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ABSTRACT
Introduction: Neural networks are becoming a very popular method for solving machine learning and

10 artificial intelligence problems. The variety of neural network types and their application to drug
discovery requires expert knowledge to choose the most appropriate approach.
Areas covered: In this review, the authors discuss traditional and newly emerging neural network
approaches to drug discovery. Their focus is on backpropagation neural networks and their variants,
self-organizing maps and associated methods, and a relatively new technique, deep learning. The most

15 important technical issues are discussed including overfitting and its prevention through regularization,
ensemble and multitask modeling, model interpretation, and estimation of applicability domain.
Different aspects of using neural networks in drug discovery are considered: building structure-activity
models with respect to various targets; predicting drug selectivity, toxicity profiles, ADMET and
physicochemical properties; characteristics of drug-delivery systems and virtual screening.

20 Expert opinion: Neural networks continue to grow in importance for drug discovery. Recent develop-
ments in deep learning suggests further improvements may be gained in the analysis of large chemical
data sets. It’s anticipated that neural networks will be more widely used in drug discovery in the future,
and applied in non-traditional areas such as drug delivery systems, biologically compatible materials,
and regenerative medicine.
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1. Introduction

AQ1 No other machine-learning method has such a long and rich
history full of great hope and deep frustration as artificial
neural networks (ANNs). McCulloch and Pitts [1], in the

30 1940s, attempted to create a mathematical model of the
human brain. Following the important development of
the perceptron, the first algorithm for pattern recognition by
a two-layer ANN was proposed by Rosenblatt [2]. However, as
this was unable to simulate the basic exclusive-or operation, a

35 period of stagnation of neural network research ensued.
Neural network research revived following the invention (and
several independent reinventions) of the backpropagation
algorithm [3], offering an efficient solution to the exclusive-
or problem. Neural networks became very popular in the mid-

40 1980s due to the concept of parallel distributed processing
(connectionism) popularized by Rumelhart and McClelland,

� the development of neocognitron (the first convolutional
ANN) by Fukushima [4], self-organizing maps by Kohonen [5],
and energy-based recurrent ANNs by Hopfield [6]. This opti-

45 mism was followed by the second period where ANNs were in
competition with some newly emerged, very efficient, and
mathematically well-grounded methods. Very recently, ANNs
received another stimulus due to the development of the
deep-learning concept by Hinton and colleagues [7–9]. These

50 methods may outperform alternative state-of-the-art machine-

learning methods in drug data modeling benchmarking com-
petitions. In addition, deep learning has achieved human-
competitive and higher performance AQ4on several important
image and speech recognition benchmarks� and has the poten-

55tial to revolutionize machine learning and artificial
intelligence.

The first application of ANNs to drug discovery dates back
to the early 1970s� when Hiller et al. [10] published a study
using the Rosenblatt perceptron to classify substituted 1,3-

60dioxanes as physiologically active or inactive. In this work,
elements of the chemical structures were projected onto the
perceptron retina; the perceptron was trained using a set of
compounds with known activities, and the trained neural net-
work demonstrated good recognition ability on both the

65training and the test sets of compounds. The next stage of
development occurred in 1990 with the first publications of
Aoyama et al. dealing with the use of ANNs in Quantitate
Structure–Activity Relationship (QSAR) studies [11]. For the
last 25 years, this approach to modeling structure–activity

70relationships has matured into a well-established scientific
field with numerous theoretical approaches and successful
practical applications (see review articles [12–16]). The field
now encompasses the use of ANNs for predicting not only
different types of biological activity but also physicochemical,

75Absorption Distribution Metabolism Excretion and Toxicity

CONTACT Igor V. Tetko itetko@vcclab.org Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Institute of
Structural Biology, Ingolstaedter Landstrasse 1, b. 60w, D-85764, Neuherberg, Germany.

EXPERT OPINION ON DRUG DISCOVERY, 2016
http://dx.doi.org/10.1080/17460441.2016.1201262

© 2016 Informa UK Limited, trading as Taylor & Francis Group

C/e: AN C/e QA: NA

http://orcid.org/0000-0002-6855-0012
http://www.tandfonline.com


(ADMET), biodegradability and spectroscopic properties, and
reactivity. The aim of this� article is to review some important
concepts and ideas accumulated in this field and to provide a
guide to where the field is heading in the future.

