synthesize their specific metabotype.
As single-feature identification is costly in many different ways
and the aim of this work is to introduce the concept of MDiA-
based metabolome contextualization, multiple adjacent SIM-
MS/MS (Southam et al., 2007) scans were performed on leafs
of both the NE and IE genotypes. Markers of interest suffer
from less penalization using the SIM-MS/MS approach as com-
pared to smaller SIM windows conventionally used for MS/MS.
The larger SIM windows allow for marker features of low
abundance to contribute to the daughter ion space. The analy-
sis was focused on the mass range 245 to 455 m/z, which equals
the mass range of the network shown in Fig. 2. MDEA was
used to mine neutral losses that were significantly associated
to the NE and IE markers as compared to all parent-daughter
ion pairs of a given SIM window.

The MDEA results of the SIM-MS/MS experiments yielded
an over-representation of 49 MDBs in the NE genotype using
the curated MDB list (Fig. 6A and Supporting Information Ta-
ble S4). The correlation coefficient between all full-scan and
SIM-MS/MS MDB Z-scores from the NE samples was 0.76
(Fig. 6E and Supporting Information Table S4).

Twenty-five MDBs were significantly over-represented in
both the full-scan and SIM-MS/MS results (Fig. 6A). The three
MDBs, which were part of the triangle motifs in Fig. 3, namely
the prenylation, decarboxylative condensation of adipic acid
and decarboxylative condensation of ketohexanoic acid, were
also over-represented in the SIM-MS/MS data (Fig. 6B). This
observation directly validates the full-scan MDEA data in
which MDEA established a direct linkage between the
metabotype and the genotype. Additionally, it substantiates
the presence of unknown prenylated compounds in NE poplars
(Fig. 3).

Close similarities between conventional full-scan and SIM-
MS/MS results were observed in the DCA MDBs, where seven
out of the eight over-represented full-scan MDBs were also as-
sociated to the NE poplars in the SIM-MS/MS data (Fig. 6B).

Additionally, 17 2-oxoacid MDBs, of which 11 described the
cleavage of aliphatic 2-oxoacids, were over-represented in the
SIM-MS/MS spectra of NE plant extracts. This is in agreement
with the observation that 10 out of those 17 2-oxoacid MDBs
were also over-represented in the full-scan MDB results of this
genotype (Fig. 6B).

The MDBs that were over-represented only in the SIM-MS/
MS results pertained to four 2-carbon 2-oxoacid building
blocks (pyruvate related), two hydroxyphenylpyruvate MDBs
and one ketoglutarate MDB (Supporting Information Table
S4). Six FA-related MDBs were enriched in the NE SIM-MS/
MS experiments (Supporting Information Table S4). Four of
them overlapped with MDBs that were enriched in the full-
scan MDEA results of the NE genotype (Fig. 6B). Two of those
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Figure 5. Cluster map of the Kyoto Encyclopedia of Genes and Genomes (KEGG) POP incidence matrix. (A) Exemplifies the formation of
discriminant unknown molecular formulas of non-isoprene-emitting (NE) and isoprene-emitting (IE) nodes from known KEGG metabolites. (B) The
cluster map of the incidence matrix, in which the most important relationships are marked. IE up-regulated node, @; NE up-regulated node, @;
unregulated node, @.

MDBs describe butanoic acid reactions (types A and B), one obtained by the IM is the over-representation of six carbohy-
hexanoic type A reaction and one dodecanoic acid type A reac- drate MDBs in the SIM-MS/SM NE poplar results. The results
tion (Fig. 6B). Another observation that confirms the results of the IM show that those MDBs were used for terpene
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Figure 6. Comparison of selected ion monitoring tandem mass spectrometry (SIM-MS/MS) mass difference enrichment analysis (MDEA) with
full-scan MDEA results. (A) Venn plot illustration of enriched non-isoprene-emitting (NE) full-scan and SIM-MS/MS mass-difference-based building
block (MDBs). (B) The overlapping NE MDBs are illustrated in Z-score bar charts. (C) Venn plot illustration of enriched isoprene-emitting (IE)
full-scan and SIM-MS/MS MDB:s. (D) The overlapping IE MDBs are illustrated in Z-score bar charts. (E) Heat map showing the correlation
coefficients of MDB Z-score vectors obtained by full-scan MDEA (POP), incidence matrix MDEA (IM) and SIM-MS/MS MDEA (SIM). (E)
Correlation coefficients for the comparison of the different MDEA applications.

modifications to form unknown terpene glycosides in NE pop-
lar (Fig. 5B). A high overall correlation between the Z-score
profiles of the NE IM and of the NE SIM-MS/MS (Fig. 6E)
was observed.

