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Diffuse hypomyelination is not obligate for
POLR3-related disorders

ABSTRACT

Objective: To report atypical MRI patterns associated with POLR3A and POLR3B mutations.

Methods: This was a multicenter retrospective study to collect neuroradiologic, clinical, and
molecular data of patients with mutations in POLR3A and POLR3B without the classic MRI phe-
notype, i.e., diffuse hypomyelination associated with relative T2 hypointensity of the ventrolateral
thalamus, globus pallidus, optic radiation, corticospinal tract at the level of the internal capsule,
and dentate nucleus, cerebellar atrophy, and thinning of the corpus callosum.

Results: Eight patients were identified: 6 carried mutations in POLR3A and 2 in POLR3B. We
identified 2 novel MRI patterns: 4 participants presented a selective involvement of the cortico-
spinal tracts, specifically at the level of the posterior limbs of the internal capsules; 4 patients
presented moderate to severe cerebellar atrophy. Incomplete hypomyelination was observed in 5
participants.

Conclusion: Diffuse hypomyelination is not an obligatory feature of POLR3-related disorders.
Two distinct patterns, selective involvement of the corticospinal tracts and cerebellar atrophy,
are added to the MRI presentation of POLR3-related disorders. Neurology® 2016;86:1622–1626

GLOSSARY
ExAC 5 Exome Aggregation Consortium; TOP 5 terminal oligopyrimidine tract; WES 5 whole-exome sequencing.

POLR3-related leukodystrophy is a rare autosomal recessive disease characterized by hypomyeli-
nation often accompanied by dental abnormalities and hypogonadotropic hypogonadism.1–5 In its
classical form, the association of these features is referred to as 4H syndrome.1,2 Mutations in the
POLR3A and POLR3B genes, which encode for the 2 largest subunits of the RNA polymerase III
(POLR3) complex, as well as in POLR1C, also encoding a POLR3 subunit, are responsible for this
disease.6–11 With the identification of the causative genes, patients with suggestive clinical or MRI
picture can undergo genetic testing, confirming the diagnosis.12 The MRI pattern of POLR3-
related leukodystrophy is suggestive and characterized by diffuse hypomyelination associated with
relative T2 hypointensity of the ventrolateral thalamus, globus pallidus, optic radiation, cortico-
spinal tract at the level of the internal capsule and dentate nucleus, cerebellar atrophy, and thin-
ning of the corpus callosum.12–14 Recognition of this pattern was proven effective in detecting
patients with 4H leukodystrophy caused by POLR3A-B or POLR1C mutations and is therefore
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used to orient the diagnostic process.12–14

Patients without this pattern showing nonspe-
cific hypomyelination are unlikely to carry mu-
tations in POLR3A or POLR3B.15

METHODS We performed a multi-institutional cross-sectional

observational study of the clinical, radiologic, and molecular data

of patients who fulfilled the following inclusion criteria: presence

of recessive POLR3A or POLR3B mutations and absence of

typical POLR3-related MRI features.13,14

We identified 8 patients from 7 nonconsanguineous families,

all of Caucasian ethnicity, fulfilling these criteria. Five partici-

pants underwent POLR3A and POLR3B sequencing because they

presented suggestive clinical features (hypodontia or dental

abnormalities, short stature, and myopia, either associated or

not). In 3 participants from 2 families, POLR3A and POLR3B
mutations were identified by whole-exome sequencing (WES).

For all families for which DNA was available, segregation was

verified. Analysis for the potential pathogenicity of novel muta-

tions was performed, including in silico analysis. For the novel

splicing mutations, we sequenced cDNA when RNA was

available.

MRI were reviewed collegially by our team. At least axial T2-

weighted and sagittal T1- or T2-weighted images were available.

Standard protocol approvals, registrations, and patient
consents. The institutional review boards of each participating

institution approved the use of clinical data for the study.