80 2. Backpropagation neural networks

Multi� layer feed-forward neural networks, also known as multi-

� layer perceptrons, comprise the most widely used architecture
for ANNs (see Figure 1). They consist of units implementing
the McCulloth–Pitts’ model of neurons [1], which produce

85 their output by computing the weighted sum of their inputs
followed by a non� linear transform (see Figure 1).�

y ¼ fðZÞ ¼ f $t þ
X
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where xi is ith input of the unit, wi is the corresponding adjus-
90 table weight mimicking the synaptic strength of biological neu-

ron, z is the overall input to the unit, whereas f(z) is a non� linear
transform function that could be associated with the activation
of neural cells occurring whenever the overall input (which
corresponds to cell membrane potential) exceeds some

95 threshold value t. The latter function is usually taken as a step
threshold function (e.g. in perceptrons [2]), a sigmoid function

(either logistic function or hyperbolic tangent fðzÞ ¼ thðzÞ ¼
expðzÞ $ expð$zÞð Þ= expðzÞ þ expð$zÞð Þ) in most of the modern
applications, and a linear rectifier function in recent deep-learn-

100ing studies.
In multi� layer feed-forward ANNs, all units are organized

into several layers;� the units in each (i + 1)th layer receiving
signals only from the ith layer. So, information flow proceeds
in one direction from the first (input) layer, via one or several

105intermediate (hidden) layers, to the final (output) layer (see
Figure 1). Multi� layer feed-forward ANNs essentially generate
models that consist of linear combinations of nonlinear kernel
functions, so can be considered as universal mapping devices
capable of approximating any continuous function given suffi-

110cient data. When these types of ANNs are used to predict
properties of chemical compounds for drug discovery, units
in the input layer accept the molecular descriptors, signals
propagate via the nonlinear transfer functions in the hidden
layers to the output layer, which predicts the corresponding

115property values. It has been shown mathematically that the
relationship between any chemical property on its structure
can be approximated using a multi� layer feed-forward ANN
and fragment descriptors [17,18]. When ANNs are applied to
drug discovery, the modeled properties are often physico-

120chemical and ADMET properties of organic compounds� ; toxi-
city end points� ; binding constants; or IC50 AQ5values with respect
to various macromolecular biological targets, types, and pro-
files of biological activity, etc. (e.g.� see comprehensive tables
in the review article [13]).

125To make correct predictions, an ANN must be trained using
experimentally measured properties of a set of compounds. In
training the model, the backpropagation ANN modifies the
weights w so as to minimize the difference between predicted
and experimental property values. Such coefficients are

130usually modified iteratively using the partial derivatives of
the average prediction error with respect to the weights.
Such derivatives can be efficiently computed by propagating
errors in the opposite direction, from the output to the input
layer, using the chain differentiation rule [3]. Once computed,

135they can be used to modify weights by taking a small step in
the direction opposite to the gradient vector or conjugated to
it, as in the ‘delta-rule’ algorithm [3,19]. Several more elaborate
algorithms, such as resilient propagation [20] and the

Article highlights

● Backpropagation neural networks are universal approximators for
structure-activity relationships

● Different regularization techniques efficiently prevent overfitting and
enhance predictive performance

● Bayesian regularized neural networks are a reliable and effective tool
with numerous applications in medicinal chemistry and materials
design

● Associative neural networks use ensemble modeling to increase and
predictive ability of structure-activity models and assess the reliability
of prediction

● Deep learning involves formation of different levels of data
representation

● Deep neural networks could particularly be useful for analyzing huge
amounts of chemical and biological information for drug discovery,
although they are computationally demanding.

This box summarizes key points contained in the article.
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Figure 1. (a) McCulloth-Pitts’ model of neurons; (b) multi-layer feed-forward ANN. Input data are propagated from the input layer to the output one. Input units are
shown as squares in order not to confuse them with hidden and output units in which actual computation takes place.
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Levenberg–Marquardt algorithm [21], have been shown to
140 accelerate training. Nonetheless, for very large ANNs, the

‘delta-rule’ algorithm is still commonly used to train backpro-
pagation neural networks.

In constructing QSAR models for drug discovery using
multi� layer ANNs, overtraining can occur [22]. This causes

145 the ANNs to learn to predict the properties of the training
set very well while failing to make useful predictions for
compounds not used in training. Overfitting can be avoided
by the use of a validation set of compounds, also not used
in training, that monitor the predictive performance of the

150 neural� network model and stop training when it starts to
deteriorate [14,22]. A third set of compounds called a test
set, not used in training or validation, is required to give an
unbiased assessment of the predictive performance of the
neural� network model. The overtraining problem can also be

155 tackled using various regularization techniques, such as L1-,
L2-, and max-norm [23] regularization with weights decay� ;
Bayesian regularization [24–26� ]; or the dropout technique
[27] suggested recently for deep learning� (see below). In
these cases, it is not necessary to use data in a validation

160 set (or even, theoretically, in a test set).
Several other useful methods for applying backpropagation

ANNs to drug discovery have been proposed. One concerns
the use of ANNs with several output units corresponding to
closely related properties (e.g. anticancer activity) to build

165 QSAR models for all of them [28], the so-called multitask
learning concept [29]. One study has demonstrated that the
simultaneous prediction of 11 types of tissue–air partition
coefficients using a single ANN with 11 output units is much
more accurate in comparison with predictions made by 11

170 separate ANNs with a single output unit [28] due to the
inductive transfer between the data concerning related end
points. This opens up the possibility of building usefully pre-
dictive QSAR models for small data sets (e.g. for human end
points) whenever more abundant data on closely related data

