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Abstract. Can we learn from the unknown? Logical data sets of the ternary kind
are often found in information systems. They contain unknown as well as true/false
values. An unknown value may represent a missing entry (lost or indeterminable) or
have meaning, like a Don’t Know response in a questionnaire. In this paper we in-
troduce algorithms for reducing the dimensionality of logical data (categorical data in
general) in the context of a new data mining challenge: Ternary Matrix Factorization
(TMF). For a ternary data matrix, TMF exploits ternary logic to produce a basis ma-
trix (which holds the major patterns in the data) and a usage matrix (which maps
patterns to original observations). Both matrices are interpretable, and their ternary
matrix product approximates the original matrix. TMF has applications in 1) finding
targeted structure in ternary data, 2) imputing values through pattern-discovery in
highly-incomplete categorical data sets, and 3) solving instances of its encapsulated
Binary Matrix Factorization (BMF) problem. Our elegant algorithm FasTer (FASt
TERnary Matrix Factorization) has linear run-time complexity with respect to the
dimensions of the data set and is parameter-robust. A variant of FasTer that exploits
useful results from combinatorics provides accuracy bounds for a core part of the al-
gorithm in certain situations. Experiments on synthetic and real-world data sets show
that our algorithms are able to outperform state-of-the-art techniques in all three TMF
applications with respect to run-time and effectiveness. Finally, convincing speedup and
efficiency results on a parallel version of FasTer demonstrate its suitability for weak-
and strong-scaling scenarios.
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1. Introduction

Matrix-based dimensionality reduction of noisy discrete data aims to identify a
small set of interpretable “base patterns” which, given appropriate connectives,
can be combined to approximately reconstruct each observation in the original
data. Binary Matrix Factorization (BMF) (Miettinen et al, 2008) does this for
logical data of the binary kind (and hence categorical data by means of simple
encoding). Why extend it to Ternary Matrix Factorization (TMF)? The short
answer is that ternary data appears frequently in information systems and it is
beneficial to process it natively. More colloquially, we argue that “life is full of
unknowns” and justify the need for TMF with the following application exam-
ples:

1) Patterns in ternary data: Consider voting records from the U.S. House
of Representatives1. Congressmen voice opinions on 16 key political votes, such
as whether the Education and Handicapped Act should be amended to reflect
certain needs of disabled infants. The votes are recorded in a ternary way: “yea”
( ), “nay” ( ) and uncertainty ( ). Given voting data, political analysts want
to know the general opinions of the congressmen associated with each of the two
major political parties (Republican , Democratic ), and may be particularly
interested in indecision (uncertainty).

The analysts might begin with a Singular-Value Decomposition, having pre-
processed the ternary data using the arbitrary2 mappings 7→ 0, 7→ 1 and
7→ 2. The (rounded) basis vectors obtained by considering only the first two

singular values in the subsequent decomposition are

Issue: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-19 -21 -25 -17 -21 -27 -24 -24 -21 -22 -16 -18 -22 -25 -18 -31

10 -3 16 -17 -19 -14 16 17 16 -1 3 -16 -16 -16 13 5
,

which is clearly difficult to comprehend. Undiscouraged, the analysts look to
Non-negative Matrix Factorization (NMF) – its factors do not contain negative
values. With the same mappings they get a result similar to

Issue: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.24 1.22 0.00 1.8 2.16 2.73 0.00 0.00 0.00 1.13 0.51 1.84 2.18 2.18 2.53 0.00

1.48 0.83 2.27 0.00 0.00 0.00 2.16 2.19 1.91 0.92 0.95 0.00 0.00 0.00 0.00 1.65
,

which, based on the range of the entries, appears promising. For a clearer
picture, the analysts map the values back to their closest ternary value, yielding

Issue: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

??? ??? Yea Nay Nay Nay Yea Yea Yea ??? ??? Nay Nay Nay Nay Yea

Nay ??? Nay Yea Yea Yea Nay Nay Nay ??? ??? Yea Yea Yea Yea Nay
.

At this point they may well be pleased with the result. After all, they are
aware of the democratic tendency for the two major political parties to disagree
( vs. ). That aside, what of the values? Are there truly so many issues for
which both parties are generally undecided? A brief look at the original data

1Data from the UCI Machine-Learning Repository.
2Other mapping choices yield analogous results.
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reveals that this is not the case. In fact, for issues 1, 2, 10 and 11, only 3%, 11%,
2% and 5% of the congressman respectively voted with uncertainty. Why then
did NMF produce these misleading basis vectors? The answer is that NMF is
blind to the semantics of the original ternary data, optimizing the decomposition
with respect to the real-valued addition used in the classical matrix product
for combining basis vectors. Otherwise formulated, real-valued addition is the
incorrect tool for combining such values because we know that logical data has
nonlinear combination semantics.

The analysts turn to discrete techniques. After trivially encoding the ternary
values into binary – thereby tripling the problem dimensionality – they try the
recent Asso algorithm for Boolean Matrix Factorization (Miettinen et al, 2008).
Mapping the Asso result3 back to ternary gives

Issue: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Yea Nay Yea Nay Nay Nay Yea Yea Yea Yea Nay Nay Nay Nay Yea Yea

Nay Yea Nay Yea Yea Yea Nay Nay Nay Yea Nay Yea Yea Yea Nay Yea
.

The analysts have arrived at the other extreme: there is now no indication
of which party is the most indecisive. Changing Asso’s weightings is futile – it
cannot distinguish between the different ternary values in the binary-encoded
data.

This paper introduces TMF, which welcomes the requirement to focus on
uncertainty to yield

Issue: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Nay Yea Nay Yea Yea Yea Nay Nay Nay Nay Nay Yea Yea Yea Nay Yea

Yea Nay Yea Nay Nay Nay Yea Yea Yea Yea Nay Nay Nay Nay Yea ???
.

Here no pre- or post-processing is required, nor the selection of a sensitive
rounding parameter. TMF’s novel exploitation of ternary logic directly produces
a result which accurately and intuitively divides the congressmen into their as-
sociated party. The basis vectors correctly highlight indecision on the final is-
sue – an Export Administration Amendment Act relating to trade with South
Africa. This issue is responsible for the largest uncertainty in the data set (al-
most one quarter of all congressmen), and TMF shows us that it stems from
the Democrats. The usage matrix (not shown) additionally includes examples of
“conservative” congressmen being explained by neither basis vector, and “pro-
gressive” congressmen being explained by the ternary combination of both. We
discuss this example further in Section 5.

2) Missing values: In many cases the proposition of unknown is understood
to mean that the value is missing (lost or indeterminable). Categorical data
sets with missing values are commonplace, and imputation techniques perform
prediction to “fill in the blanks”. In contrast, Missing-Value Binary Matrix Fac-
torization (MVBMF) focuses on producing small and tractable factor matrices
that encode interpretable data patterns based on the information that is avail-
able. These patterns can in turn be used for imputation if desired. For example,
knowing about the core elements of the structure ( ) visible to the naked eye in
Figure 1 may be useful in an application context, and we can use them to predict

3Using τ = 0.5 for the Asso rounding threshold gives the most sensible results here.
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the missing ( ) values if we wish. In this sense, MVBMF is advantageous in that
it exposes a succinct set of base patterns in the data as well as offering an impu-
tation solution. We show that TMF is an elegant fit for MVBMF, even for data
sets which are heavily dominated by missing values (e.g. collaborative filtering
approaches to recommender systems, where data sets are usually sparse).

Fig. 1: Noisy, synthetic binary data ( , ) with missing values ( ).

Is imputation the only sensible task to be undertaken for an incomplete cate-
gorical matrix? Returning to the concept of semantic ternary data sets, we argue
that the missing values might themselves represent structure and thus a level of
potentially-valuable information. Consider Figure 2 which depicts an application
database lacking data integrity: certain entries which should hold a binary value
instead contain an erroneous NULL (unknown) value. Knowing that NULL appears
frequently in column a when column b is TRUE and column c is FALSE would as-
sist application engineers in debugging the problem. In short, TMF can also find
patterns that contain missing values.

a b c d e

· · · · · · · · · · · · · · ·
FALSE FALSE TRUE FALSE TRUE

NULL TRUE FALSE TRUE TRUE

NULL TRUE FALSE TRUE FALSE

TRUE TRUE TRUE FALSE TRUE

NULL TRUE FALSE FALSE FALSE

· · · · · · · · · · · · · · ·

Fig. 2: A simple application database with erroneous NULL values. TMF exposes the

offending pattern , which can aid in debugging the problem.

3) Binary Matrix Factorization: We show that the TMF problem inherently
encapsulates the problem of Binary Matrix Factorization (BMF). This implies
that TMF algorithms, like BMF algorithms, can learn structure from any cate-
gorical data set. For the BMF task we show that our algorithm is more efficient
and effective than state-of-the-art BMF techniques.

Contributions

– We introduce Ternary Matrix Factorization (TMF) as a novel data
mining challenge, motivated by the semantics of ternary data which cannot
be sufficiently exploited in binary form.
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– We establish a sound optimization goal for TMF based on ternary logic.
This general optimization goal includes BMF as a special case.

