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Abstract  43 

  44 

Oxidative potential (OP) has been suggested as a health-relevant measure of air pollution. Little 45 

information is available about OP spatial variation and the possibility to model its spatial variability. 46 

Our aim was to measure the spatial variation of OP within and between 10 European study areas. The 47 

second aim was to develop land use regression (LUR) models to explain the measured spatial 48 

variation. 49 

OP was determined with the dithiothreitol (DTT) assay in ten European study areas. DTT of PM2.5 50 

was measured at 16-40 sites per study area, divided over street, urban and regional background sites. 51 

Three two-week samples were taken per site in a one-year period in three different seasons. We 52 

developed study-area specific LUR models and a LUR model for all study areas combined to explain 53 

the spatial variation of OP.  54 

Significant contrasts between study areas in OP were found. OP DTT levels were highest in southern 55 

Europe. DTT levels at street sites were on average 1.10 times higher than at urban background 56 

locations.  57 

In 5 of the 10 study areas LUR models could be developed with a median R2 of 33%. A combined 58 

study area model explained 30% of the measured spatial variability. Overall, LUR models did not 59 

explain spatial variation well, possibly due to low levels of OP DTT and a lack of specific predictor 60 

variables.  61 

Keywords: Oxidative potential, DTT, LUR, PM2.5, Spatial variation*  62 

                                                           
*
 Abbreviations: ESCAPE, European Study of Cohort for Air Pollution Effects; TRANSPHORM, Transport related Air Pollution and 

Health impacts - Integrated Methodologies for Assessing Particulate Matter; DTT dithiothreitol ROS reactive oxygen species, EC/OC, 
elemental/organic carbon; PAH, polycyclic aromatic hydrocarbons; B[a]P, benzo[a]pyrene, GIS, Geographic Information Systems; 
LUR, Land Use Regression; NOx, nitrogen oxides; NO2, nitrogen dioxide; PM2.5, mass concentration of particles less than 2.5 mm in 
size; PM2.5 absorbance, measurement of the blackness of PM2.5 filters, this is a proxy for elemental carbon, which is the dominant 
light absorbing substance; PM10, mass concentration of particles less than 10 mm in size; RB, regional background; S, Street; EPA, 
United States Environmental Protection Agency; LUR, Land Use Regression; RMSE, Root Mean Squared Error. 
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1. Introduction 63 

 64 

Exposure to air pollution has been associated with morbidity and mortality (Brunekreef, Holgate 65 

2002, Pope, Dockery 2006) Epidemiological studies have used mostly the mass of particle matter 66 

(PM) with diameters smaller than 10 or 2.5 µm (PM10, PM2.5, respectively) for assessment of 67 

exposure to air pollution. The composition and size distribution of PM differs substantially in space 68 

and time. There is increasing evidence that the magnitude of adverse health effects depends on PM 69 

chemical composition and size distribution (Stanek et al. 2011, Kelly, Fussell 2012). Oxidative 70 

potential (OP) has been suggested as a health relevant parameter for epidemiological studies (Borm 71 

et al. 2007).  72 

Oxidative potential is defined as a measure of the capacity of PM to oxidize target molecules. 73 

Because OP integrates various PM characteristics (e.g. size, chemical composition, biological 74 

properties, surface) it might be a more health relevant PM metric than PM mass or single PM 75 

compounds (Boogaard et al. 2012, Borm et al. 2007). However, few epidemiological studies have 76 

evaluated whether OP of PM predicts health effects better than PM mass. Little is known about the 77 

spatial variation of oxidative potential, which is needed to assess whether OP of PM predicts health 78 

effects related to long-term exposure better than PM2.5 or constituents of PM2.5. Previous studies 79 

have documented variability of OP measured with various assays within metropolitan areas (US 80 

studies) (Vedal et al. 2013, Hu et al. 2008, Landreman et al. 2008) or single countries (Yang et al. 81 

2014, Yang et al. 2015, Boogaard et al. 2012). Only one study has evaluated spatial contrast between 82 

European cities, based upon 20 urban background sites (Kunzli et al. 2006). The authors found 83 

significant spatial contrast in the OP levels measured as the ability of PM to generate ·OH in the 84 

presence of hydrogen peroxide. 85 

 86 

Several chemical assays exist to assess the oxidative potential of PM. They differ from each other in 87 

sensitivity to the reactive oxygen species (ROS) generating compounds and analytical method (Ayres 88 

et al. 2008). One commonly used assay is based on the consumption of dithiothreitol (DTT) related to 89 

the ability of redox active compounds to transfer electrons from DTT to oxygen (Cho et al. 2005, 90 

Kumagai et al. 2002). The DTT assay is especially sensitive to organic components such as quinones.  91 

 92 

Land use regression models (LUR) have been used increasingly to model the spatial variation of the 93 

long term average concentration of the PM2.5, PM10 and the traffic-related pollutants NO2 and 94 

Black carbon (Beelen et al. 2013, Eeftens et al. 2012, Hoek et al. 2008). To our knowledge only two 95 

studies reported LUR models for oxidative potential (Yanosky et al. 2012, Yang et al. 2015). 96 

