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Abstract 1 

Exercise as key prevention strategy for diabetes and obesity is commonly 2 

accepted and recommended throughout the world. Unfortunately, not all 3 

individuals profit to the same extent, some exhibit exercise resistance. This 4 

phenomenon of non-response to exercise is found for several endpoints, 5 

including glucose tolerance and insulin sensitivity. Since these non-responders 6 

are of notable quantity, there is the need to understand the underlying 7 

mechanisms and to identify predictors of response. This displays the basis to 8 

develop personalized training intervention regiments. In this review, we 9 

summarize the current knowledge on response variability, with focus on human 10 

studies and improvement of insulin sensitivity as outcome.  11 

Main text 12 

Introduction 13 

The global epidemic of type 2 diabetes burdens humankind. The WHO projects 14 

that diabetes will be the 7th leading cause of death in 2030. For prevention, 15 

healthy diet and achievement and maintenance of normal body weight are 16 

recommended. Furthermore, at least 30 minutes of regular, moderate-intense 17 

physical activity are required [1], [2]. Nevertheless, our strategies to prevent 18 

type 2 diabetes are still insufficient; since decades, a major purpose of research 19 
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is to develop reasonable prevention strategies and to specify detailed 20 

pathomechanisms leading to diabetes.  21 

There are myriads of intervention studies dealing with the best exercise type, 22 

frequency, intensity, and duration, further sophisticated by additional diets [3]–23 

[20]; and the scientific discussion is still ongoing. Indeed, positive effects of 24 

regularly performed exercise on cardiorespiratory fitness and metabolic control 25 

are without dispute. In most of the well-known diabetes prevention studies as 26 

DPS, DDP, HERITAGE, LookAHEAD, STRRIDE, Da Qing Diabetes Study, TULIP, 27 

and others, the risk reduction for diabetes, the metabolic syndrome or 28 

cardiovascular events ranges around 35% [4], [21]–[35]. Despite this 29 

knowledge, less than 40% of European countries developed national 30 

recommendations for physical activity [36]. 31 

Response variability 32 

Most of the conducted studies found improvements in metabolic and 33 

cardiorespiratory endpoints after training intervention, but also highly variable 34 

inter-individual responses [37]–[39]. Maximum oxygen uptake (VO2max) is the 35 

standard parameter of cardiorespiratory fitness and is widely used to document 36 

the effectiveness of training. The HERITAGE trial identified low responders and 37 

high responders for improvements of VO2max [40]. For insulin sensitivity, a 38 

similar variability was shown  [41]. The general distribution of individual changes 39 

seem to have a two-sided shape, ranging from high responders to even adverse 40 

responders that show a deterioration of the respective endpoint. Notably, the 41 

term “non-response to exercise” always needs a clear association with a specific 42 

endpoint. It is used with respect to changes in several, different parameters 43 

assessed before and after training, e.g. fitness, cardiovascular events, muscle 44 

mass, metabolic risk profiles, lipid metabolism, insulin resistance, and others. In 45 
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this review, we focus on the failure to improve whole body insulin sensitivity 46 

after training interventions, e.g. the exercise non-response with regard to insulin 47 

sensitivity in humans. Physical activity is often included in lifestyle intervention 48 

programs combining dietary regimens with exercise, and sometimes we also 49 

refer to data based on lifestyle intervention.  Since it is not possible to 50 

differentiate between exercise-dependent and exercise-independent effects in 51 

these studies, this is always clearly stated.  52 

What about the quantity of these non-, low-, or even adverse responders? As 53 

recently reviewed [42], the number of adverse responders with respect to fasting 54 

insulin including six exercise training studies (HERITAGE, DREW, INFLAME, 55 

STRRIDE, MARYLAND, and JYVASKYLA) averaged 8.3%. Non-response defined as 56 

no improvement regarding glucose homeostasis, leads to 7-63% non-responders 57 

[41], [43]–[49]. For further details, see table 1. Most of the conducted studies 58 

are performed without a control group. Thus, the opinion exists, that exercise 59 