– We provide efficient algorithms for TMF. The anytime algorithm FasTer
effectively solves the NP-Hard TMF problem in linear time (with respect to
the data set dimensions) and is parameter-robust.

– We present experiments demonstrating the benefits of using TMF
for discovering knowledge through 1) dimensionality reduction of
ternary data, 2) missing-value BMF and 3) BMF. For each type of
problem, FasTer outperforms state-of-the-art techniques in terms of effec-
tiveness and efficiency.

– We exploit hardness-of-approximation results in a variant of FasTer,
showing again through systematic experiments that it can significantly im-
prove solution accuracy.

– We parallelize FasTer to further demonstrate its scalability. After weighing
a number of factors related to high-performance computing, we experiment
with three scheduling strategies in weak- and strong-scaling scenarios using
data matrices with up to 120 million ternary entries. To the best of our knowl-
edge, these are the first results on parallelism to be published in the area of
discrete, logical matrix factorizations.

The initial conference version of this paper introduced TMF as a novel data-
mining task (Maurus and Plant, 2014). In this paper, we extend this work in the
way described by the final two contributions above. We also enhance the exam-
ples and explanations in a number of areas (the new �o dissimilarity measure in
Section 2 is one such example).

Considering the notation presented in Table 1, we continue by discussing
ternary logic in Section 2. We formally define the TMF problem and analyze its
complexity in Section 3. In Section 4 we present efficient algorithms for TMF ap-
proximation, as well as approaches for their parallelization. Experimental results
and comparisons are given in Section 5, and Section 6 discusses these findings in
light of related work. Section 7 gives concluding remarks. Finally we note that
this paper is best viewed in color.

‖M‖1 Entry-wise 1-norm of matrix M (upper case)
mij , mi·, m·j Entry (i, j), row vector i, column vector j from matrix M

vi Entry i from a vector v (bold lower case)
C Matrix representing the original data set

n,m Scalars (regular lower case) representing the number of observations (rows)
and attributes (columns) in C respectively

k The rank of the matrix decomposition (equal to the number of rows in B
and columns in S)

B Basis matrix, the k rows of which are the patterns in C
S Usage matrix, describing each observation in C as a combination of basis

vectors from B
B = {f, t} Set of binary values false and true (Fraktur typeface)

T = {f, u, t} Set of ternary values false, unknown and true
∧,∨ Logical conjunction, disjunction
◦,⊕ Binary matrix product, binary dissimilarity measure

M,�, ? Ternary matrix product, ternary dissimilarity measure, ternary scalar
product

Table 1: Nomenclature, symbols and notation.
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2. Ternary Logic

Ternary logic (Kleene, 1938) extends binary logic by including an additional cat-
egorical value “whose logical value of truth or falsity is undefined, undetermined
by means of accessible algorithms, or not essential for actual consideration”
(Malinowski, 2007). Henceforth we refer to this value as unknown and denote
it u alongside the classical values of f and t for false and true respectively. We
denote the set of ternary values as T = {f, u, t}. With this notation, the classical
set of binary values is denoted B = {f, t}. It is clear that B ⊂ T.

Real-world applications in which ternary data are relevant include:

– Surveys: Many data-collection processes involve questions to be answered.
Don’t know (u) response options are commonly found alongside the binary Yes
(t) and No (f) options in surveys and questionnaires (Rubin et al, 1995; Francis
and Busch, 1975). Here a ternary value of u has an important contextual
meaning, such as “I do not know if I am yea or nay on this issue”.

– Missing values: Categorical data sets with missing values are common. Here
an instance of u is understood as a placeholder for an underlying but inaccessi-
ble binary value. Depending on the context (Figure 2, for example), the simple
fact that the value is missing may itself represent a level of information.

– Database frameworks: Relational database engines use ternary logic for
handling comparisons with NULL field content (Codd, 1986). Here NULL is
equivalent to u.

Ternary connectives for conjunction (∧) and disjunction (∨) can be exploited
to develop a dimension-reduction technique for ternary data. These connec-
tives, defined in the ternary logic systems of  Lukasiewicz, Kleene and Bochvar
(Malinowski, 2007), are shown as part of Table 2.

∧ f u t
f f f f
u f u u
t f u t

∨ f u t
f f u t
u u u t
t t t t

�c f u t
f 0 1 1
u 1 0 1
t 1 1 0

�mv f u t
f 0 1 1
u 0 1 0
t 1 1 0

�o f u t
f 0 1/2 1
u 1/2 0 1/2
t 1 1/2 0

Table 2: Conjunction (∧), disjunction (∨), unbiased dissimilarity (�c), missing-value
dissimilarity (�mv) and ordinal dissimilarity (�o) over T. �mv is the only asymmetric table

and is oriented such that the top-right entry represents (f�mv t).

The connectives ∧ and ∨ encapsulate their binary counterparts. The other
evaluations for ∧ and ∨ – those involving at least one u value – are intuitively
understood: f and t remain the annihilators for conjunction and disjunction re-
spectively, otherwise the result is semantically defined as unknown.

A quantifiable measure for the dissimilarity (“difference”) between two arbi-
trary ternary values is necessary for mining ternary data. For the binary case
the classical measure is analogous to the xor connective: zero for a = b and
one for a 6= b (we denote this measure with ⊕ : B × B 7→ R+

0 ). In BMF this
(optionally-weighted) measure is used in the objective function to penalize in-
correct coverage of original data values (Miettinen et al, 2008). An appropriate
extension of this measure to the ternary set T depends on the application con-
text. For example, a value of u may be understood as particularly important to
preserve (as is the case with the Congressional Voting Records example given
earlier). In other situations (e.g. imputation) we may not want any u values in
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the reconstructed matrix. We thus proceed with an abstract ternary dissimilar-
ity measure (denoted � : T × T 7→ R+

0 ). In the context of TMF we interpret
(a� b) ∈ R+

0 as the penalty for covering an original data value a ∈ T with value
b ∈ T. We impose that (c� d) = (c⊕ d) for c, d ∈ B in order to ensure that
� preserves the results of its binary counterpart. Table 2 defines an unbiased,
commonly-used concrete version �c for the case in which all ternary values have
equal importance. It also shows a concrete version �mv for missing-value (impu-
tation) problems – here it is clear that a penalty is to be enforced in TMF when
covering any original data value with the value u. The �mv version also shows
that reflexivity [a = b→ (a� b) = 0], symmetry [(a� b) = (b� a)] and strict-
ness [(a� b) = 0→ a = b] are not required to hold for � in general. Finally, the
table shows the variant �o, which is appropriate if the ternary values are un-
derstood to be ordinal in nature (like in a Likert item) and the position of u
is between f and t (decompositions on ordinal data are investigated further in
(Belohlavek, 2013)).

For brevity we abuse the notation and reuse the symbol � for two equally-
sized vectors or matrices. Computation is done entry-wise in these cases.

Analogously to the binary case (Miettinen et al, 2008) we define the ternary
matrix product M as the matrix product over the semiring 〈T,∨,∧, f, t〉 (ternary
domain T, “addition” commutative monoid ∨ with identity f, and “multiplica-
tion” monoid ∧ with identity t). Otherwise formulated: given Q ∈ Tn×k and
R ∈ Tk×m, the matrix P ∈ Tn×m produced from P = Q M R has entries
calculated using the ternary scalar product ?

pij = (Q M R)ij = qi· ? r·j =

k∨
x=1

(qix ∧ rxj) .

Here
∨

is aggregate ternary disjunction. Note that M reduces to ◦ (the binary
matrix product) when Q ∈ Bn×k and R ∈ Bk×m because ∨ and ∧ preserve the
results of their binary counterparts. In such a situation it is clear that P ∈ Bn×m.

3. The Ternary Matrix Factorization Problem

Before introducing the TMF problem we provide some context by restating the
related BMF problem (Miettinen and Vreeken, 2014).

Problem (BMF). Given a binary data matrix C ∈ Bn×m and positive inte-
ger k, find a binary usage matrix S ∈ Bn×k and basis matrix B ∈ Bk×m that
minimize

‖C ⊕ (S ◦B)‖1. (1)

Here ◦ represents the binary matrix product (Miettinen et al, 2008), defined
similarly to M except that it uses the binary scalar product which in turn uses the
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traditional binary connectives. We now introduce TMF as a “logical” extension
to BMF.

Problem (TMF). Given a ternary data matrix C ∈ Tn×m and positive integer
k, find a binary usage matrix S ∈ Bn×k and a ternary basis matrix B ∈ Tk×m

that minimize

‖C � (S M B)‖1, (2)

with the additional restriction that B be binary if C is binary.

Noteworthy is the binary-set restriction for S. Although u values in S do
not present any difficulties in the matrix product, intuition fails to justify their
place. Restricting the usage matrix to binary allows each observation vector in
C to be explained by the presence or absence of each ternary basis vector. A u
value in S would imply that the inclusion of the corresponding basis vector is
uncertain. We argue that such behavior deviates from the goal of searching for
interpretable, unambiguous structure in the data set and hence scope the TMF
problem such that the matrix S is restricted to the set B. Showing that BMF is
a special case of TMF is simple.