RESULTS Mutation findings. Six participants carried
mutations in POLR3A and 2 in POLR3B (table 1).
Among the 13 mutations identified, 8 were novel,
and not reported in public databases (Exome Variant
Server, NHLBI GO Exome Sequencing Project [ESP],
Seattle, WA [http://evs.gs.washington.edu/EVS/]
[June 2015]; Exome Aggregation Consortium
[ExAC], Cambridge, MA [http://exac.broadinstitute.
org] [June 2015]). Five mutations were intronic and
affected a splice site or induced a new donor site. All
new mutations were rare and predicted to be
pathogenic by in silico tools16–18 (table e-1 on the
Neurology® Web site at Neurology.org) besides for
the c.-35C.G change, which had been reported in
homozygous state in 2 out of over 60,000
participants (ExAC [http://exac.broadinstitute.org]
[July 2015]) in patients 5 and 6. Segregation analysis
in this family revealed that each of the parents carried
one variant, and the healthy brother the paternal
variant. WES failed to uncover other possible causal
variants. Table 1 reports detailed information about
the genetic status and mutations found in our cohort.

Clinical findings. Age at onset ranged from 6 weeks to
10 years (mean age at onset 52.3 months). The symp-
toms at disease onset were gait ataxia, dysarthria, and
tremor in 3 participants (cases 1, 4, and 8). Two par-
ticipants (cases 2 and 3) presented with spasticity and
diplegic gait. The patient with the earliest disease
onset, at 1.5 months, presented with failure to thrive
(case 7). Clinical examination revealed ataxia of

T
ab

le
1

P
O
LR

3
A

an
d
P
O
LR

3
B

m
ut

at
io
ns

id
en

ti
fi
ed

in
ou

r
co

ho
rt

F
am

ily
G
en

e
S
ta

tu
s

g
D
N
A

C
hr

om
os

om
al

lo
ca

ti
on

P
ro

te
in

R
eg

io
n

P
re

vi
ou

sl
y
re

p
or

te
d

M
A
F

M
et

ho
d

C
lin

ic
al

fe
at

ur
es

M
R
I
fe

at
ur

es

1
I

P
O
LR

3
A

C
H
et

c.
1
0
4
8
1
1
G
.
A

ch
r1

0
:7
9
7
8
1
6
1
7
C
.
T

—
In
tr
on

7
N
o

N
A

G
en

e
te
st
in
g

A
,H

D
,S

S
t

P
LI
C

c.
1
2
8
9
1
3
A
.
C

ch
r1

0
:7
9
7
7
8
9
1
7
T.

G
—

In
tr
on

9
N
o

N
A

2
II

P
O
LR

3
A

H
om

c.
2
7
1
0

G
.
A

ch
r1

0
:7
9
7
5
3
0
3
2
C
.
T

G
9
0
4
R

E
xo

n
2
0

N
o

8
.2
4
E
-0

6
G
en

e
te
st
in
g

A
,H

D
,D

D
,S

p
P
LI
C

3
III

P
O
LR

3
A

C
H
et

c.
1
7
7
1
-6

C
.
G

ch
r1

0
:7
9
7
6
9
4
3
9
C
.
G

—
In
tr
on

1
3

rs
1
1
5
0
2
0
3
3
8

3
.3
0
E
-0

5
G
en

e
te
st
in
g

A
,H

D
,D

D
,S

p
P
LI
C

c.
3
2
0
5
C
.
T

ch
r1

0
:7
9
7
4
4
9
6
5
G
.
A

R
1
0
6
9
W

E
xo

n
2
4

N
o

—

4
IV

P
O
LR

3
B

C
H
et

c.
2
0
8
4
-6

A
.
G

ch
r1

2
:1
0
6
8
4
8
2
7
4
A
.
G

—
In
tr
on

1
9

N
o

0
.0
0
0
1
7
6
9

G
en

e
te
st
in
g

A
,M

,D
D

C
A

c.
2
3
0
2
C
.
T

ch
r1

2
:1
0
6
8
5
0
9
2
4
C
.
T

R
7
6
8
C

E
xo

n
2
2

rs
3
7
1
4
5
3
5
1
2

2
.4
8
E
-0

5

5
V
a

P
O
LR

3
A

C
H
et

c.
2
3
8
1
A
.
C

ch
r1

0
:7
9
7
6
0
8
3
1
T.

G
Q
7
9
4
P

E
xo

n
1
8

N
o

0
.0
0
0
1
2
3
7

W
E
S

A
,M

,D
D
,S

p
C
A

c.
-3

5
C
.
G

ch
r1

0
:7
9
7
8
9
2
0
0

G
.
C

—
E
xo

n
1

(5
9U

TR
)

rs
2
0
1
7
0
0
7
5
6

0
.0
0
1
2
8

6
V
a

P
O
LR

3
A

C
H
et

c.
2
3
8
1
A
.
C

ch
r1

0
:7
9
7
6
0
8
3
1
T.

