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ABSTRACT 
Scattering within biological samples is limiting the imaging depth and the resolution in microscopy. In 
this work an algorithm is introduced to correct for the influence of scattering in order to significantly 
increase the imaging depth and resolution. To demonstrate the function of the algorithm a 3D image 
stack of a zebrafish embryo captured with a selective plane illumination microscope (SPIM) is used. The 
method is based on a space-variant blind deconvolution algorithm. Image information from adjacent z-
planes is applied to estimate the unknown blur in tissue. A new regularizer models the increasing width 
of the point spread function and enables coping with the increase in blur observed due to scattering in 
deeper tissue.  The point in depth where scattering has a significant effect on the image quality could be 
extended by around 30 µm.  

INTRODUCTION 
One of the most prominent limitations for light microscopy of biological samples is the imaging depth. 

Scattering in tissue is the limiting factor defining the depth in which biological structures still may be 

resolved. There are different approaches to overcome this limitation. On one side the sample can be 

adapted to be more transparent either by the usage of (genetically engineered) transparent 

organisms1,2, or by treating the sample with clearing chemicals3,4. While the usage of transparent 

organisms is limited to a few (small) model organisms and solely defined stages of their developement, 

chemical clearing can only be performed ex-vivo. 

On the other side advanced microscopy methods are pushing the imaging depth further and enable 3D 

in-vivo imaging. Common methods applied are e.g. beam and wavefront shaping5,6 as well as multi 

photon techniques to significantly increase the penetration depth7.  

One technique, which has arisen in the last decade, is selective plane illumination microscopy (SPIM)8–

10.,   Here, a fluorescent microscope is applying an extreme darkfield setup by illuminating the focal 

plane in the sample by a light sheet only. The illumination is usually positioned perpendicular to the 

detection objective. By scanning the sample through the light sheet a 3D image stack of the sample can 

be acquired in a rather short period of time. The microscope offers a high acquisition rate of whole 

volumes and low photo damage and bleaching, therefore making it an ideal tool for in-vivo imaging of 



fast processes or developing organisms. While the confocal principle used in SPIM helps to alleviate the 

problem of scattering, it is still the limiting resolution factor. Multi-view reconstruction algorithms11,12 

can extent the imaging depth of SPIM. The drawback for multi-view based reconstruction is the long 

acquisition time required to capture image stacks from multiple directions. Therefore a huge advantage 

of SPIM, the fast imaging ability, is lost. 

In this work a reconstruction algorithm is presented, which is not based on multiple view (although it 

can be extended to fuse multi-view data). To correct for scattering the algorithm implements a straight-

forward scattering model while using the information within one image stack only.  

THEORY 
The scattering influence on intensity within a sample can be treated as a convolution between the real 

object and an increasingly broad point spread function. More generally speaking the point spread 

function (PSF) describes the effect an imaging system has on a point source. For SPIM this PSF has three 

different contributions: (1) the illumination function of the sample. The shape of the light sheet as well 

as broadening of the light sheet within the sample due to scattering determines the illuminated areas of 

the sample. Only from these regions we can expect fluorescence. To acquire a whole 3D image of the 

sample the lightsheet and the sample are moved relative to each other. The direction of movement will 

be denoted as z-direction, while the imaging plane will be labeled x-y-plane. The function describing the 

illumination will be called 𝑃𝑖𝑙𝑙𝑢𝑚.  (2) Fluorescence molecules, which are illuminated in the current 

z-position, can be considered as a point source. The light from these sources gets scattered on the way 

to the objective, which will broaden the PSF 𝑃𝑠𝑐𝑎𝑡𝑡 and will contribute to the overall PSF. (3) Eventually 

the detection optics contribute to the PSF. This contribution 𝑃𝑑𝑒𝑡 is sample independent and for most 

cases smaller than the PSF broadening due to scattering. In the following all three separate 

contributions are condensed in one single PSF.  

𝐼𝑧0
(𝑥, 𝑦) = (∫ 𝑂(𝑥, 𝑦, 𝑧)𝑃𝑖𝑙𝑙𝑢𝑚(𝑧 − 𝑧0)𝑃𝑠𝑐𝑎𝑡𝑡(𝑥, 𝑦, 𝑧, 𝑧0)d𝑥d𝑦d𝑧) ∗ 𝑃𝑑𝑒𝑡 

Spatially invariant algorithm 

For the sake of clarity the algorithmic details are first discussed using a spatially invariant model. In each 

z-plane the detected SPIM image is treated as a convolution between the real object and the point 

spread function (PSF). In this case the real object is the distribution of fluorophores in the sample. An 

additional noise-term accounts for all the noise influences on the final image introduced by the imaging 

system: 

 

𝑰𝒛 = 𝑶𝒛 ∗ 𝑷𝒛 + 𝑵 (1) 

 

Here 𝑁 is the noise, 𝐼 is the image, 𝑂 is the real object and 𝑃 is the PSF. If 𝑁 is Gaussian noise than the 

original image can be estimated by minimizing the least square error 𝐸. 