Theorem 1. BMF (Miettinen and Vreeken, 2014) is a special case of TMF.

Proof. For a given binary data matrix C, the TMF and BMF solution spaces are
identical (S and B must be binary for both problems). The optimization goals
are also equivalent, because (a ? b) = (a ◦ b) for binary vectors a and b, and
(a� b) = (a⊕ b) for a, b ∈ B ⊂ T.

The ternary nature of B differentiates TMF from other methods which de-
compose categorical matrices. Specifically, TMF can natively handle categorical
data of the ternary kind. In contrast, BMF mandates that we binary-encode such
data beforehand. The drawbacks are that 1) the dimensionality of the problem
increases (at least by a factor of two, depending on how the encoding is chosen),
2) the BMF technique may not preserve the integrity of the encoding (resulting
in potentially-ambiguous results), and 3) the flexibility to weigh the importance
of original data values is lost. By using TMF we avoid these problems for cate-
gorical data of the ternary kind, and thus take a definitive step towards the idea
of true semantic categorical matrix factorization where encoding is not required.
We give examples of this on synthetic and real-world data sets in Section 5.

The TMF solution space contains 2nk · 3km unique combinations of S and
B. In the next section we show that it is computationally useful to consider two
related problems with a narrower solution space. We define these as the Ternary
Usage Problem (TUP) and the Ternary Basis Problem (TBP).

Problem (TUP). Given a ternary data matrix C ∈ Tn×m and basis matrix
B ∈ Tk×m, find a binary usage matrix S ∈ Bn×k that minimizes (2).

Problem (TBP). Given a ternary data matrix C ∈ Tn×m and binary usage
matrix S ∈ Bn×k, find a ternary basis matrix B ∈ Tk×m that minimizes (2),
with the additional restriction that B be binary if C is binary.

Whilst the solution spaces of the TUP and TBP are smaller (2kn and 3km

possible solutions respectively), generating a TMF-optimal solution is clearly
dependent on optimal inputs for B and S in each respective sub-problem.

Given that the decision version of the BMF problem is NP-Hard (Miettinen
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et al, 2008), one can trivially show that the decision version of TMF is NP-Hard
(BMF is a special case of TMF).

4. A Fast Algorithm for Ternary Matrix Factorization

In Algorithm 1 we present FasTer, an effective heuristic procedure for FASt
TERnary Matrix Factorization with a downloadable C++ implementation4.
FasTer begins by selecting k “representative” rows from C (function SampleKR-
ows)5 as the initial basis matrix. This task is a discrete analog to the column-
subset problem (Çivril and Magdon-Ismail, 2009). We approach it in a scalable
way by choosing the first row randomly, then subsequently selecting the rows
which maximize the aggregate Hamming distance to those already chosen. This
diversity approach reduces the likelihood of converging to an undesirable local
minimum.

Given this initial basis matrix B0, the main iteration loop begins by solv-
ing the TUP to find an initial usage matrix S0. Here the optimization can be
performed for each row independently. Initially, each observation uses no basis
vectors. The optimization for the observation proceeds in a similar way to the
classical heuristic for set covering: basis vectors are added in a greedy fashion,
one after another, until (2) ceases to decrease. We note that basis vectors may
contain noise, however these vectors can still be added if they result in an overall
error reduction. After this step is complete for all observations, the initial usage
matrix S0 is available.

The algorithm proceeds to solve the TBP based on S0. Optimization can be
performed for each column independently. For each column, a value of t or u is
set in a basis vector if it is profitable considering the observations specified by
the corresponding column in S0. After this step is complete for all columns, the
next basis matrix B1 is available.

As illustrated in Figure 3, these complementary optimization steps alternate
in the classical fashion. Solving the TUP based on B1 yields S1. Subsequently
solving the TBP based on S1 yields B2, and so on. The iteration terminates when
the global error ceases to decrease. In each refinement step, each sub-problem
(i.e. each row in the TUP and each column in the TBP) involves “resetting” the
corresponding vector (i.e. setting all entries to f) and rebuilding incrementally.
This simple approach continually filters noise from the basis vectors, keeping
them succinct. The usage matrix profits as well: the basis vectors chosen to
describe an observation must “earn their keep” in every iteration. To the best
of our knowledge, FasTer’s alternating approach at this higher level is novel in
the context of discrete, logical matrix factorizations.

One limitation of the algorithm is the random selection of the first basis
vector from C. To counter this limitation, the algorithm is repeated P times,
where P is a number of randomization rounds. We show in Section 5 that P need

4dropbox.com/s/znut1tsxutyjfvu/tmf.zip
5For imputation problems, values of u are replaced with f in this selection to ensure that

only binary values are present in the initial basis vector.
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iteration0 1 2

S0 S1 S2

B0

Start

B1 B2

Solve TUP Solve TUP Solve TUP

Solve TBP Solve TBP Solve TBP

Fig. 3: FasTer solves for S and B in a leapfrog fashion.

not be large to significantly reduce the risk of sub-optimal results (i.e. FasTer
can use a small default for P).

Theorem 2. Every randomly-initialized iteration of the FasTer algorithm con-
verges to a local TMF optimum.

Proof. The while loop in the function OptimizeVector executes Nov ≤ (k + 1)
iterations (the upper-bound here represents the case in which all k entries of
the vector b are set). The first Nov − 1 iterations each make a single-entry mod-
ification to b (the one yielding the largest error-reduction). The final iteration
makes no change to b (no single-entry modifications are profitable). The vector
b returned from OptimizeVector is hence the optimal choice with respect to the
vector c and this greedy, local-optimization heuristic. We now focus on the first
iteration of the global while loop. Here the matrix S0 is optimally found with
respect to the aforementioned strategy and the c vectors taken from the initial
basis matrix B0. The next-generation basis matrix is then found optimally with
respect to the same strategy and the newly-optimized matrix S0. This process
continues until the error reduction ∆ becomes nonnegative, which clearly oc-
curs in a finite number of iterations considering line 11 and the fact that � by
definition yields nonnegative results.

4.1. Run-Time Complexity

In FasTer, the frequent error evaluations are done on lines 2 and 9 of the func-
tion OptimizeVector, where the ternary scalar product ? involves two ternary
vectors of length k. We evaluate this product in O (1) operations by exploiting
native hardware bitwise instructions. This is done by transforming each vector
into a concatenated binary word using the mappings t 7→ 112, f 7→ 002 and
u 7→ 012 (the mapping u 7→ 102 is also valid and this choice is arbitrary as long
as consistency is maintained). For example, the ternary vector v = (t, f, u, t) be-
comes the word 110001112. With these mappings, bitwise disjunction (or) and
conjunction (and) produce the same results as their ternary counterparts. This
approach clearly requires that k ≤ b/2, where b is the hardware word size in
bits. On current general-purpose processors where b = 64, these efficient bitwise
operations can be exploited for all k ≤ 32 (a generous bound considering that we
usually want k to be small). The worst-case complexity of line 9 is hence O (m)
and O (n) when solving the TUP and TBP respectively. We further note that
computation can be aborted as soon as f ≥ fl.
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input : data matrix C ∈ Tn×m, rank k
output: matrices S ∈ Bn×k and B ∈ Tk×m

1 B ← SampleKRows(C,k);
2 ∆← −∞; /* Iterative error change */
3 eb ←∞; /* Smallest error so far */
4 while ∆ < 0 do
5 for i← 1 to n do /* Solve the TUP */
6 Si· ← OptimizeVector(Bᵀ,ci·,(t));
7 end
8 for i← 1 to m do /* Solve the TBP */
9 B·i ← OptimizeVector(S,c·i,(u, t));

10 end
11 e← ‖C � (S M B)‖1; /* Global error */
12 ∆← e− eb;
13 if ∆ < 0 then eb ← e ;
14 end

Algorithm 1: FasTer

1 b← (f, . . . , f) ∈ {f}k; /* Start empty */

2 fb ←
∑|c|

i=1 (ci � (b ?Ui·)); /* Initial error */
3 ∆← −∞;
4 while ∆ < 0 do
5 l← b; fl ← fb ; /* Clone optimum */
6 for i← 1 to k where li = f do
7 for j ← 1 to |d| do /* Modify */
8 y← (b1, . . . ,bi−1,dj ,bi+1, . . . ,bk);

9 f ←
∑|c|

i=1 (ci � (y ?Ui·));
10 if f < fl then /* Profitable? */
11 l← y; fl ← f ;
12 end
13 end
14 end
15 ∆← fl − fb;
16 if ∆ < 0 then /* Persist optimum */
17 b← l; fb ← fl;
18 end
19 end
20 return b;

Function OptimizeVector(U ,c,d)

The function OpimizeVector involves an inner for loop executing k itera-
tions. The error is evaluated in each, and thus each iteration of the outer while
loop has a worst-case complexity of O (km) and O (kn) when solving the TUP
and TBP respectively. The largest number of iterations possible for the outer
while loop in this function is k + 1 (representing the case where the vector un-
der consideration has each of its k entries set, one after another). The worst-case
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complexity for the OptimizeVector function is thus O
(
k2m

)
and O

(
k2n

)
for

the TUP and TBP respectively.
It is then clear that each iteration of the top-most while loop in FasTer

has a complexity of O
(
k2nm

)
. The convergence of the while loop requires a

number of iterations, which we will denote N. We show empirically in Section 5
that N does not increase with increasing n, m or k (convergence of the while
loop occurs with N < 40 in all experiments conducted to date). Likewise we
show in Section 5 that the number of user-defined iterations P does not need
to be increased with increasing n, m or k in order to achieve competitive opti-
mization results. We thus treat both N and P as constants in terms of run-time
complexity, resulting in the attractive overall worst-case complexity of O

(
k2nm

)
for FasTer. Thus, assuming the aforementioned condition for k holds, FasTer
is linear in the dimensions of the data set (generally large) and quadratic in k
(small by definition).