might cause adverse metabolic effects for some individuals. However, a study 60 

performed with 87 participants including a control group [45], demonstrated 61 

clearly a decreased number of an adverse response (41%) versus 76% in control 62 

group; the adverse response was defined as increased fasting glucose, 2-h 63 

glucose, and triglycerides, as well a decrease for HDL-cholesterol. 64 

Notably, the failure to improve insulin sensitivity is not necessarily reflected by a 65 

non-response in VO2max, and vice versa [50]. Although there is a clear positive 66 

correlation of VO2max and insulin sensitivity in the general population [51]–[53] 67 

and an increase in VO2max correlates with the improvement in insulin sensitivity 68 

in large lifestyle intervention programs [54], [55], this is not true for each 69 

individual. In 202 diabetic individuals of the HART-D study, only 37% had a 70 

marked increase in VO2max, but all profited regarding metabolic parameters, 71 
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irrespective of VO2max response [56]. Furthermore, metabolic parameters like 72 

respiratory exchange ratio, maximal heart rate and maximal ventilatory 73 

equivalent do not relate to changes in aerobic capacity [57]. 74 

Thus, despite a relevant exercise-related improvement of systolic blood pressure, 75 

body weight, VO2max, lipid profile, etc., one may not have a beneficial effect on 76 

insulin sensitivity; this adds even more complexity to this issue.  77 

If these highly individual responses to exercise might be overcome by different 78 

training regimes, is still under debate [11], [16], [42], [43], [58]–[62], and will 79 

not be in focus of this review. A recent study gave hint for a combination of low-80 

amount/vigorous-intensity aerobic exercise and resistance training being the best 81 

[63]. High-intensity interval training has been practiced by athletes for some 82 

time [64], recently it receives much interest as promising part of lifestyle 83 

intervention programs [65]. It can be superior to moderate-intense, time-84 

consuming continuous training in improving cardiorespiratory fitness [66] and, 85 

beneficial effects on insulin sensitivity have been shown after just short training 86 

duration [67], [68]. If high-intensity interval training will be advantageously 87 

included in lifestyle interventions, and which subpopulation is suitable to that, we 88 

will learn more from future randomized, controlled studies. 89 

To sum up, individual exercise response is known for several years now [11], 90 

[37], [57], [69], [70], but shifting the focus on non-response in terms of insulin 91 

sensitivity is just beginning [29], [43], [46]–[48], [56], [71], [72].  92 

Prediction of and mechanisms for failure 93 

Understanding and defining the individual susceptibility for non-response will be 94 

a major purpose in the future. This is the basis for the development of 95 

personalized training strategies to prevent and treat type 2 diabetes. Regarding 96 
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success-predictive baseline values, our knowledge is limited to few studies and 97 

endpoints, as reviewed by [73], and the results are partly complementary. Of 98 

course, personal adherence to lifestyle intervention is a major fundament for 99 

success [74]; thus, exercise studies should preferably be supervised.  100 

Beyond this, in the HERITAGE study baseline values were found to account for 101 

~40% variability in training-related changes; but only for some traits, such as 102 

submaximal heart rate and blood pressure, where high baseline levels were 103 

associated with major exercise-driven improvements [37]; but not for baseline 104 

VO2max, HDL, age, nor for sex and race [39], where no relationships were 105 

found; contrarily, age was mentioned as a relevant variable in dose-106 

responsiveness to exercise [75], as older adults require higher doses of training. 107 

Another study showed, that there are no non-responders in elderly practicing a 108 

prolonged exercise training [60]. Notably, insulin sensitivity was not among the 109 

endpoints of this study [60]. Additionally, women with low fitness at baseline 110 

were shown to have greater exercise-related fitness improvements [76].  111 

For insulin sensitivity, there is less data. Risk factors for non-response are 112 

speculated, but far from being comprehensively understood. But recognizing 113 

these individuals that fail to profit from exercise is of major importance. In a nine 114 

months exercise study, long duration of type 2 diabetes and increases in serum 115 

free fatty acids (FFA) were positively associated with HbA1c changes, whereas 116 

serum adiponectin levels and muscle protein content of peroxisome proliferator-117 

activated receptor γ coactivator 1 (PGC1) correlated inversely with changes in 118 