𝐸 = ‖𝐼 − 𝑃 ∗ 𝑂‖2
2 



Since only 𝐼 is known in this equation it is typically ill conditioned. Trying to minimize the least square 

error will not necessarily converge to one solution. To get a converging solution further assumptions 

have to be made. The main assumption for this algorithm is, that if the step size between two 

consecutive z-planes is small enough it can be assumed that the same object is illuminated in both 

positions, while the PSF will slightly change. Under ideal conditions and the assumption of multiple 

observations 𝑃𝑖  (𝑖 = 1,2,3) the co-primeness equation: 𝑃𝑗 ∗ 𝐼𝑖 − 𝑃𝑖 ∗ 𝐼𝑗 = 0 ∀ 𝑖 ≠ 𝑗 can be used to 

determine the PSF. In the presence of noise this equation becomes an optimization problem:   

𝐸𝑐𝑜𝑝𝑟𝑖𝑚𝑒 =  ∑ ||𝑃𝑗 ∗ 𝐼𝑖 − 𝑃𝑖 ∗ 𝐼𝑗||
2

2

𝑖≠𝑗

 

Algorithms with are based on deconvolution and assume a constant object with a varying PSF have 

already been shown by several groups13–15. Due to the physical properties of the imaging system it can 

additionally be assumed that PSF 𝑃 ≥ 0, as well as ∑ 𝑃(𝑥, 𝑦) = 1𝑥,𝑦 .  

The sum constraint is only valid if absorption in the sample can be neglected, which is reasonable 

concerning only adjacent z-planes. The positive constrain is also true for the object 𝑂. Furthermore the 

support of the PSF should be smaller than the image 𝐼. These constrains together with the assumptions 

that the object in the z-plane above and below is the same while the PSF 𝑃𝑖 (𝑖 = 1,2,3) changes lead to 

the following minimization problem: 

min
𝑃𝑖≥0,∑ 𝑃𝑖=1,𝑂≥0

∑‖𝐼𝑖 − 𝑃𝑖 ∗ 𝑂‖2
2

𝑖

+ ∑‖𝑃𝑗 ∗ 𝐼𝑖 − 𝑃𝑖 ∗ 𝐼𝑗‖
2

2

𝑖≠𝑗

 

The last term, the comprimeness regularization mentioned above, helps to stabilize the deconvolution 

problem and can even lead to a unique solution13.  

To ensure the convergence of both, the PSF 𝑃 and the object 𝑂 an alternating optimization scheme is 

used, where the optimization iterates between 𝑃 and 𝑂. In this work the optimization is done with an 

established non-negative least square estimator, the image space reconstruction algorithm (ISRA)16–18. In 

the first step the PSF is updated by applying the ISRA: 

𝑃𝑘(𝑡 + 1) = 𝑃𝑘(𝑡)
𝑂 ∗ 𝑂∗ ∗ 𝐼𝑘 + ∑ 𝐼𝑗 ∗ 𝐼𝑗

∗ ∗ 𝑃𝑗(𝑡) ∗ 𝐼𝑘𝑗≠𝑘

(𝑂 ∗ 𝑂∗ +  ∑ Ij ∗ Ij
∗

(𝑗≠𝑘) ) ∗  𝑃𝑘(𝑡)
 

In the second iteration step the PSF is fixed and the object is updated in the same way. To ensure 

convergence of both, the PSF and the object, a proximal minimization method is applied to the 

algorithm19,20 

With increasing imaging depth the images will suffer from increased scattering. The idea in this work is 

to compensate for this increased scattering by adjusting the algorithm along with the imaging depth. A 

simple approximation for light scattering in tissue is found in 21,22. With increasing depth the size of the 

PSF grows quadratically. This simple model was implemented by the use of the Tikhonov 

regularization23. A higher Tikhonov regularization leads to an increased PSF size in the reconstruction. 



This is not an intrinsic effect of the regularization itself but an combination effect with the constant 

intensity constraint ∑ 𝑃𝑖 = 1. The ratio between the l1-norm (sum constraint) and the l2-norm 

(Tikhonov regularization) is a measure of signal sparsity with higher values describing sparser signals. 

Since the Tikhonov term reduces the l2-norm of the solution (this is penalized in the final cost function) 

the regularized solution has automatically a lower sparsity, i.e. has a larger support (broader blur). 