FasTer lends itself well to parallelization (Section 4.3) and needs no floating-
point arithmetic (Asso (Miettinen et al, 2008), in contrast, operates on an Rm×m

matrix for calculating association accuracies).

4.2. Improving Solution Accuracy with FasTer±PSC

Can we find an alternative to FasTer’s core OptimizeVector heuristic for which
a bound on the solution quality can be proven? It turns out that the problem
of solving for a binary row of the TUP6 (line 6 of FasTer) is very similar in
nature to a known problem from combinatorics. The problem, Positive-Negative
Partial Set Cover (±PSC), admits a polynomial-time algorithm with a proven
approximation factor (Miettinen, 2008b). This hardness result lends credit to the
idea that the use of ±PSC in FasTer – a variant we denote with FasTer±PSC –
will yield more accurate results. We investigate ±PSC to this end in this section.

To begin, we consider the task of solving for a usage row vector in the TUP
(line 6 of FasTer) and restrict ourselves to the case where all values are binary.
The problem can be broadly visualized as

[ci1 ci2 · · · cim] ≈ [si1 · · · sik] M

b11 · · · b1m
...

. . .
...

bk1 · · · bkm

 , (3)

where we understand that our goal is to find an si· which minimizes (2). If all
values are binary then this matrix formulation is simply a different perspective
on what is clearly a kind of set-covering problem (Miettinen, 2008a). That is, we
are tasked with choosing sets (basis vectors) from a collection (the basis matrix)
such that their union effectively “covers” a certain universe (the data vector)
with respect to an objective function. Our goal, the TMF objective function, is
designed to be robust against noise, and so the classical set-covering problem is
too strict. That is, we seldom want every universe element (indices of t values in
ci·) to be accounted for in a noisy setting – we instead simply want to minimize
false positives and false negatives. The aforementioned ±PSC problem provides
the appropriate level of relaxation:

6We focus on the TUP rather than the TBP because, in the general case, the TBP involves
ternary logic and cannot be easily compared with or reduced to combinatorial problems.
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Problem (±PSC). Given disjoint sets P and N (“positive” and “negative” el-
ements respectively) and a collection S = {S1, . . . ,Sk} ⊂ 2P∪N , find a collection
C ⊂ S which minimizes the cost

cost±psc (P,N ,C) =

∣∣∣∣∣P \
(⋃
C∈C

C

)∣∣∣∣∣+

∣∣∣∣∣N ∩
(⋃
C∈C

C

)∣∣∣∣∣ . (4)

In English, the ±PSC objective function (4) simply counts the number of
errors (false positives and false negatives) made by a given cover C. The prob-
lem of finding the vector si· in (3) is then simply the ±PSC instance with
P = {j | cij = t}, N = {j | cij = f} and S = {{j | b1j = t} , . . . , {j | bkj = t}}. The
±PSC objective function (4) equally penalizes false positives and false negatives
(incorrectly reconstructed values of t and f respectively), and is thus equivalent
to the TMF objective function � for this binary case.

An algorithm for ±PSC with the approximation factor of 2
√

(k + |P|) ln |P|
is known (Miettinen, 2008b). It involves a reduction to the Red-Blue Set Cover
problem (Peleg, 2007), whose approximation factor is proven by a reduction to
the classical weighted set-cover problem (Chvatal, 1979).

We now consider the general case of ternary data in C and B. We denote the
problem of solving for a row si· in the TUP as an instance of the Ternary Usage
Row (TUR) problem:

Problem (TUR). Given a vector c ∈ Tm and a matrix B ∈ Tk×m, find a
vector s ∈ Bk which minimizes ‖c� (s M B)‖1.

The important question of this section is: can we reduce TUR to ±PSC?
In order to achieve this, we need to express the ternary vector c as ±PSC sets
P and N . Likewise, we need to express each of the k ternary basis vectors as
±PSC sets S1 . . .Sk. The optimization goal of the resulting ±PSC instance must
additionally reflect the optimization goal of the original TUR instance.

We start by considering the form of the simple case where m = 1,

[ci1] ≈ [si1 · · · sik] M

b11

...
bk1

 ,
and take �o as an example concrete dissimilarity measure. We are now faced

with choosing “positive” P, “negative” N and “basis vector” S sets for ±PSC
that represent each possible ternary value ci1 ∈ T. To achieve this, we can map
ternary values to sets (using arbitrary elements α and β) in the following way:

Case P N
ci1 = f {} {α, β}
ci1 = u {α} {β}
ci1 = t {α, β} {}

Case Sj (for j = 1 . . . k)
bj1 = f {}
bj1 = u {α}
bj1 = t {α, β}

Using this choice, the set-union of “basis vector” sets Sj preserves the ternary
disjunction operation as required. We can also observe that our objective func-
tions are equivalent with respect to optimization. For example, if we obtained a
solution with cover {} (ternary value f) to a ±PSC instance with P = {α, β}
(ternary value t) and N = {}, the objective function (4) states that our cost is
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two. If the solution’s cover were instead {α} (ternary value u), the same objective
function prescribes a cost of one. We recognize that the objective function is in
agreement with (a constant scaling of) the TMF objective function that uses �o,
and it is trivial to show that this result extends to the case of m > 1. Thus, we
can successfully reduce TUR to ±PSC when �o is our dissimilarity measure.

Does the result extend to arbitrary concrete versions of �? In analyzing the
case of �c in a similar way, we arrive at the following theorem:

Theorem 3. It is not possible to reduce TUR to ±PSC such that the �c dis-
similarity measure and ternary disjunction semantics are preserved.

Proof. It suffices to consider a TUR instance with m = 1. We seek mappings
f 7→ F , u 7→ U and t 7→ T from ternary values to sets for use in the ±PSC.
Ternary disjunction (Table 2) mandates conditions such as F ∪ U = U and
U ∪ T = T , and from these conditions we recognize that F ⊂ U ⊂ T . This
implies that

F \ U = F \ T = U \ T = {} . (5)

To preserve �c (to within a constant factor) we require a constant set-difference
size between each pairwise combination of sets, that is

|(T \ U) ∪ (U \ T )| = |(T \ F) ∪ (F \ T )| = |(U \ F) ∪ (F \ U)| ,

which upon substitution with (5) reduces to

|(T \ U)| = |(T \ F)| = |(U \ F)| .

Clearly there are no sets for which this holds under the condition F ⊂ U ⊂ T .

Assuming we wish to use the unbiased dissimilarity measure �c, it follows
that it is not possible to exploit the ±PSC approximation factor by reducing
TUR to±PSC. For FasTer±PSC in general, this implies that the strict reducibil-
ity of TUR to ±PSC is dependent on our choice of �. The reduction succeeds for
the ordinal dissimilarity measure �o. In the general case, the ±PSC algorithm
simply becomes an alternate heuristic.

The run-time complexity of the ±PSC algorithm is higher than FasTer’s
OptimizeVector heuristic. To see why, we note that m+ k sets are created out
of our k basis vector sets in the worst case during the reduction of ±PSC to
Red-Blue Set Cover (Miettinen, 2008b). Solving a weighted set-cover instance is
the most computationally-significant part of solving Red-Blue Set Cover. By us-
ing a priority queue and an inverted index, solving a weighted set-cover instance
has a worst-case run-time in O (|U| · |S| · log |S|), where |U| is the number of
elements in the universe and |S| the number of sets in the weighted set-cover in-
stance (Cormode et al, 2010). In our worst-case scenario, the number of universe
elements is |U| = m and the number of sets |S| = m+ k, so the worst-case run-
time is in O (m · (m+ k) · log (m+ k)). Therefore, unlike the OptimizeVector
heuristic, the run-time of the ±PSC variant is super-linear in m.

Considering the results presented here, Section 5 directly compares FasTer
and FasTer±PSC for BMF and TMF instances where the minimization of �c is
the goal.
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4.3. Efficiently parallelizing FasTer

Practitioners often look to parallelism for processing massive data sets and/or
improving response time. Although an aggressive optimization of FasTer’s par-
allel performance on the various kinds of TMF problems is not within the scope
of this paper, we offer here a discussion on a number of the relevant factors.
Through this discussion, we justify our choice of the shared-memory (OpenMP)
approach for parallelizing FasTer’s TUP and TBP loops (used in our experi-
ments on parallelization in Section 5.8).