Yanosky et al. (2012) modeled OP of PM10 in London, where OP was measured as the depletion rate 97 

of antioxidant reduced glutathione (OPGSH) (Yanosky et al. 2012). Yang et al (2015) recently 98 

presented LUR models for 40 Dutch sites for two different OP metrics: DTT and ESR (electron spin 99 

resonance).  100 

 101 

The first aim of this study was to determine the spatial contrast of oxidative potential within and 102 

between 10 European study areas. The second aim was the development and evaluation of LUR 103 

models of oxidative potential.  104 

In ten European study areas we measured oxidative potential with the DTT assay. The study areas 105 

were part of two European projects: ESCAPE (European Study of Cohort for Air Pollution Effects) 106 

and TRANSPHORM (Transport related Air Pollution and Health impacts - Integrated Methodologies 107 

for Assessing Particulate Matter) (Cyrys et al. 2012, Tsai et al. 2015, Eeftens et al. 2012).. In the 108 
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framework of these projects concentrations of the pollutants NOx, NO2, PM2.5, PM10, PM2.5 109 

absorbance and elemental composition were measured in 20 study areas. Measured concentrations 110 

and LUR models for these pollutants have been published (Beelen et al. 2013, Eeftens et al. 2012, 111 

Cyrys et al. 2012, de Hoogh et al. 2013, Tsai et al. 2015). In 10 study areas additional 112 

characterization of PM was performed, including elemental and organic carbon (EC, OC) and 113 

polycyclic aromatic hydrocarbons (PAH) (Jedynska et al. 2014b), levoglucosan (Jedynska et al. 114 

2015) and oxidative potential. 115 

 116 

2. Methods  117 

 118 

 2.1 Sampling campaign 119 

 120 

The ESCAPE sampling campaign has been described in detail previously (Cyrys et al. 2012, 121 

Eeftens et al. 2012). In 10 of the ESCAPE study areas (Table 1, Figure 1), oxidative potential was 122 

determined with the DTT assay. All study areas included regional and urban background and major 123 

street sites. A street site was considered a site in a major road carrying at least 10,000 vehicles per 124 

day. An urban background site was defined as a site with fewer than 3000 vehicles per day passing 125 

within a 50 m radius. Regional sites were located in small villages typically near a major city, though 126 

the distinction between regional and urban background was not strictly defined 127 

Three 14-day integrated samples were collected for each site in a one year period. In four study 128 

areas sampling was conducted in 2009, in the other six in 2010. Samples were collected during three 129 

seasons: winter, summer and intermediate season (spring or autumn). Due to lack of sampling 130 

equipment in Munich/Augsburg, no samples were taken from December to February. Sampling of 131 

PM2.5 was performed with the Harvard impactor (Eeftens et al. 2012).. For the OP analysis a quartz 132 

filter (QMA,Whatman) was used. We used quartz filters for oxidative potential measurements as 133 

these were the only filters available for us to use for OP determination. In a recent comparison study, 134 

OP DTT levels on quartz filters were about 20% lower than on Teflon filters. Temporal correlation 135 

between DTT on both filter types was high (R=0.81) (Yang et al. 2014). The partners in all study 136 

areas used identical sampling protocols and criteria for the selection of sampling sites (Eeftens et al. 137 

2012). 138 

 139 

 140 

Figure 1. Ten European study areas where oxidative potential by DTT assay was measured 141 

 142 
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Table 1. Description of study areas. RB –regional background, UB – urban background, S – street 143 

location 144 

Country Study area Sampling period Sites Site types 
        RB UB S 
Norway  Oslo 05.02.2009 – 29.01.2010 19 2 9 8 
Finland  Helsinki/Turku 27.01.2010 – 26.01.2011 20 2 10 8 
Denmark Copenhagen 19.11.2009 – 17.11.2010  20 3 6 11 
United Kingdom  London/Oxford 26.01.2010 – 18.01.2011 20 1 12 7 
The Netherlands  Rotterdam, Amsterdam, Groningen, Amersfoort 17.02.2009 – 19.02.2010 16 4 4 8 
Germany  Munich/Augsburg 01.03.2009 – 05.11.2009 20 5 6 9 
France  Paris 04.01.2010 – 04.01.2011 20 4 9 7 
Italy  Rome 27.01.2010 – 26.01.2011 20 2 8 10 
Spain  Catalonia (Barcelona, Girona, Sabadell) 14.01.2009 – 14.01.2010 40 4 13 23 
Greece  Athens 21.04.2010 – 27.04.2011 20 1 12 7 
 145 

 146 

 2.2. Analytical methods 147 

2.2.1 Filter extraction for oxidative potential measurements 148 

 149 

All OP measurements took place in one laboratory (TNO). 2.4 cm2 of each quartz filter (30% of the 150 

filter) was extracted in 20 ml ethanol for 1 hour in an ultrasonic bath. Further, the extracts were 151 

filtered with 0.45 µm PTFE syringe filters to remove quartz particles and the insoluble PM fraction 152 

and dried under constant flow of nitrogen. At the end extracts were reconstituted in 100 µl ethanol 153 

and 900 µl MiliQ water. The extraction method applied in this study included only the ethanol 154 

soluble PM fraction contributing to OP level measured with DTT assay. 155 

2.2.2 DTT assay 156 

 157 

The DTT assay measures the presence of reactive oxygen species via formation of DTT-disulfide due 158 

to transfer of electrons from DTT to ROS by recycling chemicals such as quinones (Cho et al. 2005).  159 

The DTT assay measures the presence of reactive oxygen species via formation of DTT-disulfide due 160 

to transfer of electrons from DTT to ROS by recycling chemicals such as quinones (Cho et al., 2005) 161 

and elements (Charrier et al., 2012; Charrier, et al. ACP 2015). Several of the most recent literature 162 

studies report about evidence for the importance of soluble transition metals being reactive in the 163 