175 (e.g. for rat end points) are available.
Another methodology useful for drug discovery concerns

the concept of learned symmetry [30]. For example, if mole-
cules form a congeneric set with common symmetrical skeleton
with equivalent attachment points, then models should predict

180 the same activity for molecules with equivalent substitution
patterns. Such models were built by applying ANNs to training
sets expanded by adding copies of molecules with equivalent
substitution patterns. Their improved performance was demon-
strated for 1,4-dihydropyridine calcium channel blockers of

185 type and for hallucinogenic phenylalkylamines [30].
Neural networks can sometimes be used to interpret QSAR

models. Analysis of neural network weights can be used to
identify the most significant descriptors contributing to the
model [31]. The distribution of partial derivatives of ANN out-

190 puts with respect to inputs was proposed as an index of
descriptor relevance in another study [32]. Such analyses
allow not allow accurateAQ6 property predictions and model
interpretations as do traditional statistical methods, but also
revealing information on the non� linearity of QSAR relation-

195 ships, important for drug discovery.
Another method that is particularly useful for drug discov-

ery is the auto� encoder backpropagation ANN that employs a

small hidden layer to reproduce input signals on the output
units. If such ANN is trained on a set of compounds belonging

200to the same class, then by computing the reconstruction error
(i.e. the difference between the values of the input and output
units) for any test compound, one can detect whether it
belongs to the same class. Hence, auto� encoder ANNs solve
the one-class classification (novelty detection) problem [33].

205A virtual screening system based on auto� encoder ANNs with
molecular fingerprints as descriptors was developed and
tested on a series of the inhibitors of glycogen synthase kinase
[34]. It outperformed alternative approaches based on phar-
macophore hypotheses and molecular docking in a retrospec-

210tive study.

3. Bayesian-regularized neural networks

As described in the previous section, neural networks with a
single hidden layer are ‘universal approximators,’� able to
model any continuous AQ7function to arbitrary accuracy given

215sufficient training data.� Feed-forward neural networks, like all
other types of regression, can suffer from overtraining, over-
fitting, confusion about the optimal architecture for the net-
work, becoming trapped in poor local optima on complex
response surfaces, and inherent instability. Instability is com-

220mon in regression because, as Tikhonov first stated,

� ‘regression is an ill-posed problem in statistics’ [35].
Instability is manifest by models becoming very sensitive to
small changes in some model parameters and general lack of
training robustness. Ill-posed problems can be converted into

225well-posed problems by regularization, a process where the
complexity of a model is balanced against its ability to repro-
duce the training data faithfully.

The idea is conceptually simple AQ8� and a balance is found
between the ability of the model to fit the training data� and

230the complexity of the model. Regression aims to minimize the
cost function:

min
f

Xn

i¼1

V fðx̂iÞ; ŷið Þ þ λRðfÞ;

where the λ parameter alters the balance between bias (model
is too simple to capture any underlying relationships between,
for example, molecular structure and drug activity) and var-

235iance (where the model is too complex and fits the data
underlying relationship and the noise in the data� [solid curve
in Figure 2� ]).

Bayesian methods can be used to automatically find the
optimal value of the regularization constant(s) ( in the above

240example). The theory is relatively complex and has been
described fully in prior publications [24]. The bottom line is
that Bayesian regularization generates neural network models
with few, if any, of the problems of unregularized backpropa-
gation or � feed-forward neural networks. Applying related

245methods that use a sparse Bayesian prior can generate very
good quantitative structure–activity relationship� models for
pharmaceutically relevant properties that are robust, sparse,
and often interpretable. These methods achieve excellent fea-
ture selection, an important issue for developing models that

250are optimally predictive and easier to understand in terms of
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the underlying structure–activity relationships [36,37].
Bayesian-regularized neural networks generate robust models
with optimal complexity, avoiding under- or over� fitting, and
also are relatively insensitive to the number of nodes used in

255 the hidden layer.
Bayesian-regularized neural networks have been applied to

a relatively wide variety of molecular design and property
prediction problems [38]. The seminal works by� Mackay [39],
Bishop [40], and Figueiredo [41] laid out the theory of neural

260 networks and Bayesian regularization. Burden and Winkler first
applied them to QSAR and later� to Quantitate Structure-
Property Relationship (QSPR) problems. Researchers from
AstraZeneca have employed Bayesian-regularized neural net-
works to model important physicochemical properties of

265 drugs such as aqueous solubility [42]� and log D the pH-
dependent distribution of drugs between lipophilic and aqu-
eous phases [43]. They have been usedAQ9 to successfully and
quantitatively model acute toxicity of chemicals to
Tetrahymena� pyriformis [44], have been employed to predict

270 the binding of peptide epitopes to MHC
AQ10

class II [45], the
activities of inhalation � anesthetics [46], etc. Recent studies
using the Kaggle benchmark data sets have shown that
Bayesian neural networks perform on average as well as the
new deep-learning methodsAQ11 [47].