Typically, parallelizing a program serves to overcome memory and/or compu-
tational bottlenecks. We choose to focus on computational rather than memory
bottlenecks because 1) storage of the discrete ternary values {f, u, t} required for
computation (e.g. the matrix C) can be done concisely and can exploit sparsity,
and 2) FasTer does no floating-point arithmetic and requires no large interme-
diate storage.

If we assume that k is small, computational bottlenecks arise in FasTer if
the data matrix is large or if a higher solution accuracy is sought (through the
selection of a larger number of randomization rounds P). In the latter case, the
improvement in accuracy is not proportional to P (the experiments in Section
5.7 highlight this “diminishing returns” behavior). Striving for higher accuracy
through more processors is hence rather inefficient, and so we focus instead on
strong- and weak-scaling scenarios for a fixed P.

In a strong-scaling scenario (“solving a given problem faster”), we fix the size
of the TMF instance and increase the number of processors available for sharing
the work. The wall-clock execution time decreases by a factor proportional to
the number of processors in the ideal case. In a weak-scaling scenario (“solving
a larger problem in the same time”), the size of the problem is increased propor-
tionally to the number of processing units so that each processing unit is always
responsible for a fixed amount of work. The wall-clock execution time remains
constant in the ideal case.

In FasTer, the convergence-iteration loop on line 4 is not a good candidate
for parallelization due to the data (“flow”) dependency between each iteration
and its predecessor. We instead investigate the options for parallelizing the TUP
and TBP loops on lines 5 and 8. Considering that our focus is on computational
rather than memory bottlenecks, we choose with OpenMP (OpenMP Archi-
tecture Review Board, 2005) a shared-memory, “fork-and-join” approach rather
than a distributed-memory approach.

A means by which loop iterations are assigned to processing units – a schedul-
ing strategy – needs to be selected. Here we recognize that the work done by
OptimizeVector is not constant for every loop iteration. For example, search-
ing for and choosing a single basis vector may suffice to exactly explain the first
data observation when solving for the first usage matrix row in the TUP, whereas
many more may be needed to approximate the second. For relatively small data
sets, we might therefore expect that a static scheduling strategy (which equally
divides loop iterations between processing units in advance) yield in performance
to a dynamic strategy (which assigns smaller chunks of work to each process-
ing unit in a just-in-time manner). For the more practical case of larger data
sets, however, we expect that variations in OptimizeVector work would tend to
balance out across processors.

Also to be considered is the additional overhead of dynamic scheduling strate-
gies – they require more time to delegate work to processing units. We note
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that OpenMP offers two strategies for dynamic scheduling. The first is sim-
ply named dynamic and involves just-in-time allocation of chunks of constant
size. The second is named guided and involves just-in-time allocation of chunks
of exponentially-decreasing size. The latter invests in a higher allocation over-
head (due to the larger number of chunks typically involved) in order to further
homogenize the completion time of each processing unit.

Although not treated by the experiments in this paper, we note that a
distributed-memory approach is an option if memory bottlenecks are encoun-
tered. In such an approach, each distributed node would always work on the
same subset of TUP-row and TBP-column indices respectively, and thus not be
required to read the entire data matrix. If bottlenecks involved both memory and
computation, a hybrid approach (a mixture of distributed- and shared-memory
programming) is an option. In such a setup, each distributed processing unit
would work on a fixed subset of TUP rows and TBP columns, and would further
distribute this work among processing units in its shared-memory environment.

Based on this discussion, Section 5.8 presents speedup and efficiency results
for strong- and weak-scaling scenarios based on TUP- and TBP-parallelization
using each of the three OpenMP scheduling strategies static, dynamic and
guided.

5. Experiments

In this section we compare FasTer and FasTer±PSC to state-of-the-art al-
gorithms using synthetic and real-world data. All measurements are based on
20 trials unless otherwise indicated. A plotted data point represents the mean
measurement value from these trials, and the corresponding error bar spans one
standard deviation in each direction. To reduce clutter we omit the display of
error bars for every second point in a data series. FasTer and FasTer±PSC
use P = 20 randomization iterations in all cases (based on the observations in
Section 5.7).

5.1. Synthetic Data Generation

For experiments on synthetic data, a new data set is generated for each of
the 20 trials. Unless otherwise stated, our generation approach is analogous
to (Miettinen, 2009). It involves producing “ground truth” basis B̃ ∈ Tk×m

and usage S̃ ∈ Bn×k matrices. The “noiseless” data matrix C̃ is obtained with
C̃ = S̃ M B̃, after which a specified amount of uniform noise is simulated by
randomly modifying values in C̃ (note that no values of u are created in this
step for the binary-only experiments). The resulting noisy matrix C is then the
data matrix for each algorithm. The parameters of interest in generating the
synthetic data sets are 1) the dimensions n, m and k, 2) the percentage η of

noise, 3) the average count λ of t values per row of S̃ and 4) the average density

ρt and ρu of t and u values in a row of B̃ respectively. We offer the C++ tools
used to generate C matrices based on these parameters4.

All experiments involve systematically varying one parameter over a range,
with non-varying parameters being assigned a default value. Ranges and default
values are given in Table 3. For consistency we choose the defaults and ranges
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identically7 to those used by Miettinen in the BMF experiments (Miettinen,
2009). The defaults are sensible: the combination of k = 16, λ = 4 and ρt = 10%
strikes a balance between tractability (a digestible count of base concepts), vari-
ation (a non-trivial number of base concepts combined to generate observations),
and density (a binary matrix with these defaults is typically 57% dense). The
default noise value of η = 10% is large enough to be realistic whilst not disadvan-
taging comparison methods like GreEss which, as a result of its strict coverage
requirements and “from-below approximation” approach, tend to be less robust
against noise (as we will see in Figure 4).

The extreme values of the λ, ρt and ρu ranges correspond to reasonable
sparsity/saturation limits for the corresponding data matrix (for the binary case,
a value of ρt = 30% yields a matrix with an average density of 65%, for example).
Heavy distortion of the binary signal is simulated with the maximum noise η
value of 40%. Noteworthy is Miettinen’s choice of 28 for k’s upper-bound: it
corresponds to a data set with so great a complexity that it hedges the chances
for understanding the “big picture” of its model (irrespective of how accurately
it describes the data). In line with our emphasis on interpretability, we therefore
follow Miettinen and focus on tractable (“small”) values of k.

n m k η λ ρt ρu
150 80 16 [8, 28] 10% [0, 40] 4 [2, 6] 10% [5, 30] 10% [5, 30]

Table 3: Default parameter values (and ranges [a, b]) for synthetic data generation.

5.2. Comparison Methods

We compare to state-of-the-art algorithms for each problem type: TMF, Missing-
Value BMF (MVBMF) and BMF. For TMF and BMF problems, FasTer is
compared to Asso (Miettinen et al, 2008), PaNDa (Lucchese et al, 2010)8 and
GreEss (Belohlavek, 2013)9. For MVBMF, FasTer is compared to Assomv

(Yadava and Miettinen, 2012)10 and MMMF (Srebro et al, 2004)11. We com-
pare FasTer±PSC directly to FasTer for TMF and BMF problems in order to
investigate the behavior of the two heuristics discussed in Section 4.2.

Asso and Assomv require an input parameter 0 ≤ τ ≤ 1, used as a threshold
for rounding purposes. Optimal selection of this parameter is difficult (Miettinen
and Vreeken, 2014), so we report the best result from τ = 0, 0.1, . . . , 1. For
PaNDa the author’s recommendations (Lucchese et al., 2010) were followed (20
randomization rounds, frequency based sorting, prefix-tree data structure for
transaction storage, default row- and column-tolerance ratios), with the top k
detected patterns taken to form the basis matrix.

For TMF and BMF problems we include results from modified versions of
Singular Value Decomposition (SVD) and Non-negative Matrix Factorization
(NMF). Here the classical methods are used in a way similar to that described
in (Miettinen, 2009). Firstly, the data matrix C ∈ Tn×m has its entries mapped

7Aside from ρu which is not applicable in BMF.
8The publicly-available implementation was used.
9We thank Radim Belohlavek for sharing an up-to-date implementation.