DTT assay. Although the net effect of elements in the DTT assay is not yet completely clear 164 

(Sauvain, 2013, Perrone, et al., 2016). 165 

Aliquots of samples extracts were incubated at 37 ºC with DTT(100 mM) (Sigma, Zwijndrecht) in 166 

potassium phosphate buffer at pH 7.4 The reaction was stopped at designated time points (0, 10, 20, 167 

30, 40 and 50 min), adding 10% trichloroacetic acid. 168 

Finally, 0.5 mL of 0.4M Tris–HCl, pH 8.9 containing 20mM EDTA and 30 mL of 10mM DTNB5, 169 

50-Dithiobis(2-nitrobenzoic acid) (DTNB) (Sigma) were added.The concentration of the formed 5-170 

mercapto-2-nitrobenzoic acid was measured by its absorption at 412 nmand the rates are calculated 171 

using linear regression of absorbance against time. The results are expressed as nmol DTT/min*m3 . 172 

A soot sample obtained from exhaust pipe of city busses was used as a positive control and ultrapure 173 

water as a negative control. The blanks and control sample were treated the same way as all other 174 

samples 175 
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2.2.3 Quality control  176 

 177 

To maximize comparability of the sampling in different countries, sampling and measurement 178 

procedures were conducted according to standard protocols. All OP analyses were performed 179 

centrally in the TNO lab in the Netherlands. We did not have enough equipment available to include 180 

field blanks and duplicates for OP analyses. OP methods used at TNO have been validated according 181 

to the Dutch national norm (NEN-7777, 2003 https://www.nen.nl/NEN-Shop/Norm/NEN-182 

7777C12012-en.htm). The following checks were performed in the laboratory: Mili-Q blanks, quality 183 

control samples – soot sample as a positive control for OP DTT assay. 184 

 185 

2.2.4 EC/OC, PAH, hopanes, steranes, levoglucosan, PM2.5, NOx and elemental 186 

composition 187 

 188 

The analytical methods of EC/OC, PAH, hopanes/steranes, levoglucosan, PM2.5, NO2 and elemental 189 

composition were published previously (Jedynska et al. 2014b) and are summarized in the Online 190 

supplement. 191 

  192 

2.3 Adjustment for temporal variability 193 

 194 

The three 14-day average - samples were used to calculate the annual average level of oxidative 195 

potential. Due to lack of equipment we could not collect samples simultaneously at all sites, and as a 196 

result the simple average from the concentrations in the three sampling periods could reflect both 197 

spatial and temporal variation. In order to correct for temporal variation, a (background) reference 198 

site was continuously measured in each study area during the sampling period. Our correction 199 

procedure followed the modified ESCAPE procedure used for EC/ OC, PAH, hopanes/steranes and 200 

levoglucosan (Eeftens et al. 2012, Cyrys et al. 2012, Jedynska et al. 2014b). Briefly, we evaluated 201 

which of the pollutants measured at the reference site, correlated best with OP. The temporal 202 

correlation was calculated for each site between OP and the main ESCAPE pollutants NOx, NO2, 203 

PM2.5, PM2.5 absorbance and PM10 based upon three samples. The median correlation per study 204 

area was calculated and the pollutant with the highest median correlation with OP was used for 205 

correction of temporal variation, using the ratio method as we did for EC/OC, PAH, hopanes/steranes 206 

and levoglucosan (Jedynska et al. 2014b).  207 

 208 

2.4 Predictor data for LUR model development 209 

Derivation of predictor variables has been presented in detail (Eeftens et al. 2012, Beelen et al. 2013). 210 

Briefly, the predictor variables mainly describe potential emission sources such as traffic, industry or 211 

residential emissions related. The predictor variables were determined for each sampling site using a 212 

geographical information system (GIS). First, the coordinates of each sampling site were determined 213 

using repeated Global Positioning System (GPS) measurements, supplemented by careful checking 214 

of the site location using the most detailed local map in a GIS. Second, GIS analyses were conducted 215 

to derive the values for the predictor variables for the coordinates of the monitoring sites. GIS 216 

analyses included distance from the sampling site to sources such as major roads and the amount of 217 

(proxies of) potential sources in a circle with a predefined radius (called a buffer) around the 218 

sampling site. Examples include the product of traffic intensity and road length in a buffer of 50m 219 
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and population density in a buffer of 1000m. More detailed explanation of GIS analyses and their use 220 

in LUR modelling can be found in previous reviews (Jerrett et al. 2005). The buffer sizes were 221 

selected to take account of known dispersion patterns. Both small-scale and larger-scale buffer sizes 222 

were used for the traffic variables indicating two scales of influence: near source and urban 223 

background levels representing larger-area traffic density (Beelen et al. 2012). A detailed description 224 

of the variables is presented in online supplement Table S1. 225 

2.5 LUR model development 226 

 227 

We first prepared maps of the measured OP for each of the 10 study areas to evaluate spatial patterns. 228 

using ArcGIS version 10.2.1. We calculated the Moran’s I statistic that tests for presence of spatial 229 

autocorrelation. Moran’s I ranges from -1 to +1 with -1 / (N-1) indicating no spatial autocorrelation 230 

(N=number of observations). Moran’s I was calculated with the Variogram procedure of the 231 

Statistical Analysis System version 9.4.  232 

LUR models were developed by the first author using the ESCAPE method (Beelen et al. 2013, 233 