275 � Bayesian-regularized neural networks have been used to
develop a very large and widely applicable model of aqueous
solubility of small organic molecules [48]. Modeling of drug
activities has been an important application of Bayesian neural
networks. Orre et al. used these modeling methods to find

280 adverse drug combinations [49], Winkler and Burden used
these methods to make quantitative predictions of drug parti-
tioning through the blood–brain barrier [50], and Polley et al.
reported robust and predictive models of intestinal absorption
of drugs [51]� and the potency and selectivity of farnesyl

285 transferase inhibitors used for cancer therapy [52]. Caballero
et al. added genetic selection to a Bayesian neural network
(Bayesian-Regularized Genetic Neural Networks [BRGNN]) to
model the selective inhibition of the� calcium-activated potas-
sium channel by clotrimazole analog� s [53]. Fernandez et al.

290used BRGNN methods to model a diverse range of biological
and physicochemical properties of small molecules [54]. They
also modeled cyclin-dependent kinase inhibition by 1H-pyra-
zolo[3,4-d]pyrimidine derivatives using Bayesian-regularized
neural network ensembles [53]� and subsequently applied

295BRGNN techniques to create quantitative QSAR models for
several drug–target interaction data sets.

Bayesian-regularized neural networks have also been used
to make seminal contributions to the prediction of possible
adverse biological effects of nanomaterials [55,56]� and to the

300design of cell-targeting nanoparticles for personalized medi-
cine [57]. In a related vein, Bayesian-regularized neural net-
works have been used to predict the very complex
mesophases that occur in amphiphilic drug delivery systems
[56], a computational problem that is essentially intractable by

305methods� such as molecular dynamics simulations.

4. Ensemble and consensus models

The error of each machine-learning method involves two
major factors� : bias and variance. As unregularized neural net-
works are ‘ill-posed’ methods, small perturbations in data or

310descriptors may result in large changes in the predicted values
[58,59]. Thus, models developed using the same or similar
data set but with different initialization of neural network
weights can provide different predictions for new data. The
ensemble average, calculated over multiple predictors, can

315decrease the variance and is another way to improve the
model generalization compared to that of individual networks.
Clearly, the more similar the individual networks, the smaller
the advantage of ensemble averages. To increase the variance
of individual networks, differences in their training data sets

320could be maximized. However, it is essential that the training
sets will contain the same information as the given data set.
This can be achieved with the so-called bagging approach
[59], which creates new training data sets by sampling with
replacement from the initial set. Another way of increasing

325variance is to use different descriptors for each model. This
can be achieved by subsampling descriptors from the initial
set (this is used in bagging) or by using different sets of
descriptors. Models developed by averaging models derived
from different sets of descriptors� are frequently called consen-

330sus models. Ensembles have been used in chemistry and drug
discovery since the 1990s [22,58], while consensus models
have become more popular since the 2000s [60,61].
Ensemble and consensus methods were recently used suc-
cessfully for prediction of diverse properties, such as inhibitors

335of CYP450 [62], analysis of non-nucleoside HIV� reverse-tran-
scriptase inhibitors [63], potential endocrine disruptors [64],
and others. Ensembles of neural network models frequently
provided higher prediction accuracy compared to other meth-
ods in these studies.

340Ensemble or consensus model prediction variation can be
used to estimate the applicability domain of models. The basic
hypothesis is that predictions of individual models will diverge
for data points far from the training set points. Thus, high
variance of prediction (STandard Deviation [STD]) can be used

345to detect molecules for which predictions are less reliable.

Figure 2. The solid and sashed functions both incur zero loss on the given data
points. Regularization will induce a model to prefer the solid function, which
may generalize better to other data points sampled from the underlying
unknown distribution.
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Benchmarking of different definitions of the applicability
domain identified STD as the best measure of prediction
reliability of molecules from regression studies [65]. A similar
measure was also one the best ones for classification stu-

350 dies [66].
The training of individual neural network or their ensem-

bles is a rather� time-consuming problem and can be imprac-
tical if new data become available and models must be
repeatedly retrained. The Associative Neural Network (ASNN)

355 method based on a model of thalamo� cortical organization of
the brain addresses this problem [67]. Each neural network in
the ASNN ensemble can be considered a representation of
one cortex column in the brain. The predicted values of each
model, ordered by magnitude, can be considered a spatiotem-

360 poral representation of the training set by the ASNN. Thus,
training samples are stored in the ‘memory of the ASNN’ as
spatiotemporal patterns, together with predicted and real
values. For each new sample, the ASNN retrieves the most
similar stored patterns and uses prediction� errors of these

365 patterns to correct the prediction of the new data point. This
‘local correction’ efficiently increases prediction accuracy of
the ensemble by decreasing the bias of the ensemble method.
Moreover, the new patterns can be easily added to the ‘mem-
ory’ of the ASNN without a need to retrain the whole network,

370 thus allowing the neural network to instantaneously learn new
data. This feature tunes the global models to a local subset of
data. For example, the ALOGPS 2.1 program was initially
developed to predict octanol/water partition coefficients
using organic molecules only [68]. The addition of a small

375 training set of Pt
AQ12

complexes with measured logP values
allowed this program to successfully predict Pt complexes in
a blind test set [69]. It is interesting that the accuracy of this
model was higher than models developed with Pt complexes.
In a similar way, the logP algorithm was tuned to predict logD

380 by providing in house data measured in pharma compa-
nies [70].