10We thank Pauli Miettinen for sharing an up-to-date implementation.
11We use the author’s original implementation with YALMIP and SDPT3 as the SPD solver.
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to real values using a mapping mr : T 7→ R. Given this input, the algorithm
produces real-valued factors which are subsequently multiplied using the classical
matrix product to generate a reconstructed data matrix Ĉ ∈ Rn×m. Ĉ is then
transformed back to the original categorical space in an entry-wise fashion using
a mapping mt : R 7→ T and compared with C (using �c) to calculate the error as
normal. For BMF experiments with C ∈ Bn×m, the mappings are clear and the
corresponding methods are labeled SVD01and NMF01. The mappings are less
obvious for TMF experiments with C ∈ Tn×m – here we compare two different
mapping types and denote the corresponding methods with SVD012, NMF012,
SVD021and NMF021. The mappings are summarized in Table 4. We stress that
we provide SVD and NMF results for reference only – it is clear from our
Introduction that their factors cannot be reliably interpreted in a logical context.

mr (a) with a ∈ T mt (a) with a ∈ R
SVD01/ NMF01 1 if a = t, else 0 f if a < 0.5, else t
SVD012/ NMF012 2 if a = t, else 1 if

a = u, else 0
t if a ≥ 1.5, else f if
a < 0.5, else u

SVD021/ NMF021 2 if a = u, else 1 if
a = t, else 0

u if a ≥ 1.5, else f if
a < 0.5, else t

Table 4: Mappings for modified SVD and NMF.

5.3. Ternary Matrix Factorization

Figure 4 shows the results of deploying FasTer to synthetic TMF problems.
For Asso and PaNDa, we first transform each ternary data value into a binary
triple using the mappings f 7→ (0, 0, 1), u 7→ (0, 1, 0) and t 7→ (1, 0, 0), thereby
tripling the matrix dimension m. After running each algorithm, the binary triples
from the reconstructed data matrix are transformed back to ternary (t if the
first triple entry is 1, else u if the second triple entry is 1, otherwise f) for
calculating the error. For the GreEss algorithm we use the scale L = {0, 0.5, 1}
in accordance with the notation in (Belohlavek, 2013). The run-time complexity
of the GreEss algorithm was a prohibiting factor in our experiments, hence
we only perform a comparison on smaller data sets (n = m = 50). We also note
that the effectiveness of PaNDa is typically measured using a different objective
function which favors succinct patterns to avoid overfitting, however we argue
that the current comparison is warranted because the model-order k is always
known (overfitting is hence not a factor).

FasTer consistently outperforms Asso, PaNDa and GreEss. The GreEss
algorithm is competitive for the zero noise case, however quickly falls away when
noise is added (a manifestation of its strict-coverage requirements and “from-
below approximation” (Belohlavek, 2013)). With respect to Asso and PaNDa,
FasTer’s superior performance is partially explained in Section 4.2. That is,
there is no binary encoding scheme we can choose that permits the optimization
goals of Asso and PaNDa to be equivalent to the �c-based TMF objective
function.

Of particular mention in Figure 4 is that there are many cases where FasTer
even outperforms SVD and NMF (real-valued methods that are not suitable
for interpretation in a logical context). Recalling the first example from our
Introduction, we suggest that FasTer’s success here lies in its exploitation of
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Fig. 4: Ternary Matrix Factorization on synthetic data with varying data-generation
parameters k, ρt, η, ρu and λ. GreEss comparisons use n = m = 50.
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the nonlinear ternary connectives in place of real-valued connectives in the matrix
product, enabling it to describe ternary data sets more concisely.

5.3.1. Real-world: Congressional Voting Records

We now demonstrate FasTer on three open, real-world ternary data sets. The
first target (from the Introduction) is the Congressional Voting Records data
set from the UCI Machine Learning Repository. Here the n = 435 observations
of m = 16 attributes record the opinions of congressmen on key voting issues.
Values of t and f indicate that the congressman voted “yea” and “nay” on the
issue respectively. A value of u implies that the position of the congressman
was Don’t know – it does not imply that the data value is missing. FasTer’s
usage matrix (not shown) correctly assigns 344 (79%) of the congressmen to their
party, and its basis vectors (k = 2) represent the “party base opinions” which
intuitively disagree on most issues:

Issue: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Nay Yea Nay Yea Yea Yea Nay Nay Nay Nay Nay Yea Yea Yea Nay Yea

Yea Nay Yea Nay Nay Nay Yea Yea Yea Yea Nay Nay Nay Nay Yea Yea

Interestingly, the basis vectors are both in B, indicating that the congressmen
are generally steadfast. This is confirmed in the original data by the relatively
low occurrence of u values. As discussed earlier however, the u values (indecision)
are our focus, so we vary w� = (u� t) = (u� f) to penalize incorrect coverage
of u values (i.e. emphasize their importance). We see below that it is then the
Democratic basis vector for which uncertainty is exposed, first for an Export
Administration Amendment Act relating to trade with South Africa (Issue 16),
and then for Issue 2 which revolves around the level of federal cost-sharing for
water projects. This result cannot be reproduced with BMF techniques – the
ability to weigh the importance of certain ternary values is unique to TMF.

Yea Nay Yea Nay Nay Nay Yea Yea Yea Yea Nay Nay Nay Nay Yea ??? w� = 3

Yea ??? Yea Nay Nay Nay Yea Yea Yea Yea Nay Nay Nay Nay Yea ??? w� = 5

5.3.2. Real-world: Stack Overflow

Considering our focus on interpretation at scale, we proceed to analyze FasTer’s
output for a larger data set. We sourced the Stack Overflow (SO) data (n =
1.02 million) from a public API12 and, having generously been granted permis-
sion to do so, provide it (alongside a description) for reuse4. SO is a popular
programming question-and-answer site. An observation in this data set consists
of m = 12 basic attributes of an answer and its corresponding question (e.g. mea-
sures on structure, formatting and “usefulness”). The natural model order here
is apriori unclear, however our analysis of the error curve (omitted for brevity)
with varying k suggests (through a clear “kink”) the choice of k = 6. This rank
corresponds to a richer model than that for the Congressional Voting Records,
yet still permits the digestible presentation of FasTer’s results below. We note

12api.stackexchange.com
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that the sequential execution time was less than two minutes for P = 20 (ma-
chine/implementation details given in Section 5.8), and that the default �c was
used.

Answer metadata Corresponding Question metadata

1.

2.

3.

4.

5.

6.

We offer brief comments on the results. In a general sense, it is clear that all
questions 1) are answered to the asker’s satisfaction ( = ) and 2) refrain from
using references ( = ). This second point is interesting – it echoes SO’s con-
cern that questions are often submitted despite inadequate research13. Questions
judged valuable by the community ( = ) are often short (no more than one
text paragraph, = ) and do not include code samples ( = ). A suggestion
for a user wanting to ask a highly-useful question might then be: keep the ques-
tion succinct and general14. The first basis vector also indicates that answers
to such valuable questions 1) do include a code sample and 2) are themselves
valuable.

Questions deemed non-valuable ( = ) have typically been discussed ( =
). We might interpret this to mean that the community has tried to clarify the

question or attempted to highlight its shortcomings through comments. Despite
this, valuable answers can still be found (perhaps those that use whatever useful
information the question contains to identify and address the latent question)
that are also discussed.

Questions for which the usefulness is not known ( = ) are seldom discussed
( = ). Perhaps the question is too esoteric for the community to offer an
opinion. Along this line of thought, we see that answers to such questions often
reference an external source ( = ) rather than providing a code sample ( =

). Noteworthy for such a question is that there are many cases where it is also
unknown if its accepted answer is valuable ( = ), echoing SO’s sentiment that
“if you ask a vague question, you’ll get a vague answer”.

The corresponding accuracy results for the Stack Overflow and Congressional
Voting data sets are given in Table 5. In this table we also report accuracy re-
sults for a third, questionnaire data set (Africa Religion). This n = 22601
data set was sourced from the Pew Research Center’s survey on “Tolerance and
Tension: Islam and Christianity in Sub-Saharan Africa” (instructions for obtain-
ing the data are in the supplementary material4). Here a survey participant’s
“yes”, “no” and “don’t know” responses form an m = 44 ternary observation.
The choice of k = 2 is natural given the survey’s clear focus on comparing the
opinions of Muslims and Christians (Pew Research Center, 2010).

13“Search, and research” is the first point of advice on SO’s How to Ask page.
14One of the highest-rated questions on the site, for example, is simply “What is a plain

English explanation of Big-O?”
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‖C �c (S M B)‖1: Mean (± SD)
Asso PaNDa FasTer (using �c)

Congr. Voting 1.731 (±0) K 1.732 (±0.019) K 1.638 (±0) K
Stack Overflow 3.093 (±0) M 3.692 (±0.107) M 2.124 (±0.065) M
Africa Religion 0.294 (±0) M 0.295 (±0.002) M 0.280 (±0.001) M

Table 5: Accuracy results for ternary real-world data sets (k chosen as discussed). K and M
are shorthand for 103 and 106.
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Fig. 5: Ternary Matrix Factorization for FasTer±PSC on synthetic data with varying
data-generation parameters k, η, ρt, ρu and λ.

5.4. Using the ±PSC solver in FasTer

Figure 5 compares FasTer±PSC directly with FasTer on the TMF synthetic
data. As discussed in Section 4.2, FasTer±PSC employs the approximation al-
gorithm for Positive-Negative Partial Set Covering in order to solve the TUP,
whereas FasTer uses the scalable greedy heuristic.