Eeftens et al. 2012, de Hoogh et al. 2013). Briefly, adjusted annual average concentration of 234 

oxidative potential and predictor variables were used for LUR development. A supervised stepwise 235 

method was used to obtain the linear regression model with the highest explained variance (R2). At 236 

every step the variable with the highest R2 was added to the model if it improved model’s adjusted R2 237 

by at least 1% and had the same effect direction as decided a priori e.g. higher traffic intensity 238 

predicts higher OP. The final model was evaluated for statistical significance (variables removed 239 

when p-value >0.10), collinearity (variables with Variance Inflation Factor (VIF) > 3 were removed) 240 

and influential observations (models with Cook’s D > 1 were further examined). The final models 241 

were evaluated by leave-one-out cross validation (LOOCV)  242 

Models were developed for each of the 10 study areas separately and for the combined dataset. Wang 243 

et al (2014) recently documented the feasibility of developing European models combining all 244 

ESCAPE study areas for PM2.5, PM2.5 absorbance and NO2 (Wang, Beelen et al. 2014). We 245 

developed combined study area models with indicators for study area and another model with the 246 

measured regional OP background in each study area as a predictor variable. The latter approach is 247 

comparable to the multi-city model for PM2.5, PM2.5 absorbance and NO2 (Wang, Beelen et al. 248 

2014). A limitation of developing a combined area model was that measurements were conducted in 249 

2009 or 2010 in the various areas. Routine measurements of PM2.5 and PM10 concentrations 250 

obtained from Airbase did not differ between 2009 and 2010 (Eeftens et al, 2012). Based on those 251 

findings we expect no significant difference in OP DTT concentrations between 2009 and 2010. 252 

2.6 Data analysis 253 

 254 

All measurements’ results were analyzed centrally at TNO. Statistical analyses were performed with 255 

the SPSS statistical program (IBM SPSS Statistics 20).  256 

We assessed the significance of differences of adjusted annual OP averages between study areas with 257 

analysis of variance (ANOVA). Student’s t-tests were used to evaluate the difference between site 258 

types and between seasons. We analyzed seasonal differences based on all individual measurements 259 

divided into the warm (April – September) and cold period (October – March).  260 

 261 

 262 

 263 
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3. Results and discussion 264 

The detection limit (LOD) of DTT, calculated as three times the standard deviation of laboratory 265 

blanks, was 0.078 nmolDTT/min*m3. 15% of all samples gave results below the LOD. The 266 

uncertainty of the DTT assay is 24%. Calculation of uncertainty (Uc) was based on: reproducibility 267 

(vc), recovery (utv) and accuracy of the calibration standard (uj) according to the following formula: 268 

�� = �(��)� + (
�)� + (
��)� 
 269 

Shewhart chart was used to monitor the quality of the results of the control sample (soot) which was 270 

measured every measurement day. 82% of the results where within ±2*STD from the average result 271 

obtained after the first OP DTT 10 measurements. Taken all measurements of the control samples the 272 

relative standard deviation was 22%. The repeatability of Mili-Q blanks was 16%.  273 

 274 

Temporal adjustment 275 

The main focus is on adjusted annual average concentrations. In five study areas OP DTT was 276 

corrected for temporal variation with PM2.5, in four with NOx and in one with PM2.5 absorbance. 277 

The high correlation (R>0.90 in all areas except Helsinki, where R was 0.60) between the selected 278 

pollutant and OP at the sampling sites documents that the temporal variation of OP was well reflected 279 

by these pollutants. Adjusted and unadjusted annual OP averages were mostly highly correlated 280 

(Table S2). Pearson correlation coefficients were between 0.65 and 0.98 (Table S2). This documents 281 

that the adjustment did not change the results much. 282 

 283 

3.1 Within and between study area contrast  284 

 285 

The spatial variation within and between study areas is presented in Figure 2 and Table 2. Maps of 286 

OP for each of the 10 study areas are shown in supplement figure S2. Levels of OP DTT across 287 

Europe differed significantly (Figure 2, Table 2). The lowest OP DTT level were found in London 288 

(0.14 nmolDTT/min * m3) and two Nordic areas – Oslo and Helsinki/Turku (0.13 and 0.15 289 

nmolDTT/min * m3, respectively).  290 

OP DTT levels were highest in southern study areas, but the differences between the three southern 291 

and the three northern study areas were smaller (south/north ratio = 1.5) than we found for traffic-292 

related pollutants including NO2 and EC (south/north ratio – 2.2) and for PM2.5 mass (south/north 293 

ratio – 2.1), (Eeftens et al. 2012, Cyrys et al. 2012, Jedynska et al. 2014b).  294 

 295 

 296 
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 297 

 298 

Figure 2. Distribution of OP DTT (nmolDTT/min * m3) in different study areas. Median, 25th and 299 

75th percentiles are shown in the box, whiskers indicate 10th and 90th percentiles and individual 300 

outliers are shown. 301 

 302 

Table 2. Mean and range of annual average oxidative potential for 10 European study areas 303 

Study area  DTT (nmolDTT/min * m3)  

 N Mean1 Min Max Range/Mean [%] 

Oslo 19 0.13 0.06 0.25 149 

Helsinki/Turku 20 0.15 0.09 0.43 229 

Copenhagen 20 0.21 0.08 0.31 109 

London/Oxford 20 0.14 0.08 0.19 71 

Netherlands 16 0.20 0.13 0.29 80 

Munich/Augsburg 20 0.20 0.00 0.45 221 

Paris 20 0.23 0.10 0.36 115 

Catalonia 40 0.23 0.07 0.69 271 

Rome 20 0.23 0.11 0.34 98 

Athens 20 0.28 0.17 0.43 92 
1Differences between study areas statistically significant (ANOVA, p< 0.0001) 304 