Tandem mass spectrometry experiments validate
and extend the conjugation of phenolics in the
isoprene-emitting genotype

Forty-two MDBs were over-represented in the SIM-MS/MS
dataset of IE poplars. The correlation coefficient between the
MDB Z-scores of full-scan and SIM-MS/MS MDEAs in the
IE poplars was 0.68 (Fig. 6E and Supporting Information Table
S4). Eight MDBs yielded significant Z-scores in both measure-
ment types (Fig. 6C). Five of those MDBs described phenolic
reactions (including two aromatic 2-oxoacids), one character-
izes the condensation of quinate and the remaining two
described ketoglutarate reactions (Fig. 6D). These results do
not only validate the full-scan MDB results (Fig. 2) but also
complement the known literature showing higher contents of
phenolics in leaves of IE compared to leaves of the NE

genotypes (Behnke ez al., 2010a; Way ez al., 2013; Kaling
et al., 2015). Additionally, four phenolic MDBs and three
aromatic 2-oxoacid MDBs were over-represented in the
SIM-MS/MS results, thus further complementing the full-scan
MDEA results in IE poplars.

DISCUSSION
Interpretation of m/z feature statistics

The present analysis shows that 97% of the assigned sum for-
mulas in the leaf extracts of IE and NE poplars do not match
with the KEGG listed compounds, highlighting a more general
problem in plant metabolomics: a lack of structural informa-
tion. Although the amount of KEGG hits is limited, some inter-
pretations are still possible: while hexose and hexose-P are
enriched in leaves of NE poplars, hexose bisphosphate is de-
pleted; this implies feedback regulation in this genotype on
the level of PFK (EC 2.7.1.11), which is inhibited either by ab-
errant ATP/AMP ratios or by PEP (Kelly & Latzko, 1977; Stitt,
1990). Furthermore, a differential behaviour of these three
hexose derivatives implies that the classification of features is
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not primarily driven by matrix effects. DHAP is depleted in the
NE genotype as well, which supports that interpretation. The
hexose scenario implies a consequent increase in PEP flux,
while PEP itself could not be observed as an ion; an increase
of PEP flux would however confirm previous observations of
1-deoxy-D-xylulose 5-phosphate synthase (DXS; EC 2.2.1.7)
feedback inhibition by DMAPP (Ghirardo et al., 2014). The
observed decrease in DHAP goes hand in hand with a decrease
in pentose-P, which generally indicates a limited energy metab-
olism in NE plants. As highlighted earlier, leaves of NE poplars
are enriched in hexose and hexose-P and depleted in hexose-
PP levels, a scenario that implies feedback regulation of PFK
by PEP. PEP itself — a highly reactive/unstable metabolite —
could not be detected. Increased levels of PEP can be well
explained by a backlog of metabolites resulting from strong
reduction of metabolic flux through the MEP pathway as a
consequence of the negative feedback regulation of DXS by
increased DMAPP levels (Ghirardo et al., 2014). As
phenylpropanoids were found to be down-regulated in NE
poplar leaves, the PEP-traversing C-flux might have been
redirected to the anaplerotic TCA cycle whose metabolites in-
volve TCAs, DCAs and 2-oxoacids. Malate is apparently
enriched in this genotype, but this observation does not allow
any further interpretation pertaining to the TCA cycle mass
flux. Yet, the MDBs of 11 2-oxoacids, among them
2-ketosuccinic acid, as well as transphosphorylation and
pyruvate-related MDBs were found to substantially contribute
as building blocks for NE up-regulated metabolites. The entire
context of these findings suggests '*C-fluxomic analyses to be a
hot spot of future investigations and thus exemplifies how
hypotheses that can be of use for future investigations can be
generated using non-targeted metabolomics and MDiA.

Prenylation mass-difference-based building blocks
directly link the metabolism to the modification of
isoprenoid biosynthesis

It is known that the chloroplastic DMAPP pool is much larger
in NE as compared to IE leaves (Ghirardo et al.,2014), yet only
‘ubiquinone- and terpenoid-quinone biosynthesis’ is listed
among the addressed terpenoid KEGG pathway maps (Fig. 1
and Supporting Information Fig. S3). As these pathways are lo-
cated in the cytosol and not in the plastids, the KEGG pathway
hits do not appropriately reflect alterations in the MEP path-
way in NE plants in near proximity to PcISPS (Cheng et al.,
2007). This result represents a major phenological/contextual
connection between the metabotype and absence of isoprene
biosynthesis in NE plants. DMAPP and GPP were found to
be up-regulated in the NE genotype (Supporting Information
Table S1) among the few KEGG annotations. DMAPP is the
substrate of PcISPS and together with its isomer IPP forms
the CS5 building blocks of GPP and farnesyl pyrophosphate
(FPP), which are the major di-prenylating and tri-prenylating
agents for phenolic compounds (Shen er al., 2012), for zeatin
biosynthesis (Mok et al., 2000) and for the posttranslational
modification of proteins (Zhang & Casey, 1996). The knock-
down of PcISPS in poplar results in a strong accumulation of