The high prediction power of the algorithm was demon-
strated in several studies, where the ASNN-based models pro-
vided one of the highest prediction accuracies for prediction

385 of physico� chemical properties [71–73] as well as contributed
the top ranked models in recent challenges organized by US
EPAAQ13 ToxCast and NIH Tox21 programs [74,75].

5. Self-organizing maps and related approaches

Kohonen’s Self-Organizing Maps (SOM) is a biology-inspired
390 topology-preserving non� linear dimensionality reduction

method that can map molecules from multi� dimensional
descriptor space onto a 2D grid of neurons [5]. In this case,
each molecule activates a single ‘winner’ neuron with the
closest distance between its code� vector and the molecule in

395 descriptor space. The training algorithm of SOM guarantees
that close molecules activate topologically close neurons in
the competitive layer. Projection of molecules to the location
of the corresponding winning neurons produces a map, in
which neighborhood relations between molecules are mostly

400 preserved. As structurally similar molecules tend to have simi-
lar activities, then molecules belonging to the same activity
class are mapped either to the same neuron or to several

neighboring neurons. The neurons can be colored according
to the activity class of molecules mostly mapped to them.

405Such colored layer of neurons can be used for predicting
activities of new molecules projected onto it and hence for
conducting virtual screening. This mapping procedure under-
lies the use of SOM for drug discovery [76].

Not only individual molecules, but also local atom or bond
410descriptors, molecular fields, and mixture components can be

mapped to neurons in the competitive layer to produce novel
descriptors useful for drug discovery. 3D-QSAR methods
CoMSA [77] and volume learning algorithm (VLA) [78] are
based on mapping molecular fields. Recent publication on

415classification of mixtures of Chinese herbal medicines based
on SOM is an example of this approach [79]. Quantitative
predictions can be performed by hybrid ANNs containing
SOM as the input layer for multi� layer ANN. The classical exam-
ple for this are the counter-propagation ANN, while the most

420recent example – the network for ‘deep learning’ of chemical
data, in which the SOM layer of neurons is followed by layers
of backpropagation ANN [80]. The latter network was used for
predicting antibacterial activity of peptides.

Modifications of the generative topographic mapping� , a
425probabilistic analog of SOM based on Bayesian learning,

have recently been used in the field of drug discovery for
visualizing chemical space [81], building activity landscapes
[82], classification [83] and regression [82] QSAR models, com-
paring chemical libraries [81], predicting activity profiles [84],

430and performing inverse-QSAR studies [84].

6. Other types of neural networks

There are several dozens of other general-purpose types of
neural networks, some of which have been used in structure–
activity modeling and drug discovery [13,14]. They include

435Cascade-Correlation network with dynamically growing num-
ber of neurons; Radial Basis Functions Neural Network along
with the Probabilistic Neural Network; and General Regression
Neural Network closely related to it� , a family of ANNs based on
adaptive resonance theory (ART-1, ART-2, ARTMAP, etc.). One

440should also mention specialized ANNs designed to work
directly with molecular graphs without the use of a pre� com-
puted set of molecular descriptors: a ‘neural device for search-
ing direct correlations between structures and properties of
chemical compounds’ with convolution architecture (see later)

445[85], recursive neural networks [86], graph machines [87], etc.
Despite some success stories, currently these types of NNs AQ14are
however rarely used for drug discovery.

A recurrent neural network (RNN) is a class of� ANN where
connections between units form a directed cycle. This creates

450a type of neural network that can model dynamic temporal
behavior. Unlike� feed-forward neural networks, RNNs can use
their internal memory to process arbitrary sequences of inputs.
They are particularly suitable for predicting time-varying para-
meters, although Bayesian neural networks and other have

455also been shown to do this successfully [88]. The theory of
RNNs and their application to unsupervised pattern recogni-
tion� have been described by Orre et al. [89]. This type of neural
network has not been used often for drug discovery or mod-
eling of related medical activities or properties. Goh et al. first
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460 applied RNNs to predicting drug dissolution profiles, and
important problem in the pharmaceutical industryAQ15 [90]. More
recently, Bonet and coworkers used RNNs to predict HIV drug
resistance [91].