 305 

Table 3. Difference of annual average oxidative potential levels between site types (ratios RB/UB 306 

and S/UB)  307 

  
DTT 
 (nmolDTT/min * m3) 

  RB/UB S/UB 
Oslo 0.82 0.88 
Helsinki/Turku 0.85 0.71 
Copenhagen 1.22 1.05 
London/Oxford 1.12 1.06 
Netherlands 0.90 1.14 
Munich/Augsburg 1.73 1.11 
Paris 0.95 1.15 
Rome 1.63 1.12 
Catalonia 0.99 1.10 
Athens 0.63 1.21 
Median 0.97 1.10 
 308 

The smaller contrast across Europe is consistent with the small difference between street and urban 309 

background locations found in this study (Table 3). In 8 of the 10 study areas, concentrations at the 310 

street sites were slightly higher than at the urban background sites with a median S/UB ratio of 1.10. 311 

Our findings are in line with a few previous studies which also reported low contrast of OP DTT 312 

between street and background sites. In a recent study based upon extraction of the Teflon PM2.5 313 

filters of all 40 ESCAPE sites in the Netherlands/Belgium, the street locations had 1.2 times higher 314 

OP DTT than urban background sites (Yang et al. 2015). In our study, the Dutch S/UB ratio, based 315 

on 16 of these 40 sites, was very similar – 1.14.  316 

In another Dutch study with five sites, OP DTT was 1.2 times higher at a busy urban street site than 317 

at urban background (Janssen et al. 2014). The ratio between a highway site to an urban background 318 
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site was higher (ratio 2.1). In our study we did not have street sites with as heavy traffic as on 319 

highways.  320 

In a study investigating OP in the Los Angeles harbor area, a modest contrast in DTT results between 321 

different sites was found (Hu et al. 2008). The ratio between traffic and background sites was on 322 

average 1.3.  323 

Our study conducted in 10 different European study areas supports a growing literature that OP DTT 324 

does not reflect large urban traffic contrasts (Yang et al. 2015, Janssen et al. 2014, Hu et al. 2008). 325 

The assay may respond to components from non-traffic sources resulting in a high background.  326 

 327 

The OP DTT S/UB ratio found in our study was lower than for other pollutants measured at the same 328 

sites including NO2, EC, PAH and OC (Eeftens, Tsai et al. 2012, Cyrys, Eeftens et al. 2012, 329 

Jedynska, Hoek et al. 2014b). As the DTT assay responds primarily to organic compounds, 330 

particularly the substantially lower contrast compared to OC (median S/UB = 1.32) and PAH 331 

(median S/UB = 1.44) is remarkable. We did not measure quinones, components which are thought 332 

to especially affect the DTT assay.  333 

Quinones are oxygenated aromatic compounds e.g. oxy-PAH, emitted during incomplete combustion 334 

processes including traffic (Jedynska et al. 2015) and formed during photochemical transformation of 335 

emitted parent-PAHs by atmospheric oxidants (Alam et al. 2013).  336 

There was no consistent difference between urban and regional background sites (median RB/UB = 337 

0.97). In four study areas (London/Oxford, Munich/Augsburg, Copenhagen, Rome), OP DTT was 338 

higher at the regional sites. In three of these areas (London, Munich/Augsburg, Rome) OC 339 

concentrations were also increased at the regional sites (Jedynska et al. 2014b). This suggests that 340 

sources of organic components that affect OP DTT may be present in more rural areas. At the 341 

regional background sites, Yang et al found lower OP DTT level than at the urban background sites 342 

(ratio 0.8), consistent with our results for the Netherlands (0.9).  343 

 344 

The mean OP DTT levels were only 2-4 times higher than the LOD (Table 2). OP DTT levels were 345 

also low compared to levels found in other studies (Saffari et al. 2014, Janssen et al. 2014, Yang et al. 346 

2014). The low OP DTT concentrations were related to the use of quartz filters (Yang et al. 2014). 347 

We furthermore only extracted a section of the filter, as we also determined EC/OC and levoglucosan 348 

on the same filter. Quartz filters for PM collection in order to determine oxidative potential are not 349 

very common. In most studies PM was collected in a solution with the Versatile Aerosol 350 

Concentrator Enrichment System (VACES) (Cho et al. 2005, Ntziachristos et al. 2007) or Teflon 351 

filters were used (Janssen et al. 2014, Kunzli et al. 2006). We found one study where quartz filters 352 

were used for OP DTT measurements (Vedal et al. 2013). Yang et al. reported significantly lower OP 353 

levels for samples taken on quartz filters than on Teflon filters for four different OP assays, including 354 

DTT, with 20% lower results than samples taken on Teflon filters (Yang et al. 2014). The reported 355 

differences were presumably caused by lower extraction efficiency of samples taken on quartz filters 356 

or necessary filtration of the quarts extracts because of high concentration of quartz fiber in the 357 

extracts. The correlation between measurements on quartz and Teflon was high (R=0.8). The 358 

correlation was based on 15 measurements taken at two sites. For the Dutch data, a direct comparison 359 

with OP DTT measured on ESCAPE Teflon filters was available from another study (Yang et al. 360 

2015). The correlation for the 16 sites was moderate for the unadjusted average concentration 361 