DMAPP (Ghirardo et al., 2014), confirming the present up-
regulation of isoprenoid intermediates in the NE genotypes.
This is in accordance with Weise et al. (2013) who showed that
acid hydrolysis, a commonly used technique for the quantifica-
tion of DMAPP available for isoprene synthesis, results in
higher amounts of DMAPP in grey poplar than is quantified
by LC/MS, which indicates a substantial pool of unknown
prenylated compounds (Weise et al., 2013). The three types
of MDiA and MDEA performed agree that this pool of
prenylated compounds is likely constituted of various kinds of
HTGs. The POP MDEA finds prenylation, geranylation and
farnesylation among the top-ranked MDBs. The POP KEGG
IM agrees with this finding as theoretical terpenoids preferen-
tially connected to NE up-regulated compounds using various
carbohydrate MDBs, while various carbohydrates used
farnesylation and geranylation to connect to regulated
features. Carbohydrate-containing compounds were further
shown to connect to a wide range of FAs in NE and
phenylpropanoids in IE. Earlier metabolomic and
transcriptomic experiments on NE poplars showed the dimin-
ished production of phenolics when isoprene is absent com-
pared to their IE homologs (Behnke er al., 2010a; Kaling
et al., 2015). This result coincides with the up-regulation of
the IE nodes of dehydroquinate and quinate, two intermedi-
ates of the shikimate pathway (Fig. 2G). These results were
confirmed by the results of the SIM stitch MS/MS approach,
where prenylation, but not geranylation and farnesylation,
was found to be of importance. The NE leaves’ lack in
phenylpropanoids was confirmed as well. The high incidence
of carbohydrate MDBs in the SIM stitch MS/MS approach is
not shown in Fig. 6 but can be viewed in Supporting Informa-
tion Table S4, where condensations of glucose, rhamnose and
erythrose were top ranked for NE markers. Poplar trees are
known for their high production of phenolics, such as flavo-
noids, phenolic glycosides and phenylpropanoids (Babst ez al.,
2010; Boeckler et al., 2011). These compounds differ drastically
in their glycosylation patterns, and because of that, neutral
losses of carbohydrates are often observed in MS/MS experi-
ments of plant extracts (Kachlicki et al., 2008; Abreu et al.,
2011). These results complement the known literature showing
higher contents of phenolics in leaves of IE compared to leaves
of the NE genotypes (Behnke et al., 2010a; Way et al., 2013;
Kaling et al., 2015).

Mass-difference-based building blocks mirror
oxidative stress responses in the
non-isoprene-emitting genotype

Interestingly, the linoleic acid derivatives, which are commonly
interpreted to have an association to oxidative stress (op den
Camp et al., 2003; Moller et al., 2007), are higher in IE. This ob-
servation contradicts existing knowledge, which implies higher
oxidative stress in plants when cell internal isoprene is absent
(Behnke et al., 2010a). Indeed, MDEA results correct pre-
emptive interpretation based on a small set of KEGG metabo-
lite hits as follows: although biochemical functions regarding
most DCAs are not yet described, their corresponding MDBs
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can be hypothesized to be markers for variants of the oxylipin
pathway, which is the primary known source for plant DCAs.
This is supported by the IM (Fig. 5B) that visualizes the compo-
sitional relationship of DCAs with FAs via a clustering of FA
KEGG nodes and the NE MDBs succinate transfer to alde-
hydes and pimelate condensation. As Supporting Information
Table S4 confirms, DCA-neutral losses are jointly characteris-
tic for NE features in SIM stitch MS/MS. Furthermore, it may
be speculated whether the DCA MDBs represent unstable
metabolic intermediates, similar to pimeloyl-CoA (Streit &
Entcheva, 2003), which prevents the detection of the free me-
tabolites with MS techniques. This finding clearly supports
the assumption that MDiA can drastically improve the inter-
pretation of metabolomic data because it has the capability to
describe spontaneous reactions of metabolites in vivo, as is
the case for MDA.