7. Deep learning

465 The term ‘deep learning’ refers to training multi� layer ANNs
with more than one of hidden layer and a large number
(thousands) of hidden layer nodes (see major publications
[8,9]). Before the advent of first ‘deep’ ANNs in the middle of
2000s, almost all standard machine-learning methods could

470 be considered as ‘shallow’: they could formally be described
by means of at most two layers of processing units [8].
Although multi� layer ANNs with any number of hidden layers
could formally be constructed, their training using backpropa-
gation-based optimization algorithms usually fails whenever

475 the number of hidden layers exceeds three or four [8]. This can
be explained by the increased risk of overfitting with larger
numbers of weights. It is also due to another peculiarity of the
backpropagation algorithm, in which the values of error deri-
vatives, which are propagated from the output layer back to

480 the input one, vanish rapidly with the distance from the out-
put layer. This is due to the multiplication of several small
partial derivatives as required by the chain differentiation rule.
As a result, only a couple of layers closest to the output one
can actually be trained, whereas all weight parameters in the

485 remaining hidden layers stay almost unchanged during the
training. Since all adjustable weights of multi� layer ANNs are
usually initialized with small random numbers, during the
training, the network tries to approximate the ‘functional
dependence’ of the output values on the random numbers

490 formed on the hidden units near the input layer and, not
surprisingly, fails.

An efficient solution to this problem was found in 2006 by
Hinton and Salakhutdinov [7] who suggested splitting the
learning process into two stages: (1) representation learning

495 [92] and (2) training the network using the learned represen-
tation. In the first successful implementation of this methodol-
ogy, a cascade of Restricted Boltzmann Machines (RBMs) was
used to learn a hierarchy of internal data representations [7].
Then, the weight parameters learned by RBMs were used to

500 initialize the weights of the deep multi� layer ANNs that were
subsequently readjusted during the training using the stan-
dard backpropagation algorithm. In this way, multi� layer ANNs
with virtually any number of hidden layers can be trained
efficiently.

505 After this pioneering study, the methodology of deep
learning was augmented in several important ways. First� , the
sigmoidal transfer function was replaced by the linear rectifier
function, usually producing stronger models [93]. Second� , a
new, powerful regularization technique, weight dropout [27],

510 was introduced. To implement weight dropou
AQ16

t nodes is ran-
domly switched off during the training. The regularizing effect
of the dropout technique in conjunction with the use of a
rectifier transfer function means that it becomes possible to
train very large ANNs with a huge number of hidden layer

515 nodes and their interconnections without overtraining or

overfitting [9]. Furthermore, it appears that with sufficiently
big large data sets, it is not necessary to pre� train ANNs using
cascades of RBMs or other auto� encoders to learn data repre-
sentation and the weights except between the final hidden

520and the output layers can just be set randomly once.
Another important technique that was successfully inte-

grated with deep� learning is convolutional architecture [94].
Convolutional ANNs have roots in the neocognitron [4] archi-
tecture specially designed to mimic information processing in

525visual cortex. Distinct from the standard multiple-layer ANNs
working with fixed-size data vectors, convolutional ANNs are
designed to work with data in the form of multiple arrays with
variable size, such as 2D pixel matrices for images, while
providing necessary invariance to irrelevant data transforma-

530tions, such as shifts or distortions of images. Convolutional
ANNs consist of two kinds of layers: convolutional layers and
pooling layers. Each unit in a convolutional layer takes signals
from a small patch of units from the previous layer through a
set of weights shared by all units in the layer. Each unit in a

535pooling layer computes the maximum of signals coming from
a patch of units in the previous layer. Stacks of several con-
volution and pooling units allow extraction of complex rele-
vant features from images. In deep ANNs, convolution and
pooling layers are typically placed at the input side of the

540network.
An important factor in the recent success of ANNs with

deep learning is the use of fast graphics processing units
(GPU) that significantly accelerate the training due to paralle-
lization. Currently, a deep-learning ANN composed of millions

545of units with hundreds of millions adjustable weights orga-
nized in several dozen layers can be trained with huge data
sets of hundreds of millions examples. Such networks have
already achieved human or higher performance in solving
tasks such as image and speech recognition.

550Deep learning is not just a new term to designate the state-
of-the-art in the domain of ANNs. It cannot be reduced to a
simple application of additional techniques, such as dropout
and rectifier units, or simple augmentation of the number of
hidden layers in multi� layer ANNs. Neither it cannot be reduced

555to
AQ17

a mere application of deep-learning software to solve old
problems using traditional approaches. Deep learning is a new
philosophy of predictive modeling. The success of the applica-
tion of standard ‘shallow’ machine-learning methods is greatly
influenced by how well the features representing data have

560been chosen using experience and domain knowledge. With
very� well-designed features, even the simplest linear or near-
est-neighbors machine-learning methods can be applied to
build predictive models. The great promise of the deep learn-
ing is to be able to extract necessary features with required

565invariance properties automatically from raw data via repre-
sentation learning [9,92]. Deep-learning ANNs form multiple
levels of representation in their hidden layers, with each sub-
sequent layer forming representation of a higher, more com-
plex and abstract, level than the previous one. With multiple