HbA1c [77]. In plasma, reduction of ceramides was correlated with exercise-119 

related improvements in insulin sensitivity [78]. A  whole blood gene expression 120 

analysis after 12 weeks of lifestyle intervention in Latino adolescents showed up-121 

regulated genes, e.g., for insulin signaling, glucose uptake, and glycogen storage 122 
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as well as down-regulation of genes involved in inflammatory pathways, and 123 

exhibited five times the number of regulated transcripts responders compared to 124 

non-responders [79]. From the Diabetes Prevention Program we know that low 125 

insulin secretion and low insulin sensitivity at baseline generally predict higher 126 

diabetes risk regardless of the treatment regime [80]. Our own data from the 127 

TULIP study showed low insulin secretion and sensitivity, low cardiorespiratory 128 

fitness, high liver and visceral fat, as well as high fetuin A predictive for non-129 

response regarding glucose homeostasis [55], [72], [81], whereas age, sex, and 130 

BMI at baseline were not predictive. Notably, this was a lifestyle intervention 131 

study, and conclusions on exercise-specific changes can only be speculated.  132 

Indeed, exercise-driven improvement of insulin sensitivity was only shown in 133 

insulin-resistant individuals with adequate insulin secretion [82].  134 

Thus, is insulin-resistance per se a risk factor for non-response? There is some 135 

evidence given by several exercise [45], [83]–[85] and lifestyle intervention 136 

studies [29], [46], [86], that individuals with higher metabolic burden seem to 137 

profit more. Contrarily, in another study responders were more insulin-sensitive 138 

at the beginning than non-responders [47]; additionally, women at lower genetic 139 

risk for obesity (calculated by a risk score dependent on 21 SNPs associated with 140 

BMI variation) showed more favorable responses regarding resistance training-141 

associated changes of body fat composition [87]. These partly conflicting results 142 

might be explained by a ceiling-effect for some variables, different populations 143 

and study settings. Alternatively, there might be a threshold in any metabolic 144 

parameter – perhaps insulin secretion – beyond which the benefit suddenly 145 

converts to the opposite.  146 

However, for better characterization of responders and non-responders, further 147 

studies in well-defined populations under controlled conditions are required.  148 
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Genetic aspects of non-response 149 

Already in the 1980s, the relevance of heredity in exercise-induced adaptations 150 

was shown [88]. For exercise-related improvements of VO2max, the heritability 151 

is reported to be about 47% [40], [89]. Single nucleotide polymorphisms (SNPs) 152 

are found to play a role in the training-induced changes in VO2max [90]; also for 153 

the endpoint muscle strength this was shown [91]. A combination of several 154 

SNPs contributes to ~50% of the inter-individual variance in changes of VO2max 155 

[92], [93], pointing to a multifactorial inheritance of general non-response. A 156 

genetic variant in NDUFB6, encoding for complex I of the respiratory chain, can 157 

modify the individual response of the ATP synthase flux, even independently 158 

from exercise-related improvements of insulin sensitivity [94]. For metabolic 159 

syndrome in general, risk allele carriers of IL6R had more profit from a lifestyle 160 

modification including diet and exercise [95]. In genome-wide linkage-scans, a 161 

genomic region close to the leptin locus emerged to contribute to the fasting 162 

insulin response to exercise training [96]. And in 180 Brazilians, the FTO T/A 163 

polymorphism was associated with decreased fasting plasma glucose after 9-164 

month lifestyle intervention [97]. Additionally,  polymorphisms in ADIPOR1 [98], 165 

PPARG [49], PPARD [99], PPARGC1A (encoding PGC1α) [100], TCF7L2 [101] and 166 

SIRT1 [102] were shown to impact the glucose homeostasis response to lifestyle 167 

intervention [71].  168 

Exercise also regulates epigenetic modifications [103], in CpG-islands [104], 169 

enhancer sites [105], [106], as well as on histones [107]; furthermore, micro-170 