The plots show that FasTer±PSC can give very competitive results. For
example, the results are close to the optimal solution (which has an average
error of 1200 in the case of 10% noise) when k has a small-to-moderate value.
For a number of parameter combinations, however, FasTer±PSC delivers poorer
results than FasTer. Section 4.2 helps to explain why: although strictly not
applicable in the ternary case, the approximation factor for the ±PSC algorithm
grows with k as well as the density of the matrix C. We see that the plots reflect
this: the results become weaker for increasing k and increasing ρu, ρt and λ
(which increase the density of C), yet remain stable in comparison to FasTer
for increasing noise (which has no effect on the approximation factor).

The results for the binary case are given in Figure 6. In this case, the ap-
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proximation factor is strictly applicable, and we again see the results weakening
for increasing k, ρt and λ.
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Fig. 6: Binary Matrix Factorization for FasTer±PSC on synthetic data with varying
data-generation parameters k, ρt, η and λ.

5.5. Missing-Value BMF

Figure 7 shows the results of deploying FasTer to synthetic MVBMF problems.
Our focus here is the MCAR case (missing completely at random, i.e. the fact
that a data value is missing is independent of the observation’s values) (Vreeken
and Siebes, 2008). The parameter ρu was set to zero in the data-generation
process. Missing values u were injected into the noisy matrix C ∈ Bn×m at a
density of ρm (default value 50%), thereby transforming C into a ternary matrix.
FasTer uses the missing-value version �mv of the dissimilarity operator.

The FasTer and Assomv curves in Figure 7 are sometimes visually close. As
an additional statistical quantifier for FasTer’s performance, we hence provide
p-values above each plot. These p-values correspond to the result of a Wilcoxon
signed-rank test15 applied to 20 pairs of FasTer and Assomv results for each
parameter value. Almost all results are significant with respect to the typical
0.05 threshold.

Like SVD and NMF, the real-valued technique MMMF has more freedom
in selecting its factor matrices and is able to impute values more effectively.
Its factors, however, are equally misleading on interpretation. FasTer, which
does produce interpretable factors, clearly outperforms Assomv and surprisingly

15A non-parametric test that does not assume the population to be normally distributed
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Fig. 7: Experimental results for synthetic Missing-Value Binary Matrix Factorization
(MVBMF) with varying k, η, ρt, λ and ρm. Note that MMMF produces real-valued factors
that do not lend themselves well to interpretation in a logical context. Wilcoxon sign-rank

test p-values corresponding to the comparison between Assomv and FasTer are shown above
the respective plots (e.g. p = 3.8e−6) for each point. Non-significant results with respect to a

threshold of 0.05 are shown in a lighter gray.

outperforms MMMF for cases in which the data set is dominated by missing
values.

Table 6 shows MVBMF results for ten UCI data sets. All are categorical and
have a known model-order (used for the k parameter). Attributes with miss-
ing values were removed during pre-processing to ensure completeness. For each
trial, information-loss was then simulated by randomly replacing categorical val-
ues with missing values (ρm = 0, 10, . . . , 90, 99) before encoding in ternary form.
As an encoding example, consider the Hayes-Roth observation vector (3, 4, 4, 4)
which loses information to become (3, ?, 4, 4). The corresponding ternary en-
coded form is (f, f, t, u, u, u, u, f, f, f, t, f, f, f, t). The given dimension m is the num-
ber of attributes after encoding. The error reported is the mean and standard
deviation over 20 trials, each measuring for ρm = 0, 10, . . . , 90, 99 the average
reconstruction error against the encoded form of the complete data. Figure 8
visualizes the expanded results for two of the data sets (the remaining plots are
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Error (described in caption): Mean (± SD)
Data set n m Assomv FasTer
Breast Cancer 277 51 1.965 (±0.020) K 1.915 (±0.011) K
Congr. Voting 435 48 4.573 (±0.087) K 4.003 (±0.036) K
Hayes-Roth 160 15 592 (±11) 544 (±5)
Lenses 24 9 77 (±1) 70 (±1)
Lymphography 148 59 1.879 (±0.020) K 1.739 (±0.012) K
Promoter 106 228 6.080 (±0.032) K 6.012 (±0.018) K
Soybean 47 102 757 (±18) 666 (±13)
SPECT Heart 267 44 1.202 (±0.014) K 1.089 (±0.009) K
Tic-tac-toe 958 27 8.209 (±0.034) K 8.170 (±0.017) K
Trains 10 71 146 (±8) 139 (±2)

Table 6: MVBMF for ten UCI data sets (mean and standard deviation over 20 trials, each
measuring the average error over ρm = 0, 10, . . . , 90, 99). In each case k was chosen as the

known number of classes in the data set. K is shorthand for 103.

given as a supplement4). In general, whilst Assomv is competitive and some-
times marginally more effective, FasTer shows convincing results over the full
ρm range at a lower run-time complexity.
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Fig. 8: Error from Missing-Value Binary Matrix Factorization (MVBMF) on the SPECT
Heart (left) and Congressional Voting Records (right) data (complement to the summary in

Table 6).

5.6. Binary Matrix Factorization

Although not the core focus of this work, Figure 9 shows the results of deploying
FasTer to synthetic BMF problems. The parameter ρu was set to zero in the
data-generation process to ensure that C ∈ Bn×m.

The results for the real-valued methods are no surprise (Miettinen, 2009).
They have greater freedom in the selection of their factor matrices and gener-
ate optimal rank-k decompositions to explain the data. With reference to our
Introduction, however, we again stress that these results can be misleading if
interpreted. Of the interpretable methods, FasTer produces generally-superior
results (we confess that Asso is the method of choice for BMF if the data rank is
very high, however in such cases we again argue that its model’s interpretation
would be a demanding task). We note in particular that FasTer is density-
robust: the reconstruction quality is more stable for increasing ρt.
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Fig. 9: Binary Matrix Factorization on synthetic data with varying data-generation
parameters k, ρt, η and λ. Note that 1) SVD and NMF produce factors that are not reliably

interpretable, and 2) the density of C is already approximately 65% when ρt = 30%.

5.7. Run-time Complexity

Our experiments confirm the run-time growth of FasTer to be linear in n and
m and quadratic in k. Figure 10 shows the significant differences in run-time for
varying m. Here FasTer’s linear growth is superior to that of Asso (quadratic)
and PaNDa (tending quadratic). We note that each algorithm was run inde-
pendently on a single processing unit of the hardware described in Section 5.8.
C/C++ implementations were used.

Figure 10 also shows that the number of internal iterations N required for
FasTer’s convergence does not increase with n, m or k. Here N is recorded
as the number of iterations required by the best approximation from P = 20
randomization rounds.

Finally, Figure 10 shows that only a small number of randomization rounds P
are required for achieving competitive results, even with large n, m and k. Based
on these observations we selected P = 20 for all other experiments. The figure
also shows that FasTer solutions remain accurate when the data dimensionality
is high (e.g. m = 25000). Solutions for a high observation-count (e.g. n = 50000)
are comparatively weaker (likely caused by the stochastic initialization strategy).
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5.8. Parallelization

Considering the discussion from Section 4.3, we parallelized FasTer using the
C++ directives and functions of OpenMP (version 2.5). Work-sharing con-
structs were used to divide the TUP and TBP among multiple threads. The
effect of the three OpenMP scheduling strategies static, dynamic and guided
were explored for this division of work. All experiments in this section were per-
formed on an IBM x3650 M3 with two Intel Xeon X5690 6-core processors (3.46
GHz) and hyper-threading enabled, giving 24 virtual cores in total.

Figure 11 shows the speedup and efficiency curves for up to 24 processing
units in a strong-scaling setting. In this setting, we are interested in how the
solution time varies with the number of processors for a fixed TMF problem
size. For the fixed problem we used a single synthetic data set with the default
parameters from Table 3 and dimensions n = 15000 and m = 8000 (n ·m = 120
million).

The speedup results are near-ideal for up to eight processors. Afterwards, the
overhead incurred from OpenMP’s management of the threads is more notice-
able. The speedup factor reaches a maximum of near 13 using 22 processors and
dynamic scheduling. Overall, static and dynamic scheduling have very similar
performance. Guided scheduling almost always performs slightly worse. On this
large data set it allocates chunks of exponentially-decreasing size, resulting in a
higher overhead compared to normal dynamic scheduling which allocates fewer
constant-sized chunks. The results show that the variation in the amount of work
done by each TUP and TBP loop iteration is not enough to warrant the choice
of a guided strategy for such a large data set.

We witnessed super-linear speedup for static scheduling with two and four
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processors. Super-linear speedup is sometimes seen in parallel computing, and in
this case is not surprising given the nature of OpenMP’s static scheduling strat-
egy in the context of FasTer. When using this strategy with a fixed number of
processors, OpenMP guarantees that each processing unit will receive identical
iteration ranges for the TUP and TBP loops. For example, if p = 4 processing
units are available to work on a data set with n = 100 rows, static scheduling
would always allocate the first 25 TUP-loop iterations to the first processing
unit, the second 25 to the second processing unit, and so on. This implies that
each processor only ever needs to operate on a subset of the input data, and can
hence exploit lower-level CPU caches (such as the L1 cache) to a higher extent
during FasTer’s N convergence iterations than if a single processor were used.