570(up to several dozen) hidden layers of non� linear units, such
ANN can learn extremely complex functions of its inputs with
all necessary invariance properties, that is not always possible
using standard machine-learning methods and manually� tai-
lored features. Due to the process of representation learning,
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575 deep learning can easily profit from related data sets with
multiple labels via multi� task and transfer learning [29,95], as
well as from data without labels via semi-supervised and
transductive learning [96]. So, deep learning can be consid-
ered as an important step towards what is called artificial

580 intelligence [8]. However, on the negative side, they cannot
as easily perform sparse feature selection, important for opti-
mizing predictions of new data and for simple interpretation
of models. Methods such as Multiple Linear Regression with
Expectation Maximization [37] can achieve efficient sparse

585 feature selection so can be complementary to deep-learning
methods. Additionally, on the positive side, although they
perform as well on average as state-of-the-art shallow neural
network methods like Bayesian-regularized neural networks,
they may be faster to train and large cluster or GPU hardware,

590 handle large data sets, and may be easier to code
algorithmically.

Representation learning provided by deep multi� layer ANNs
will play an increasingly important role in computational drug
discovery [97–99]. However, the question of molecular descrip-

595 tors used to capture the important properties of molecules is
still a relatively poorly answered one. Despite the large number
and variety of molecular descriptors, none can be guaranteed
to have universal applicability and provide optimal solutions to
all problems arising in drug discovery. Deep-learning ANNsmay

600 alleviate this issue somewhat by generating novel and useful
complex representations that may be more suited to solving
specific tasks in this domain, albeit at the expense of generating
models whose interpretation is even more difficult. However,
the discovery of more suitable and chemically interpretable

605 molecular descriptors is still an important, poorly solved pro-
blem in QSAR. One can also expect that the ability to integrate a
large amount of related data using deep multi� layer ANNs with
multiple outputs will be very useful for drug discovery as it
allows re� use of previously accumulated data and knowledge

610 to meet new challenges in drug discovery.
Although first publications on the use of deep learning in

the field of drug discovery appeared very recently [100–102],
some of the key ideas underlying the concept of deep learning
have already been used for building QSAR models. In 1997,

615 the first multi� layer ANN with convolutional layers containing
shared weights (‘receptors’) and pooling layers (‘collectors’),
capable of extracting molecular features from raw data, was
reported [85]. Like deep� learning, convolutional ANNs were
inspired by the neocognitron [4] architecture for image recog-

620 nition. The analysis of pixels in images was replaced by analy-
sis of atoms and bonds in molecules. The resulting ‘neural
device for searching direct correlations between structures
and properties of organic compounds’ allowed construction
of QSAR models using raw molecular data without preliminary

625 computation of molecular descriptors [85]. Another idea
applied to QSAR modeling and discussed above� is the use of
ANNs with several outputs to predict several properties using
the multitask learning framework [28].

Public attention was drawn to the application of deep learn-
630 ing to drug discovery in 2012 after publication in The New York

Times of the results of a Kaggle competition sponsored by
Merck [103]. The competition was won by a deep-learning

ANN with a 15% improvement in accuracy over Merck’s stan-
dard method. In 2014, an arcXiv article [104] written by the

635winning team showed that multi� task (multiple outputs) deep
ANNs outperformed alternative methods. Subsequently, in a
more comprehensive study published [100], it was demon-
strated that ANNs with several hidden layers largely provided
better prospective predictions than Random Forests on a set of

640large, diverse QSAR data sets taken fromMerck’s drug discovery
efforts. They also showed that the dropout regularization tech-
niques and rectifier transfer function significantly improved
prediction performance of QSAR models. For best deep ANN
performance, they concluded that the ANNs should be not only

645deep but also wide, i.e., contain a lot of units in each of the
layers. This contradicts the traditional belief that ANNs should
contain as few as possible adjustable parameters in order to
avoid overfitting. It was also demonstrated that a clear advan-
tage of using multi� task ANNs with several output units over the

650use of single-task ANNs with a single output unit for each
property is most pronounced for relatively small data sets,
whereas with large data sets, the effect can be even opposite.
Surprisingly, pre� training deep ANNs using stacks of RBM mod-
els was shown to deteriorate predictive performance of QSAR

655models in this study.
Two massive, multitask ANNs for drug discovery have

recently been reported [101,105]. One of them was trained
on a data set of nearly 40 million protein-ligand measure-
ments across 259 biological targets [101]. Another was trained

660on 2 million data points for 1280 biological targets [105]. In
both cases, it has been shown that massively multitask ANNs
trained with deep learning significantly outperform single-task
methods, and their predictive performance improves as addi-
tional tasks (targets) and data points are added. This improve-

665ment is significantly influenced by both the amount of data
and the number of tasks (targets). It has also been demon-
strated for toxicity prediction that, by combining reactive
centers, such networks can learn complex internal representa-
tion that resemble well-established toxicophores [106].