G
Q
7
9
4
P

E
xo

n
1
8

N
o

0
.0
0
0
1
2
3
7

W
E
S

A
,M

,D
D
,S

p
C
A

c.
-3

5
C

.
G

ch
r1

0
:7
9
7
8
9
2
0
0

G
.
C

—
E
xo

n
1

(5
9U

TR
)

rs
2
0
1
7
0
0
7
5
6

0
.0
0
1
2
8

7
V
I

P
O
LR

3
B

C
H
et

c.
1
2
4
4
T.

C
ch

r1
2
:1
0
6
8
2
1
1
1
7
T.

C
M
4
1
5
T

E
xo

n
1
3

rs
1
9
9
5
0
4
2
1
1

0
.0
0
0
6
1
8
2

W
E
S

A
,M

,D
D
,S

S
t

C
A

c.
2
7
7
4
C
.
T

ch
r1

2
:1
0
6
8
8
9
8
9
3
C
.
T

P
9
2
5
L

E
xo

n
2
4

N
o

8
.2
4
E
-0

6

8
V
II

P
O
LR

3
A

C
H
et

c.
1
9
0
9

1
2
2
G
.
A

ch
r1

0
:7
9
7
6
9
2
7
3
C
.
T

—
In
tr
on

1
4

rs
1
9
1
8
7
5
4
6
9

0
.0
0
1
3
2
6

G
en

e
te
st
in
g

A
,H

D
P
LI
C

c.
2
5
4
9
A
.
G

ch
r1

0
:7
9
7
5
9
8
0
6
T.

C
H
8
5
0
R

E
xo

n
1
9

N
o

N
A

A
bb

re
vi
at
io
ns

:
A

5
at
ax

ia
or

ot
he

r
ce

re
be

lla
r
si
gn

s;
C

H
et

5
co

m
po

un
d

he
te
ro
zy

go
us

;
C
A

5
ce

re
be

lla
r
at
ro
ph

y;
D
D

5
de

ve
lo
pm

en
ta
l
de

la
y;

H
D

5
hy

po
do

nt
ia

or
de

nt
al

ab
no

rm
al
it
ie
s;

H
om

5
ho

m
oz

yg
ou

s;
M

5
m
yo

pi
a;

M
A
F
5

m
in
or

al
le
le
fr
eq

ue
nc

y;
N
A

5
no

t
av

ai
la
bl
e;

P
LI
C

5
ab

no
rm

al
si
gn

al
of

th
e
po

st
er
io
r
lim

b
of

th
e
in
te
rn
al

ca
ps

ul
e;

S
p
5

sp
as

ti
ci
ty
;S

S
t
5

sh
or
t
st
at
ur
e;

W
E
S

5
w
ho

le
-e
xo

m
e
se

qu
en

ci
ng

.
a
S
ib
lin

gs
.

Neurology 86 April 26, 2016 1623

ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://neurology.org/lookup/doi/10.1212/WNL.0000000000002612
http://exac.broadinstitute.org/


variable severity in all patients; cerebellar tremor was
documented in 4 participants (cases 1, 2, 3, and 4);
pyramidal signs and spasticity were present in 4 par-
ticipants (cases 2, 3, 5, and 6). One patient had severe
dystonic tremor (case 3) (table 1).

Extraneurologic features were found in 6 patients.
Specifically, 4 participants had hypodontia, delayed
dentition, or other dental abnormalities (cases 1, 2,
3, and 8) suggestive of POLR3-related leukodystro-
phy. Two participants presented short stature (cases
1 and 7), and 4 had myopia (cases 4, 5, 6, and 7),
both frequent findings in patients with mutations in
POLR3A or POLR3B.

MRI findings. Mean age at the last MRI was 15 years
(range 4–35 years). We identified 2 distinct MRI
patterns (figures 1, 2, e-1, and e-2). Four participants,
all with POLR3A mutations, presented a selective
involvement of the corticospinal tracts, which was
particularly evident at the level of the posterior limb
of the internal capsule as T2-hyperintense signal (cases
1, 2, 3, and 8) (figures 1 and e-1). In the other 4
patients (2 with POLR3A and 2 with POLR3B
mutations), moderate to severe cerebellar atrophy was
variably associated with nonspecific T2-hyperintense

white matter abnormalities, as specified below, or
thinning of the corpus callosum (figures 2 and e-2)
(cases 4, 5, 6, and 7). We documented focal,
partially confluent, T2-hyperintense white matter
abnormalities located in the deep frontal and parietal
white matter, suggesting partial hypomyelination, in 5
participants (cases 2, 3, 4, 5, and 6), while the
remaining 3 presented adequate myelination for age.