Finally, we remark that we have presented these results in the form of speedup
and efficiency metrics (common in high-performance computing literature). The
wall-clock execution-time metric is however also valuable to get a practical feel for
FasTer’s performance on this large data set (120 million entries). We therefore
note that the maximum wall-clock execution time was 66507 seconds (18 hours)
for p = 1 processor, and the minimum execution time was 5243 seconds (1.5
hours) using p = 22 processors and dynamic scheduling. For modern-day laptops
and desktops having p = 4 processing units, our measured static-scheduling time
of 17223 seconds (4.8 hours) can be taken as an estimate for the expected run-
time.
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Fig. 11: Speedup (left) and efficiency (right) for varying OpenMP scheduling strategies in a
strong-scaling TMF scenario (where the solution time varies with the number of processors

for a fixed, large TMF problem). t1 and tp are the wall-clock solution times for 1 and p
processors respectively.

Figure 12 presents results for a weak-scaling scenario. In this scenario, the
problem size (here the number of data matrix rows n) is varied proportionally to
the number of processors. We are interested in how the solution time varies with
the number of processors for a fixed problem size per processing unit. The data
sets used for these experiments were again generated using default parameters,
except that m was fixed to 800 and n was varied as shown. 20 independent trials
were performed in each case.

Guided and dynamic scheduling strategies have approximately equal perfor-
mance. As expected from the discussion in Section 4.3, static scheduling is no-
ticeably weaker and less stable (higher result variability) on these smaller data
sets. For p = 20 processing units, for example, static scheduling sometimes yields
comparable results to the dynamic strategies, and sometimes notably worse re-
sults. This highlights the non-adaptive nature of the static scheduling strategy
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– a weakness in this case as it is not able to respond to variations in the work
required to solve the TUP and TBP across processing units.
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represents a part of the line for the corresponding sequential solution times (which behaves
linearly).

At a high level, the strong- and weak-scaling results presented in this section
show that it is useful and efficient to parallelize FasTer in the ways discussed.
Additional “fine-tuning” may yield better performance, and extensions could be
investigated such as the parallelization of 1) input file parsing, and 2) initial
basis matrix B0 selection.

6. Related Work and Discussion

Too numerous to mention are the techniques for factorizing complete real-valued
matrices (see (Miettinen, 2009) for an overview). Although such methods (SVD,
NMF) accurately reconstruct the data matrix, we have shown that they fail to
reliably identify meaningful (interpretable) structure in categorical data sets.

The work done by Miettinen on Binary Matrix Factorization (BMF) (Miettinen
et al, 2008), along with subsequent investigations (e.g. (Belohlavek and Vy-
chodil, 2010; Lucchese et al., 2010; Lu et al, 2008)), has received consider-
able attention in the community. BMF approximates a data matrix C ∈ Bn×m

through the binary matrix product of a usage matrix S ∈ Bn×k and basis matrix
B ∈ Bk×m. These matrices are interpretable in the data domain. TMF differenti-
ates itself by considering the more general problem of ternary data, however the
techniques intersect in the sense that BMF is encapsulated by TMF. Our experi-
ments have shown that FasTer outperforms both Asso and PaNDa (efficiency
and effectiveness) in a BMF context.

The Positive-Negative Partial Set Cover problem (Miettinen, 2008b) is a gen-
eralization of the classical set cover problem in combinatorics. It has been studied
in the context of BMF and exploited in a variation thereof (Miettinen, 2008a).
In this paper we have shown that its use for TMF and BMF in FasTer can yield
very competitive results, despite the fact that ±PSC’s approximation factor is
not always strictly applicable in a mathematical sense. The trade off is speed
– FasTer loses its linear run-time complexity if we use ±PSC in place of the
normal heuristic.
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Methods for factorizing incomplete binary data sets have been developed.
Assomv is presented in (Yadava and Miettinen, 2012) and focuses particularly
on highly-incomplete (e.g. 99% missing values) data sets. Our experiments show
that FasTer produces generally-superior results to Assomv. Assomv also has
quadratic run-time complexity in m (because it is based on Asso) and hence is
not as efficient as FasTer (linear run-time complexity).

A related imputation method by Vreeken (Vreeken and Siebes, 2008) exploits
information theory. The “simple completion” approach produces promising re-
sults for data matrices with up to 24% missing values (Vreeken and Siebes, 2008;
Yadava and Miettinen, 2012). The method is based on the KRIMP algorithm
which, designed primarily for transactional databases, 1) produces a large set of
(typically small) itemsets rather than a succinct set of broad basis vectors, and
2) requires filtering a set of pre-mined candidates which is exponentially costly
with increasing m and controlled by sensitive parameters (e.g. minimum itemset
support) (Akoglu, Tong, Vreeken and Faloutsos, 2012).

Maximum-Margin Matrix Factorization (MMMF) (Srebro et al., 2004) in-
volves low-norm decompositions and supports incomplete matrices. Like SVD
and NMF, MMMF produces real-valued factors and thus has greater freedom
for optimizing imputation. Unlike TMF, however, the MMMF factors do not
lend themselves to interpretation in a logical context. Despite the advantage
that MMMF has in choosing its factors, we have even shown that FasTer out-
performs it for the case where missing values heavily dominate the data set
(ρmv > 80%).

Finally, GreEss (Belohlavek, 2013) uses many-valued logic for factorizing an
ordinal data matrix. We show in Section 5.3 that it is possible to use GreEss
for TMF. Here our results show that FasTer produces factorization results that
are superior to GreEss. In addition, GreEss 1) produces a non-binary usage
matrix S (more difficult to interpret), 2) has superlinear run-time complexity
in the data set dimensions, 3) cannot be applied to imputation (the technique
requires (a� b) = 0↔ a = b), and 4) is less flexible in weighting the importance
of values (due to the one-dimensional ordinal scale).

Investigations into parallelism for classical matrix factorization techniques
like SVD and NMF exist in the literature (e.g. (Lin, 2007), (Luk, 1985)). Simi-
lar contributions in the field of association-rule mining have also been surveyed
(Zaki, 1999). To the best of our knowledge, investigations into parallelism do
not yet exist in the area of discrete, logical matrix factorizations (e.g. Binary
and Ordinal Matrix Factorizations). Our shared-memory approach to paral-
lelizing FasTer for TMF problems shows that we can efficiently solve given
problems faster (strong scaling) as well as larger problems in a near-constant
amount of time (weak scaling). As a reference point for our parallel results, we
refer the reader to one of the most influential contributions in the area of high-
performance, discrete-data mining: the parallel version of the Apriori algorithm
(Agrawal and Shafer, 1996). Although a direct comparison is not our aim, we sim-
ply remark that both results share similar efficiency characteristics. For example,
our speedup curves in Figure 11 show similar performance to those in Figure 5
of the Apriori paper (both have efficiency of above 90% for eight processors, for
instance). Also of note is that the parallel Apriori likewise experienced super-
linear speedup for four processors, perhaps hinting that this phenomenon is not
too uncommon on modern hardware.
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7. Conclusion

We have presented algorithms for the dimensionality reduction of discrete, logi-
cal data (categorical data in general) in the context of the new Ternary Matrix
Factorization (TMF) problem. TMF is a novel, multi-purpose data-mining chal-
lenge based on three-valued logic. It provides a new perspective on “unknown”
values in data sets. We have shown that TMF yields useful decompositions in
a number of general scenarios. Firstly, TMF supports the (optionally-guided)
search for structure in ternary data sets where “unknown” has contextual mean-
ing, like a don’t know answer to a questionnaire item with yes, no and don’t
know options. Secondly, TMF can perform Missing-Value Binary Matrix Fac-
torization (MVBMF) to discover structure in incomplete categorical data sets
where “unknown” is understood as a placeholder for a lost or indeterminable
binary value, thereby offering an elegant imputation solution. Finally, TMF is
a generalization of Binary Matrix Factorization (BMF) and can be used to find
patterns in binary data sets (and hence categorical data sets through the use of
simple encoding).

We have shown that FasTer outperforms state-of-the-art methods on TMF,
MVBMF and BMF problems with respect to an intuitive objective function.
Perhaps more importantly, the anytime FasTer algorithm scales linearly with
the dimensions of the data set and is parameter-, noise- and density-robust.
With run-time as a trade-off, it is also possible to significantly increase effective-
ness if we exploit the known Positive-Negative Partial Set Cover algorithm from
combinatorics.

Through parallelization, FasTer can overcome the computational and/or
memory bottlenecks often encountered in practical applications. Our experiments
have shown that a shared-memory parallel version of FasTer exhibits compara-
ble efficiency characteristics to other high-performance data-mining algorithms
in strong- and weak- scaling scenarios.

This paper has not addressed the issue of model-order selection (the decom-
position rank k is a parameter of the algorithm), nor “online” situations involving
dynamic data. These points, along with an investigation into alternate initial-
ization strategies for FasTer, remain open topics for future work on TMF and
its algorithms.
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