To reflect the increase in the PSF size the regularization parameter was increased quadratically, which 

was empirically found to be an effective way to model the increased scattering.  

Spatially varying algorithm 

In general the scattering will not only vary with depth but will also depend on the x-y position within the 

sample. Hence equation (1) generalizes to: 

𝐼𝑧(𝑥, 𝑦) = 𝑂(𝑥, 𝑦, 𝑧) ∗ 𝑃𝑧(𝑥, 𝑦) + 𝑁 

Space variant deconvolution has been successfully used by other authors to remove motion 

artefacts24,25. To account for this spatial dependency a Gabor transform was added to the algorithm to 

dived the original image into several smaller overlapping windows. The Gabor transform (GTx) in this 

algorithm26 is defined as: 𝐺𝑇𝑥(𝐼) =  ℱ(𝐼 ∗ ℎ(𝑥)0.5), where  ℎ(𝑥) is the window function. In the 

presented algorithm a sin(𝑥)2 is used to model the window. Consequentially the inverse transform is 

given with: 𝐼 = ∑ℱ−1[𝐺𝑇𝑥(𝐼)] ⋅ ℎ(𝑥)0.5. The calculation of the object and the PSF is done for each of 

these windows and in the end the object is put back together with the inverse transform. The size of the 

windows was chosen to be large enough to most closely satisfy the ∑𝑃𝑖 = 1 constraint. Since the sample 

is not necessarily flat and the position of the sample surface might vary from window to window the 

depth regularization by the adapted Tikhonov parameter was done for each window independently. A 

threshold was used to locate the z-position of the sample surface and from there the depth was 

measured.  

SIMULATION 
To demonstrate the algorithm and to visualize its function the algorithm was first applied to a set of 

artificial data. The simulated data set was a volume with several overlapping cylinders. This original 

volume was convolved with an ellipsoidal PSF. Since the algorithm is based on variation in the PSF, the 

generated PSF was altered for each z-plane in the volume by quadratically increasing the width σ2 of the 

PSF. An example of the generated PSF can be found in Figure 1b), where the PSF from z-plane 18 is 

shown. The convolved data set was then reconstructed by the introduced algorithm. In Figure 1 the 

results of the reconstruction can be found. Figure 1a) shows the mean square error (MSE) of the 

convolved and the reconstructed data set compared to the original volume as a function of depth (z-

position). Three different planes (z=6, z=18, z=28) are marked in the graph and a cross section from 

these planes is shown in 1d)-f). The region where the cross section is taken from is identical for all three 

plot and is marked in 1g). All three images 1g)-i) show the reconstructed z-planes from the same depths 

as the cross sections above (z=6, z=18, z=28).  

Although in this case no spastically varying PSF was used to create the artificial data set, the 

reconstruction algorithm was using 25 windows (the same amount to be used in the experimental 



setup). The only parameter which had to be slightly adapted was the factor in front of the quadratically 

increasing regularization parameter.  

Whereas in the beginning both the convolved data set and the reconstructed data set yield the same 

results, the edge steepness of the reconstructed data is decreasing much slower than the edge 

steepness of the convolved data. This can be seen in Figure 1d)-f) where the convolved data (colored in 

green) is compared to the reconstructed data (colored in red) as well as in Figure 1a) where the MSE of 

the reconstructed data (also colored in red) starts to rise later than the MSE of the convolved data 

(colored in green).  

To further validate the function of the algorithm the calculated PSF is compared to the initial PSF. The 

initial or original PSF is known, since it was used to produce the artificial data set. One of the 25 PSFs of 

the different windows from plane z = 18 calculated by the algorithm can be seen in Figure 1c), next to 

the original PSF in Figure 1b). Although the original PSF shows a slightly higher intensity in the outer 

regions both PSF coincide well. The PSFs have the same directionality and about the same width.  

The results from the simulated data set demonstrate the function of the algorithm. It is shown that the 

algorithm is able to improve the image quality for a volume with an increasing simulated scattering. 

Since constant cylinders over all z-planes were assumed in the simulation, it is not shown how the 

approximation of a constant object within the algorithm is affecting its function. To validate this 

approximation as well as to test the algorithm under real conditions a real data set is used in the 

following section. 