DISCUSSION Our work broadens the MRI spec-
trum of POLR3-related leukodystrophy by
describing 2 new MRI patterns in this disease that
has been known as a hypomyelinating disorder. Our
results indicate that diffuse hypomyelination is not an
obligatory feature. We also documented the presence
of 6 POLR3A and 2 POLR3B mutations not reported
before in public databases. Interestingly, 5 of the 13
mutations in our cohort were noncoding, 4 predicted
to affect splicing. Pathogenicity of the variant in the 59
untranslated region in patients 5 and 6 could not be
unambiguously resolved as it had been reported in
homozygous state in 2 participants in a large database.
However, this variant is situated in a terminal
oligopyrimidine tract (TOP). The change of a
pyrimidine (C) for a purine (G) shortens the TOP,
and it has been shown that deletions or substitutions
in this region result in unregulated translation.19,20 Its
effect might be mild, and homozygous carriers indeed
might be unaffected, but in combination with a
pathogenic mutation this variant could lead to disease.
Segregation analysis and the absence of other possible
causal variants in WES in this family indeed support a
causal role for this variant, as does the identification of
other families with isolated cerebellar atrophy.

A specific involvement of the corticospinal tracts,
particularly evident at the level of the internal capsule
as T2-hyperintense signal, was the most striking find-
ing in a subgroup of patients. Interestingly, in typical
cases, more commonly with POLR3B mutations,12

the corticospinal tracts are usually one of the better
myelinated structures.

The second pattern is the presence of cerebellar
atrophy in the absence of diffuse hypomyelination.
Cerebellar atrophy was previously known to be asso-
ciated with POLR3A or POLR3B mutations in more
than 80% of the participants, always in combination
with diffuse hypomyelination.12–14,21

Focal, partly confluent T2-hyperintense white mat-
ter changes were present in some participants of both
groups and located in the deep frontal and parietal
white matter. The signal intensity of the abnormal areas
corresponds to the one seen in hypomyelination, focal
hypomyelination therefore being the most likely inter-
pretation. These changes are obviously reminiscent of
the classical MRI of 4H leukodystrophy, but suffi-
ciently different to make a straightforward diagnosis

Figure 1 Involvement of the corticospinal tracts

Axial (A, C, D) and coronal (B) T2-weighted images in patients 1 (A, B), 1 (C), and 8 (D) with
POLR3A mutations show the presence of bilateral and symmetric T2-hyperintense signal
at the level of the posterior limb of the internal capsules. Incomplete hypomyelination is seen
in (B).
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challenging. Our results confirm white matter involve-
ment when POLR3A or POLR3B is mutated; however,
different pathogenic processes could be responsible for
the variable and expanded MRI phenotypes of brain
abnormalities associated with POLR3A or POLR3B
mutations. Further insight into the role of POLR3 in
myelin formation and maintenance as well as in axonal
integrity is needed to explain the heterogeneity of the
radiologic patterns.

The diagnosis of POLR3-related leukodystrophy
relies both on MRI findings and clinical signs. In our
cohort, the presence of typical extraneurologic features
oriented the clinicians towards the testing of POLR3A
and POLR3B genes in 5 participants. Therefore, our
study confirms the importance of the classical clinical
criteria—particularly hypodontia and hypogonadotro-
pic hypogonadism—in the diagnostic process of
POLR3-related disorders, especially when cardinal
MRI features are lacking. WES allowed the discovery
of POLR3A and POLR3B mutations in the remaining
cases, thus highlighting the role of next-generation
sequencing in expanding the phenotypes of already
known disorders.
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Figure 2 Cerebellar atrophy

(A, B) Sagittal T1-weighted images from participant 4 with POLR3B (A) and participant 5
with POLR3A (B) mutations show the presence of severe (A) and moderate cerebellar atro-
phy. (C, D) Axial T2-weighted and T2–fluid-attenuated inversion recovery images of the
patients presented respectively in (A, B) show the presence of partial hypomyelination.
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