(R2=0.26) and low for adjusted average concentration (R2=0.12) (Figure S1).  362 

Compared to the previous comparison study (Yang et al. 2014), the differences in absolute levels 363 

between Quartz and Teflon OP DTT were much larger. OP DTT levels on quartz in the previous 364 

comparison where 20% lower and highly correlated (R2=0.66) with Teflon OP DTT (Yang et al, 365 
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2014). In the previous comparison all samples were analyzed in one laboratory, whereas in the 366 

current comparison samples were analyzed in different labs. The comparison of DTT analyses 367 

between the two laboratories revealed substantial differences in DTT levels with much lower TNO 368 

results, (Figure S2) (TNO REPORTI TNO-060-UTP-2013-00038). OP assays have not yet been 369 

standardized sufficiently to allow comparison of the results obtained at different laboratories. 370 

Absolute OP DTT values should therefore be interpreted with caution.  371 

 372 

Overall, OP DTT was weakly correlated with other measured pollutants within areas (Table S3.). The 373 

highest median correlation was observed with OC and PAH.  374 

3.2 Land use regression modelling 375 

 376 

Individual study areas 377 

For five out of ten study areas a LUR model could be developed (Table 4). The median R2 for the 5 378 

models was 33%. The lowest R2 was found in Catalonia (R2 = 13%) and the highest in The 379 

Netherlands and Oslo (73% and 66% respectively). In those two study areas the LOOCV R2 was 380 

higher than 50%. No traffic related variables were included in the models. In three study areas 381 

variables describing population density were included. In two study areas variables related to green 382 

space were included. In four models only one significant predictor variable was identified. In Paris 383 

only altitude was included in the model.  384 

Maps of OP for each of the 10 study areas are shown in supplement figure S4. Table S4 provides the 385 

Moran’s I values testing for spatial autocorrelation and associated significance. Most of the maps and 386 

the Moran’s I statistic document there is no spatial autocorrelation. In Catalonia, modest 387 

autocorrelation of borderline significance was present, mostly explained by somewhat higher OP 388 

values in the inner city of Barcelona. Consistently the LUR model included address density in a 500 389 

m buffer. In Paris the map suggests some clustering of the highest values in the northeast part of the 390 

area (not statistically significant), likely leading to a model containing altitude as the sole predictor. 391 

The maps therefore do not clearly indicate presence of major sources contributing to OP that we 392 

missed in our GIS predictor data.  393 

DTT model predictions were moderately correlated with both PM2.5 model prediction (median 394 

R=0.33) and with PM2.5 absorbance (median R=0.36) (Table 4). 395 

In four of the five areas where no model was possible, the regional background OP measurements 396 

were higher than the urban background (Table 3). Our procedures did not allow a negative slope for 397 

address or population density, predictors with lower values at regional background sites. When an 398 

indicator variable for urban (0/1) was included and a negative slope allowed, models could be 399 

developed for Rome, Munich/Augsburg, London/Oxford and Helsinki/Turku with model R2 of 17 to 400 

52%. The rationale for this sensitivity analysis is that we are less certain about source impacts on OP 401 

DTT than on pollutants such as NO2 and PM2.5 for which the procedures were developed. The Rome 402 

model included the indicator variable urban and distance to a major road (R2=52%). The 403 

Munich/Augsburg model included the urban indicator variable and traffic load in a 100m buffer 404 

(R2=30%). The London model included the urban indicator variable and major road length in a 100m 405 

buffer (R2=17%). In Helsinki/Turku, a model was only possible including residential density in a 406 

50m buffer if a high Cooks D was allowed (R2=17%).  407 

 408 

Combined study area model 409 
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A combined area model combining all ten study areas resulted in a model R2 of 30%, with port and 410 

small scale residential density in addition to indicator variables for study areas (Table 4). A model 411 

with indicator variables alone explained 25% of the variability. We added study area indicators to 412 

avoid systematic differences between the countries (in e.g. GIS predictor data or climate) to affect the 413 

model, as we were mainly interested in intra-area variation. When we used measured regional 414 

background to characterize the study area, instead of indicator variables, a model was developed with 415 

four predictor variables that explained 24% of the variability in OP DTT. The developed model was: 416 

0.0889+6.09E-09*PORT_5000+6.44E-11*Traffic load_1000+0.379*Regional Background+1.34E-417 

6*Population_500, where PORT_5000 is harbour within 5000m, traffic load_1000 represents number 418 

of vehicles per day within 1000m from a sampling site times road length and Population_500 reflects 419 

number of inhabitants in a radius of 500m from a sampling site. In this model more of the variability 420 

was explained by GIS predictors representing specific sources (shipping and road traffic) while 421 

regional background OP DTT alone explained 5.3% of variability.  422 

 423 

Overall, land use regression models did not explain spatial variation of OP DTT well. LUR models 424 

could be developed only for five out of ten study areas. The explained variance of the developed OP 425 

LUR models was low (median R2 = 33%) in comparison to frequently modeled pollutants like PM2.5 426 

or pollutants used as traffic markers – NO2 or PM2.5 absorbance for which model R2 higher than 427 

70% were found in ESCAPE (Beelen et al. 2013, Eeftens et al. 2012). The model combining all ten 428 

study areas resulted in a low model R2 as well, but the gap between model and leave-one out cross 429 

validation R2 was much smaller than for the individual area models. The smaller gap is due to the 430 

larger number of monitoring sites to train the model (Wang et al., 2012). The combined area model 431 

contained more predictor variables (port, population density) than the study-area specific models (e.g. 432 

altitude and large scale natural land in Paris and Athens). Recently, several European and American 433 

studies reported large-scale LUR models for PM, NO2 and soot (Novotny et al. 2011, Wang et al. 434 