CONCLUSION

Three types of MDiNs and MDEAs were used: firstly, the full-
scan MDIiN, where markers for both genotypes were assigned
using OPLS classification. Here, MDEA was performed on
the full-scan MDIN, and significant Z-scores pertained to the
general differences in metabolome set-up between both inves-
tigated genotypes. The reference edge population of all
marker-associated MDBs was the entire set of MDB edges
found in the MDIN. This approach was largely data driven,
but knowledge driven in that two different types of MDB sets
were used, the curated list and the KEGG list. Both ap-
proaches yielded a consistent metabolomic context of the in-
vestigated genotypes. The approach of Breitling et al. (2006a,
2006b) is flexible in a way that manual curation can lead to
mass differences addressing building blocks that are not listed
as free reactants in for example KEGG. The approach by We-
ber and Viant (2010) has the advantage that each MDB (rpair)
can be associated to a set of enzymes, which — knowing some
compositional and structural properties of the detected fea-
tures — can be narrowed down to more specific enzyme sets.
These can be targeted in future proteomics and transcriptomics
experiments as well as on ultra-high-performance LC time-of-
flight MS (UHPLC-ToF-MS) data (Forcisi et al., 2015).

The second type is the directed KEGG-POP-IM: this ap-
proach is an extension of Walker ef al. (2014b) as it uses MDBs
to connect knowledge base data to experimental non-targeted
metabolomics data. Ultimately, this approach enabled Walker
et al. (2014b) to discover sulphonated lipids that were con-
firmed via MS/MS. Herein, the full list of neutral KEGG me-
tabolites were considered as substrates (building blocks) for
the marker sets of the NE and IE genotypes. The reconstructed
MDiN was thus directed and bipartite because all source nodes
came from KEGG and all target nodes came from the full-scan
data (POP). The reference edge population was the entirety of
all MDB edges connecting KEGG to POP.

The third type is the directed SIM-MS/MS network: here,
edges were directed from parent ions (P) to daughter ions
(D) per SIM window and collision energy. All P—D MDBs
per spectrum were counted as reference population and
P — D MDBs that connected marker Ps defined earlier to the

© 2016 John Wiley & Sons Ltd, Plant, Cell and Environment, 40, 1057-1073
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daughter space were tested for their over-representation
against the reference population. The consistency of all
MDEAs was tested given the Weber—Viant-KEGG list. The
correlation matrix for all six Z-score sets (Fig. 6E) clearly
shows that MDEAs from the NE genotypes were more similar
among themselves in comparison to MDEAs from IE and vice
versa. Only the SIM-MS/MS Z-score profiles of IE and NE
poplars were more similar to each other than the Z-scores of
the full-scan IE MDEA and the MDEA of the IE IM. The rea-
son for that is that SIM-MS/MS experiments lead to a fragmen-
tation of the entire metabotype, which — as both genotypes are
poplar trees — still have a given large basal set of building
blocks. Nevertheless, all three investigations delivered consis-
tent results for each respective genotype.

The present study demonstrated how the application of
MDIiNs can be extended beyond feature annotation and com-
pound identification by probing them for network regions,
where nodal genotype differentiation significantly coincides
with compositional context. In fact, the complex chemical biol-
ogy of the two grey poplar genotypes was completely grasped
by MDEA, which demonstrates this technique’s tremendous
potential for ‘omics’-based applications and opens the door
for the development of tailor-made targeted techniques
beyond the limitations of database knowledge.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Figure S1. Error plots of the molecular formula annotation pro-
cess. a, Error over m/z plot. b, Running average error, aver-
aged over m/zi until m/zi+50. ¢, Running standard deviation
or error, standard deviation calculated over mi/z until m/zi + 50.
Figure S2. Molecular formula counts for compositions that are
up-regulated and down-regulated in NE poplars.

Figure S3. Summary of isomer-corrected KEGG pathway par-
ticipations of 17 NE formulas and 22 IE formulas.

Figure S4. Multivariate analysis of molecular formula annota-
tions obtained for NE and IE poplars. (a) OPLS-DA score
plot and (b) loading plot with selected discriminant variables

marked in green. NE effect, @; NE and UV effect, ¥; IE ef-
fect, @; IE and UV effect, ¥; unregulated variables, @; reg-
ulated variables, @.

Figure SS. Scheme of the mass difference enrichment analysis
workflow.

Table S1. Dataset containing, experimental m/z values,
theoretical m/z values, CHNOPS counts, compound class
counts, KEGG annotations, the statistical grouping and the
corresponding intensities per sample.

Table S2. Contains list of nodes, group labels and the corre-
sponding edges and MDEA results.

Table S3. Dataset and results of the KEGG-POP incidence
matrix.

Table S4. Dataset and results of the SIM-MS/MS experiment.
Table S5. MATLAB code for mass difference enrichment
analysis (MDEA).