RNA expression changes due to exercise were shown, in plasma [108] and 171 

skeletal muscle [109]. There is evidence that different doses of exercise reveal 172 

different inflammatory miRNA responses [110]. Notably, insulin sensitivity might 173 

influence the epigenetic response to exercise [111]. But investigating the 174 
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relevance of differences in epigenetic regulation for the variability in exercise 175 

response has just started. One study reported highly variable responses in 176 

muscle mass upon resistance training and deciphers differentially expressed 177 

microRNAs [112].  178 

Impact and interplay of multifactorial genetic factors for non-response will be 179 

specified in the future. Additionally, if the genetic influence might be overcome 180 

by higher training intensities/volumes/types is not clear yet and requires future 181 

research.  182 

Muscle 183 

Skeletal muscle displays one of the most important target tissues of insulin. It 184 

accounts for more than 85% of insulin-dependent glucose uptake [113]; thus, 185 

mechanistic studies to elucidate the metabolic adaptation to exercise and its 186 

regulation mostly focus on skeletal muscle. The training-induced improvement in 187 

glucose disposal has been attributed among other non-muscle adaptations to 188 

increases in muscle mass, muscle fiber type switching, mitochondrial biogenesis, 189 

and enhanced capillarization [114]–[116]. On a molecular level, increased 190 

abundance and altered posttranslational modifications of proteins important in 191 

uptake and oxidation of glucose and fatty acids have been shown [117]–[120]. 192 

Together, enhanced fuel oxidation in muscle appears to be one major key 193 

mechanism of improved glucose control after training[24]. 194 

Given the relevance of oxidative metabolism in the prevention of insulin 195 

resistance, it was speculated that differences in mitochondrial content and 196 

mitochondrial fuel oxidation in response to training might play a role in exercise 197 

non-response [43]. In a subgroup of the HART-D study, non-responders were 198 

defined as diabetic individuals with constant HbA1c, percent body fat, and BMI, 199 

and reduced muscle mitochondria content after exercise [48]. A microarray 200 
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analysis of muscle biopsies of these non-responders at baseline revealed 186 201 

differentially regulated mRNAs compared with responders, mostly affecting 202 

substrate metabolism and mitochondrial biogenesis/function [48]. Increased 203 

mRNA levels of genes encoding for mitochondrial proteins were also found in 204 

prediabetic responders vs. non-responders [47]. Higher muscle concentrations of 205 

the tricarboxylic acid cycle intermediates were found to correlate best with 206 

exercised-induced change in insulin sensitivity [63], at least in a vigorous-207 

intensity exercise group. In 66 untrained participants of a resistance training 208 

intervention, a proinflammatory transcript profile was associated with the failure 209 

to induce muscle hypertrophy, whereas genes involved in muscle development 210 

were uniquely expressed in responders at baseline [121].  211 

To conclude, the data on specific adaptations in the muscle of responders and 212 

non-responders highlight the relevance of mitochondrial pathways for the 213 

improvement of metabolic control, independent of different biopsy timing, 214 

training regimes, heterogeneous cohorts, and different definitions of metabolic 215 

non-response among studies. Notably, for detailed pathomechanisms we have to 216 

differentiate thoroughly between mitochondrial content, OXPHOS capacity, and 217 

fat oxidation. An important issue here is to understand the individual variability 218 

in these mitochondrial adaptations and the molecular basis for the susceptibility 219 

to resist to training intervention.    220 

Adipose Tissue 221 

Adipose tissue contributes relevantly to whole body metabolism, both as 222 

metabolic sink as well as an endocrine organ [122]. Notably, being obese implies 223 

a greater risk for development of type 2 diabetes than being inactive [123]. 224 

Improvement of insulin sensitivity after one year of combined lifestyle 225 

intervention in 104 viscerally obese men was not independently associated with 226 
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improvement of cardiorespiratory fitness, but with changes in visceral and 227 

subcutaneous adipose tissue [46]. Thus, beneficial metabolic improvements 228 

seem to be mediated by adipose tissue [46], [72], [124], [125]. That is in line 229 

with an observation, that there are no weight-independent exercise effects on 230 

adipokines [126]. Recent studies in mice affirmed a role for subcutaneous 231 

adipose tissue in exercise-induced improvements in glucose homeostasis [127], 232 