2014, Vienneau et al. 2013). Large-scale LUR models can provide improved prediction of pollutant 435 

concentrations for study areas with poor or no local models. Because of the non-contiguous study 436 

areas (Figure 1), application of the combined model in study areas not part of current monitoring is 437 

likely less reliable. 438 

We found only two published study reporting a LUR for oxidative potential (Yanosky et al. 2012, 439 

Yang et al. 2015). In London, models were based on weekly averages of OP of PM10 measured with 440 

antioxidant reduced glutathione (GSH) at 66 sites. The explained variance of the developed model 441 

was 50%. The variables used were: PM10 brake and tire wear, emissions from all vehicles within 442 

50m and NOx tailpipe emissions from heavy-goods vehicles within 100m. In our study we could not 443 

develop a LUR DTT model for London/Oxford study area, related to a different assay, the very low 444 

within study area contrast or a smaller number of locations than in the Yanosky study. 445 

A recent Dutch study reported LUR models for two OP assays: DTT and ESR developed for the 40 446 

Dutch ESCAPE sites. Reported R2 of OP DTT LUR model was lower (60%) than the R2 in our study 447 

for the Netherlands (73%). Both models differed in included variables. Our models included 448 

population density variable and variables describing natural areas while Yang et al developed a 449 

model containing regional OP DTT level, traffic related variables and natural area variable. The 450 

differences between two Dutch models might be caused by different number of used sites used for 451 

model development, different OP DTT levels (discussed before), and included regional OP DTT 452 

levels in the model. 453 

  454 
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Table 4. Description of LUR models for OP DTT (nmolDTT/min * m3)  455 

 456 

Study area LUR model n R2 

[%] 
LOOCV 
R2 [%] 

RMSE R with  R with 
PM25abs* PM2.5* 

Oslo 0.0547 + 0.000181 x HHOLD_300 19 66 59 0.0314 0.27* 0.14 
Helsinki/Turku NM       

Copenhagen NM       

London/Oxford NM       

Netherlands 0.193 + 0.0000149 x POP_300 - 0.00000104 x UGNL_300 - 2.376 x 
10-9 x NATURAL_5000 

16 73 50 0.0278 0.26* 0.25* 

Munich/Augsburg NM       

Paris 0.367 - 0.0164 x SQRALT 20 25 5 0.0633 0.33** 0.38** 
Rome NM       
Catalonia 1.268 + 0.00000641 x HDRES_500 39 12 6 0.070 0.30** 0.36** 
Athens 0.324 - 5.045 x 10-9 x NATURAL_5000 20 33 22 0.064 0.49** 0.29* 

Median     33 22       
Combined 10 area 
model with 
indicators for area 

0.188 -0.10001 x area1 - 0.06504 x area2 -0.03328 x area3 - 0.08856 x 
area4 - 0.05127 x area5 + 0.00893 x area6 - 0.02609 area7 + 0.05424 x 
area8 + 0.00384 area9 + 6.82E-04 x PORT_5000 + 0.00000139 x 
HDLDRES_100  

215 30 26 0.07677     

 457 

Description of variables used in the models: NATURAL Semi-natural and forested areas, UGNL Combined urban green and natural land, HDRES High density residential land, SQRALT Squared altitude, 458 

HHOLD number of households, POP number of inhabitants. HDLDRES Sum of High and Low density residential land.  459 

NM = no model possible. R with PM2.5 is the correlation of the OP model prediction with the predictions of previously published PM2.5 models at sites not used for modelling. NM – no model possible. * 460 

Correlation between LUR model predictions of OP DTT and PM2.5 and PM2.5abs.significant at the 0.05 level, **. The correlation significant at the 0.01 level Study area indicators coded as 1 if site in 461 

specific area or 0 if not. Compared to Catalonia as the reference (n=40 sites).Area1 – Oslo, area2 – Helsinki/Turku, area3 – Copenhagen, area4 – London/Oxford, area5 – Netherlands, area6 – 462 

Munich/Augsburg, area7 – Paris, area8 – Rome, area9- Athens,  463 

 464 

 465 

 466 
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Performance of OP DTT models 467 

The relatively poor general performance of LUR models for OP DTT is 468 

likely due to a combination of: 1. The low measured levels of OP DTT 469 

relative to the LOD; 2. The lack of specific GIS predictor variables for OP 470 

DTT; 3. Insufficient understanding of sources related to urban – rural 471 

differences of OP; 4. Data quality of GIS predictors..  472 

First, due to the use of quartz filters, measured OP values did not exceed the 473 