6708. Conclusions

In this review, we analyzed recent developments in the appli-
cation of neural networks to drug discovery: building QSAR
models to predict activity profiles and drug–target interac-
tions, binding constants with respect to various targets, drug

675selectivity, inhibition constants for different enzymes, toxicity
profiles, ADMET and physicochemical properties, characteris-
tics of drug-delivery systems, etc., as well as performing virtual
screening. The more traditional approaches, such as ‘shallow’
neural networks, Bayesian, and ensemble/consensus learning,

680were shown to be very important tools in drug discovery. We
have shown that these methods are widely used in the con-
temporary research and very often generate the most valuable
models. Moreover, these methods allow interpretation of
QSAR models and identification of the most important mole-

685cular features. Ensemble and consensus modeling may pro-
vide additional advantages by decreasing the variance of
individual models as well as improving the estimation of the
applicability domain of models. Neural networks are becoming
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even more prominent due to recent progress in deep-learning
690 technology. Training of millions of neurons with millions of

data points that was not feasible a few years ago can now be
accomplished. Deep-learning technology provides interesting
and powerful complementary capability to drug discovery
using neural network models, and we expect to see a rapid

695 growth in applications in the nearest future.

9. Expert opinion

The neural networks are very important tools in drug discov-
ery. While they initially suffered from overfitting and over-
training and incorrect model validation, these problems have

700 now been essentially overcome. Methods such as early stop-
ping [22], bias correction as used in Associative Neural
Neworks [74,75], Bayesian regularization [24–26], and training
with dropout techniques [27] allow development of highly
predictive robust models. Hence, application of the traditional

705 neural networks to drug design and increasingly� other fields
such as materials�� has matured. Neural networks are sometimes
criticized as a black-box approach. However, this is as much
due to use of poorly interpretable descriptors as a problem
with the neural network method. There are increasingly

710 sophisticated methods for analyzing the significance of neural
network weights [31], or general purpose methods such as
predicted Matched Molecular Pairs [107] allows more facile
interpretation of models. Additionally, neural network models
can be interpreted by analysis of the distribution of partial

715 derivatives of ANN outputs with respect to inputs or calcula-
tion their sensitivities, as discussed above [31,32].

Neural networks, in particular those using deep-learning
technology, will continue to be used actively in drug discovery
in the future. They will be particularly useful for analysis of

720 large data sets that are increasingly generated by automated

� high-throughput technologies so are well suited to the chal-
lenges of Big Data [108]. We expect that neural networks will
be increasingly used for other challenging tasks such as force
field parameterization, optimization of drug delivery systems,

725 ADMET prediction and drug classification, prediction of synth-
esis difficulty, and especially for multi� task learning and simul-
taneously prediction of multiple biological activities or
properties. We also expect that learning by combining super-
vised and unsupervised data, learning of highly imbalanced

730 data sets, learning of data weighted by measurement accura-
cies, etc., will become more commonplace. In particular, we
expect that the advantages of deep-learning networks in ana-
lysis of large and complex data for which traditional statistical
machine-learning methods sometimes fail will be fully

735 exploited.
ANNs are also finding applications in augmenting expen-

sive quantum chemistry calculations, accurate prediction of
protein structures, simulation of small molecule–protein as
well as protein–protein interactions, simulations of PK/PDAQ18

740 parameters, and prediction of in vivo toxicity. It is feasible
that future algorithm-based system biology and machine-
learning approaches will be merged in a single application.
For example, system biology approaches where differential
equations that simulate the cells require a lot of adjustable

745 parameters, some of which are very difficult to measure, may

benefit from this fusion. Such parameters can be estimated
using neural networks and be coupled with simulation out-
puts to identify the most likely biological system states.

However, one should not overstate the potential of deep-
750learning technology over traditional QSAR/QSPR for analysis

of small data sets with a limited number of descriptors. The
gain in the performance can come from using a big amount
of previously unused related data. The gain may also arise
from the ability of deep learning to create new, complex

755molecular descriptors through representation learning [92].
We also expect that the ability of deep learning to create
multiple levels of data representations with different com-
plexity could provide fundamentally new ways of analyzing
structure–activity relationships and solving the problems of

760great importance for drug discovery, such as the problem of
activity cliffs [109]. Indeed, very rugged and bumpy activity
landscapes with numerous activity cliffs with respect to
input descriptors or low-level representations might appear
to be very smooth and simple with respect to high-level

765representations being formed in deep-learning systems,
which is the essence of representation learning. The ability
of metric learning, a kind of linear representation learning,
to eliminate activity cliffs in activity landscapes has recently
been demonstrated [110]. One can expect that non� linear

770representation learning provided by neural networks should
give an even greater effect.

Until recently, multi� layer backpropagation neural networks
(shallow or deep) and self-organizing maps formed two sepa-
rate branches of development, perhaps, with an exception of

775� VLA [78], which clustered input descriptors using SOM for
neural network learning. At the present time, however, there
is a clear trend towards their convergence [80]. Incorporation
of SOM-like layers into deep-learning systems might endow
the latter with the means of data mapping, and visualization

780proved to be useful for drug discovery.
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