EXPERIMENTS 
We demonstrated the effect of the algorithm on a real dataset by choosing a common model organism 

for biological research, a transgenic zebrafish embryo. The 3 day old embryo of the type Fli1A had its 

vasculature labeled with EGFP. Imaging was done ex-vivo with SPIM. The fish was imaged sideways with 

a step size of 5 µm between the different z-planes. Two complete 3D image stacks of the zebrafish 

embryo were acquired, one stack from each side. While reconstruction was only performed on the first 

image stack (S1) the second image stack (S2) was used as a control image. Since the imaging was done 

from two opposed sites, structures which appear deep and scattered in S1 are better visible in S2. This 

circumstance is used to validate the reconstruction results from S1. Figure 2A shows a maximum 

intensity projection along the z-axis from the dataset S1. The orange marked area is used in the 

following to show the results of the reconstruction algorithm. The same orange marked area can also be 

found in Figure 2C, where the perpendicular maximum intensity projection along the y-axis of the same 

dataset S1 is shown. The image shows a top view of the zebrafish embryo. The left side is the front, 

facing the objective; the right side is the back of the fish. The width of the fish within the marked area is 

about 175 µm. The blue dashed line indicates one z-plane at 130 µm depth, measured from the front of 

the fish. Figure 2B shows images from three different depths: 105 µm, 130 µm, and 155 µm. For this 

sample, the depicted depths are just in the range where scattering starts to drastically reduce the image 

quality. In the left column the original dataset S1 can be found, the column in the middle shows the S1 

dataset after it has been processed with the introduced algorithm, and the column to the right shows 

the dataset S2. 



The section shown was reconstructed using 25 windows. Compared to the original dataset S1 the 

reconstructed dataset shows a clear improvement in image quality at a depth of 105 and 130 µm, 

respectively. The structures which can be seen in 105 µm depth at the bottom of the reconstructed 

image agree well with the structures in the second dataset S2. The effect is still visible at a depth of 

130 µm. Going deeper into the sample the ability of the algorithm to correct the image will diminish. At 

a depth of 155 µm the image improvement is not able to reveal detailed structures anymore. 

The results demonstrate the function of the algorithm on a stack of SPIM images, which does not mean 

that the algorithm is limited to this imaging modality.  The algorithm should be able to work with other 

optical microscopy methods as well as other imaging methods which are limited by the scattering of 

light in tissue. The only requirements are that a whole 3D image stack is available, that the step size 

between two adjacent planes is small compared to the observed structures and that the scattering in 

the sample can be sufficiently described by the introduced model. While for this demonstration a single 

data set was used, the algorithm can be extended to handle multiple data sets to form one sample 

either with varying illumination or even with varying views of the sample.  

CONCLUSION 
Both the simulated results as well as the results from a real data set show the iterative algorithm 

presented in this work is able to correct for  scattering within the sample and enhance the image quality 

and depth about 30 µm. For this correction only information from a single image stack was used, 

together with a simple model for the dispersive broadening of light in tissue. Tikhonov regularization is 

used efficiently as a model to account for an increased scattering which comes along with an increased 

imaging depth. The advantage of this approach is that neither multiple image stacks have to be 

acquired, nor adaptions on the hardware level are required and the algorithm can be applied to already 

acquired data. The algorithm only requires a volumetric image stack with a small step size between two 

adjacent imaging planes, therefore the algorithm should also be able to work on other imaging 

techniques which provide a 3D image volume.  
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Figure 1: a) Mean square error of the artificial data set (colored in green) and its reconstruction (colored in red) as a function 
of depth (z-position). The three dashed lines indicate the depth at which the images as well as the cross sections were taken. 
b) PSF which is used to generate the artificial data set for the depth z=18; c) Reconstructed PSF from the same depth z=18; d)-
f) cross sections through different z-planes: d) z=6, e) z=18, f) z=28. In blue the original object is plotted, in green the 
convolved object, or the simulated data set is shown and in the red the reconstructed data set can be seen. g)-i) z-planes 
corresponding to the depth of the cross sections above: g) z=6, h) z=18, i) z=28. The white dotted line in g) indicates the 
position the cross sections were taken from. The images with is 256 px.  



 

Figure 2: a) Maximum intensity projection (MIP) of the used data set (S1). The image shows a zebrafish from the genetic line 
Fli1A 3 days past fertilization. The orange-colored box indicated the region which was used to demonstrate the 
reconstruction algorithm. b) The lines show the same region at different depth (105 µm, 130 µm, 155 µm). The column on 
the left shows the original data set (S1), the column in the middle shows the reconstruction of the data set to the left and the 
column on the right side shows a second data set (S2), which was recorded from the opposite side of the fish to validate the 
reconstruction results. c) MIP of S1 this time from the top to the bottom of the fish. The left side of the fish is considered to 
be the front. The depth is therefore measured from left to right. The orange box again marks the region of interest. The blue 
dashed line indicates the z-plane shown in the middle line in b). Scale bar indicates 100 µm 