[128]. On the other hand, anti-inflammatory effects of exercise on adipose tissue 233 

are reported to be weight-loss-independent [129].  234 

Effects of exercise affect all fat compartments. General exercise-related changes 235 

on adipose tissue comprise fat loss per se, beneficial shifts in body fat 236 

composition, altered mitochondrial function, and secretary responses [123], 237 

[129]–[132]. It seems to be established that exercise leads to increased 238 

subcutaneous adiponectin mRNA levels, while other adipokines and their 239 

systemic relevance are under discussion [130]. In a 6-month supervised exercise 240 

intervention in 47 healthy sedentary men [133], genes encoding the respiratory 241 

chain, histone subunits, small nucleolar RNAs, ribosomal proteins, and pathways 242 

like oxidative phosphorylation were up-regulated, whereas Wnt and mitogen-243 

activated protein kinase (MAPK) signaling pathways were down-regulated due to 244 

exercise.  245 

Elevated adipose tissue peroxisome proliferator-activated receptor gamma 246 

(PPARg) and PGC1 were early supposed to mediate the beneficial effects of 247 

exercise on insulin sensitivity [134]. Also suppressed angiogenesis in white 248 

adipose tissue after exercise was brought in context with insulin resistance[135]. 249 

Additionally, endothelial nitric oxide synthase (eNOS) seems to be a major 250 

control point in the fragile energy metabolism balance [131], as it gained 251 

attention as an inductor of mitochondrial biogenesis [136].  252 
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Conversion of white adipocytes to more energy-dissipating brown-like adipocytes 253 

is known as browning. This effect might also play a role in adipocytes’ response 254 

to exercise [137]. There is further evidence that high physical activity leads to 255 

increased brown adipose tissue activity [138]. If browning in humans is of 256 

relevant impact, is currently under discussion [139]–[141]. In this respect, the 257 

role of a PGC-1α-dependent exercise-induced myokine and browning factor 258 

identified in mice [142], named irisin, was recently very controversially discussed 259 

in humans [143]–[146].  260 

In conclusion, there is good evidence that not only muscle, but also altered 261 

adipose tissue metabolism can contribute to non-response.  262 

Liver 263 

Long-term lifestyle intervention leads to reduction of intrahepatic lipids [29], 264 

[72], [147]–[149]; this reduction in liver fat mediates a relevant part of the 265 

beneficial effects on insulin resistance, more than reduction of other fat 266 

compartments does [72]. Furthermore, we and others have shown that liver fat 267 

is the most reactive fat compartment in response to a lifestyle intervention [72], 268 

[150]. Notably, after 2h of aerobic exercise, intrahepatic lipids in 18 healthy lean 269 

volunteers increased about 35% from baseline, pointing to intrahepatic lipids as 270 

a very flexible fuel store [151], serving as a buffer for excess free fatty acids. 271 

Data on molecular alterations in the liver upon exercise are very limited, but 272 

exercise studies in mice point to a pronounced regulation of signal transduction 273 

and gene expression in the liver [152], [153]. Recent data obtained from liver 274 

vein samples verified the hepatic release of FGF21 during exercise in humans 275 

[154]. This exercise-dependent regulation of FGF21, a liver-derived factor with 276 

possibly beneficial effects on glucose control and body weight regulation [155], 277 
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opens a further perspective for the individual regulation of exercise response on 278 

the level of hepatokines.     279 

Brain 280 

Exercise enhances functional brain capabilities [156]. Furthermore, exercise was 281 

shown to improve whole-body metabolism via the regulation of central control 282 

mechanisms: reduced appetite and food intake were reported [157], [158].  283 

Vice versa, high cerebral insulin sensitivity in humans at baseline was associated 284 

with higher loss of body fat during lifestyle intervention [159]. Unfortunately, the 285 

cohort was too small to find direct effects on insulin sensitivity, independent of 286 

fat loss. Since cerebral insulin sensitivity was found to affect peripheral insulin 287 

sensitivity [160], [161] and other brain functions as reviewed in [162], it is 288 

conceivable that individual differences of central insulin action are relevant for 289 

the variability in exercise response. For further understanding the exercise-brain-290 

metabolism axis we will need more human studies.  291 

Inflammation 292 

A role of subclinical inflammation in the development of obesity and diabetes is 293 

widely accepted. This linkage between inflammation and insulin resistance was 294 

extensively shown in various organs, like adipose tissue [163], skeletal muscle 295 