LOD much and therefore the measurement error may have been relatively 474 

large. This is supported by the low to moderate correlation between our OP 475 

DTT measurements and OP DTT measurements on Teflon filters previously 476 

reported for the Dutch sites. Random error in a dependent variable in linear 477 

regression analysis does not lead to bias of the regression slopes of the 478 

model, but does lead to a loss in precision (Armstrong 1998).This implies 479 

that the correct LUR model may be identified but with low model R2. This 480 

theory may apply more for the combined model based upon a large number 481 

of sites than for individual area models. Similar observations of a robust 482 

spatial model with a low model R2 have recently been made in a LUR study 483 

based upon short-term monitoring (Montagne, Hoek et al. 2015). Short-term 484 

monitoring also resulted in large random error of concentration 485 

measurements per site.  486 

Second, relatively low explained variance of LUR models for DTT might 487 

further be caused by the lack of variables describing oxidative potential 488 

sources other than traffic e.g. wood burning, specific industries or 489 

agricultural activities. Recently published land use regression models 490 

developed for components with other sources than traffic also had 491 

substantially lower explained variance than components with traffic markers 492 

(de Hoogh et al. 2013, Jedynska et al. 2015). LUR models for elemental 493 

composition of PM2.5 and PM10 were reported (de Hoogh et al. 2013). For 494 

elements representing traffic sources (Cu, Fe, Zn) models with high 495 

explained variances were found. Models for elements primarily related to 496 

non-traffic sources had more moderate explained variance (50-60%), still 497 

substantially higher than found in this study for OP. A moderate explained 498 

variance was also reported for the wood smoke marker levoglucosan in a 499 

subset of four of our study areas (Oslo, Netherlands, Munich, Catalonia) 500 
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(Jedynska  et al. 2015). Recently, we also found moderate explained 501 

variance for LUR models for PAH and OC (median R2 = 59% and 65%, 502 

respectively), probably due to the contribution of less well characterized 503 

sources of those pollutants (Jedynska et al. 2014a). Maps of OP DTT did not 504 

show significant spatial autocorrelation, suggesting we did not miss major 505 

local OP DTT sources.  506 

Third, the observation that models could not be developed with our 507 

procedures especially in areas with higher regional background than urban 508 

background, suggests that we may not fully understand sources contributing 509 

to measured OP DTT. The rationale for specifying a fixed direction of slope 510 

for predictor variables is to avoid implausible models (Wang, 2012). OP 511 

may be affected more by secondary than primary pollutants, a hypothesis 512 

supported by the very small difference between measured OP at traffic and 513 

background locations and the absence of differences between urban and 514 

regional background sites. For example, reaction products of atmospheric 515 

oxidation reactions of PAH may have higher OP than the original PAH.  516 

Several PAH are semi-volatile, resulting in changes in the mixture with 517 

distance from the source. LUR models cannot easily accommodate 518 

atmospheric formation processes other than by using indicators for wind-519 

dependent distance to large sources areas or indicator variables for region of 520 

the country. Fourth, low data quality of the GIS predictors may be an 521 

additional reason for the limited success of modelling OP. We have no solid 522 

information on validity of the predictor data in the ten study areas. Because 523 

we were able to develop LUR models with good performance for other 524 

pollutants including NO2, PM2.5 and the elemental and organic content of 525 

PM using the same predictor variables, it seems unlikely that data quality 526 

has been a major factor. This is supported by the lack of a clear 527 

geographical pattern in the ability to develop models and their performance. 528 

3.3 Seasonal differences 529 

Comparison of all measurements in two periods (cold and warm) showed 530 

higher concentrations during the cold period in 9 out of 10 study areas 531 

(Table S5). Helsinki/Turku had slightly higher concentrations in the warm 532 

period. The median cold/warm ratio was 1.51. The higher concentrations of 533 



16 

 

air pollutants in the cold period are mainly caused by higher pollutant 534 

emissions (heating) and poorer dispersion because of less vertical mixing 535 

during the cold period.  536 

The OP DTT cold to warm ratio of 1.51 was lower than the ratio found for 537 

levoglucosan (6.3), a marker of wood combustion, with known high 538 

seasonality and ΣPAH (4.5), which are also influenced by more intensive 539 

domestic heating during winter (Jedynska et al. 2014b). The OP DTT cold 540 

to warm ratio was similar as the ratio for OC, which has various primary 541 

and secondary sources (1.9), and EC, used as traffic marker (1.3).  542 

For air pollutants with traffic as a dominant source, emissions do not differ 543 

much between winter and summer and the higher concentration ratios are 544 

largely due to poorer dispersion conditions. Our cold/warm increases 545 

suggest that emission of components to which the DTT assay responds were 546 

fairly constant across seasons as well. The cold/warm ratio may be reduced 547 

compared to other pollutants, as OP DTT responds significantly to quinones 548 

and quinones are formed during photochemical transformation of PAH 549 

(Alam et al, 2013). There are few studies comparing OP levels between 550 

seasons. In an American study DTT levels between seasons in several 551 

locations differed less than in our study (winter/summer ratio = 1.2) (Vedal 552 

et al. 2013). Like Vedal et al., we used quartz filters for sampling and our 553 

extraction method was similar (high polarity solvent and filtration of the 554 

extract).  555 

4. Conclusions 556 

Significant spatial contrasts were found for OP DTT between 10 European 557 

study areas. The OP DTT levels were the highest in southern and the lowest 558 

in northern Europe. Our study conducted in 10 different European study 559 

areas supports a growing literature that OP DTT does not reflect large urban 560 

traffic contrasts. At street sites slightly higher OP DTT values were found 561 

than at urban background sites (median ratio 1.10). For five out of ten study 562 

areas LUR models could be developed for OP DTT with a relatively low 563 

explained variance (median R2 = 33%). Overall, land use regression models 564 

did not effectively explain spatial variation of OP DTT possibly due to low 565 

levels of OP DTT and a lack of specific predictor variables. A model 566 



17 

 

combining all ten study areas resulted in a model with more specific 567 

predictor variables than the study-area specific models. In future studies 568 

more focus is needed on determination of additional OP sources not 569 

considered in our study including distant source areas and further 570 

optimization and standardization of OP sampling and analytical methods. 571 
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