[164] , and liver [165]. As the issue is very complex, and most of the molecules 296 

have both pro- and anti-inflammatory effects, the relevance of exercise-297 

regulated cytokines and chemokines for the prevention or treatment of metabolic 298 

diseases is still under debate. Exercise-induced beneficial effects on metabolic 299 

control have been linked to several cytokines and chemokines with known 300 

functions in inflammatory processes [164]. Additionally, anti-inflammatory 301 

influences of regular exercise has been shown in several studies [166], [167]. In 302 

brain, anti-inflammatory exercise-effects were reported, at least in mice [168]. 303 
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Thus, although exercise acutely can induce inflammatory processes, 304 

predominantly after an unadjusted work load and eccentric exercise [169], it can 305 

help to reduce subclinical inflammation in the long run. 306 

For exercise non-response, a role of a differential regulation of pro-/ and anti-307 

inflammatory cytokines can only be speculated; recently, this was supposed for 308 

skeletal muscle [121].  309 

Conclusion 310 

In this review we discussed individual responses to exercise training in terms of 311 

insulin sensitivity; current ideas for underlying pathomechanisms for the lack of 312 

improvement in humans were summarized, as illustrated in figure 1.  313 

In general, we should clearly encourage our patients to increase their physical 314 

activity. There are many aspects, e.g., socio-economic, quality of life etc., 315 

beyond specific metabolic endpoints, which are worth being an active individual. 316 

Nevertheless, personalized adjustments of exercise recommendations are 317 

inevitable, different training strategies for individual subgroups may be 318 

necessary. Despite the very complex issue (different endpoints, training types, 319 

nutrition, populations and highly individual participants etc.), we hopefully will 320 

promote our knowledge to tackle the non-response. Therefore, we do need 321 

further studies to unravel detailed mechanisms for insufficient responses to 322 

exercise training. Additionally, we have to establish valid and easy-to-use 323 

parameters predicting the non-response; subsequently, we should perform 324 

interventional studies to find ways fighting the non-response. Furthermore, we 325 

have to assess the new approaches with respect to other endpoints beyond 326 

insulin resistance. Last but not least, our proposals should be feasible for our 327 

patients’ daily routine far from a controlled supervised study setting.  328 
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Figure and table  1038 

Figure 1: hypothetical and observed contribution to exercise non-response with 1039 

respect to glucose homeostasis. For details, see text.  1040 

Table 1: Quantity of non-responders 1041 
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Citation Population Intervention Duration Outcome Non-responders* 

Boulé 2005 n=596, healthy Endurance training, 
3x/week, 55% to 75% 
VO2max,  

20 weeks Insulin sensitivity 42% 

Borel 2012 n=104, abdominally 
obese/dyslipidemic 

160min/week 
moderate-intensity 
exercise and -500kcal 
per day, pedometer use 

12 months Glucose tolerance status 62,5% 

Hagberg 2012 n=110, healthy endurance training, 
3x/week, 50 to 70% 
VO2max 

26 weeks Insulin sensitivity 25% 

Yates 2014 n=29, prediabetic education program with 
pedometer use 

12 months 2-h glucose 7% # 

Winett 2014 n=159, prediabetic Resistance training, 
2x/week 

3 months 2-h OGTT 44% § 

Stephens 2015 n=42, diabetic Aerobic, resistance 
training, or combination 
thereof 

9 months Combination of HbA1c, 
% body fat, BMI, muscle 
mitochondrial content 

21% 

Osler 2015 n=14, prediabetic Nordic walking, 
5h/week, unsupervised 

20 weeks Glucose tolerance status 36% 

Table: Quantity of non-responders with respect to glucose homeostasis; *meaning no improvement, unless stated otherwise; # adverse response; § estimated 

from graph 
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