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Abstract

We consider a model for an infectious disease in the onset of an outbreak. We introduce contact tracing incorporating
a tracing delay. The effect of randomness in the delay and the effect of the length of this delay in comparison to the
infectious period of the disease respectively to a latency period on the effect of tracing, given e.g. by the change of the
reproduction number, is analyzed. We focus particularly onthe effect of randomness in the tracing delay.
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1. Introduction

Contact tracing resp. partner notification programs are believed to be of central importance for the control of many
infectious diseases: infected persons are questioned for recent potentially infectious contacts. In this way, further
infected and infectious persons are identified in a targetedway, often quite early after infection. These persons can be
treated and isolated, and the number of further infections can be reduced. For some emerging infections, data analysis
indicates that contact tracing has proven to be a valuable measure – e.g. in the case of SARS [14] or Ebola [18]. For
other infections, such as tuberculosis, contacts may be this casual that they are hardly recognized; in these cases it
is under debate if contact tracing pays [20, 4, 7]. Still, ourunderstanding of the effectiveness of contact tracing is
incomplete. In particular, the consequences of the different time scales involved – latent period, typical time between
contacts, and the delay in the tracing process – remain unclear.

As contact tracing depends on the detailed contact structure, it is – in contrast to e.g. mass screening – not immediately
clear how to model this method appropriately. Local interactions and correlations have to be taken into account. In
recent years, basically two different modelling approaches have been successfully developed. The first approach [5,
11, 10] relies on a fixed contact graph. The infection (as wellas contact tracing) spreads via the edges of this graph,
and is modeled as a stochastic contact process. Pair approximation yields a model consisting of ordinary differential
equations (ODEs) that gasps the most important features of the dynamics. The mean value of the stochastic process
is more or less met by these ODEs. This modeling approach gives in particular good results if the degree of nodes is
large.
The second approach is based on a branching process, and in particular used to describe the onset of an outbreak [16,
17, 15]. On the tree of infecteds (the nodes are infected individuals, a directed edge points from infector to infectee) the
tracing process takes place. If an individual is discovered, adjacent edges have (independently) a certain probability –
the tracing probability – to be detected. As the underlying graph is directed, it is suggestive to define forward tracing
(if the infector is discovered, infectees are traced) and backward tracing (if an infectee is discovered, the infector is
traced). Even in the very early papers [9] this concept has been developed, and it has been discussed if forward- or
backward tracing is more important.
In addition to these two mathematical approaches, a lot of work has been done based on simulation models [12, 13]
and/or to understand the effect of contact tracing for certain diseases like influenza, SARS, tuberculosis or Ebola [6,
14, 7, 4, 18].
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In the present work, we take up the discussion how a tracing delay – the time elapsing between the discovery of an
infected individual and the identification of his/her infector and infectees – influences the efficiency of contact tracing.
Fraser [8] and Kiss [12] already discussed the importance ofa latent period for contact tracing: a latent period allows
one to detect cases before they start to spread the diseases and in this makes contact tracing more effective. A tracing
delay has the converse effect; persons may spread the infection also during the time that elapses between detection of
an index case and their own detection by contact tracing. Only few models address this delay explicitly. Klinkenberg
et al. [14] extends the work of Fraser et al. [8] by a tracing delay. Approximations of the next generation operator
for contact tracing were developed. Another approach was used by Shaban et al. [19]. In that paper, a fixed contact
network is considered (as in most pair approximation models), but the authors focus on the onset of an outbreak and
use a branching process approximation of the process. They only take into account forward tracing. In principle,
their model allows for general distributions for latency period and tracing delay, but the authors concentrate on the
special case of exponential distributions. Ball et al. [2, 3] take up this idea. They also consider only forward tracing
but assume a homogeneously mixing population. The authors formulate a multitype-branching process for detected
individuals. This approach is mathematically particularly appealing, as the theory of branching processes can be used
to derive analytical results.

In the present work we extend the methods developed in [16] toanalyse delayed contact tracing with forward- and
backward tracing. We do this analysis first for an epidemic with constant contact- and recovery rates, but extend the
ideas also to non-constant rates, opening the possibility to also consider an infection with latent period. The central
technique relies on the derivation of the probability that an individual is still infectious at a given age of infection.
However, in general it is only possible to solve these equations numerically. Approximate solutions are derived for
small tracing probabilities; also an approximation for thereproduction number is given. The influence of the timing
(latent period and tracing delay) is discussed. We are particularly interested in the question how randomness in the
tracing delay affects the efficiency of contact tracing as given by the reduction of the reproduction number, if forward-
or backward tracing is more important, and how the interplaybetween the time scales involved (tracing delay, mean
infectious period, and latency period) influences contact tracing.

2. Model and Analysis

We consider a randomly mixing, homogeneous population. Note that models assuming a homogeneous population
may behave differently compared with models that assume an underlying contact graph, in particular of the contact
graph is sparse. It depends on the disease which approach is more appropriate. In order to model contact tracing,
we start off with an SIS/SIR- type of model, and focus on the onset of an epidemic (therefore we do not need to
specify if a recovered person will be susceptible again or immune). In the long run, SIR and SIS models will, of
course, behave differently. The contact rate is denoted byβ. Infected persons recover at rateγ. With probabilitypobs

recovered persons become index cases and trigger (at recovery) a tracing event. Tracing, however, does not take place
immediately but with a random delayT, distributed with densityφ. We allow generalized functions for this density,
such that a fixed delay is covered by the model. For each contact, the delay is an independent realization; it is not the
case that the tracing delay e.g. only depends on the index case. Infector and infectees of the index case have, if they are
still infectious at the time at which contact tracing actually takes place, a probabilityp to be diagnosed. We consider
two different modes: either a traced individual is again an index case (recursive tracing), or the contact tracing stops
(one-step-tracing).

For technical reasons, we introduce the ratesα = (1 − pobs)γ andσ = pobsγ, and considerα as the spontaneous
recovery rate (no diagnosis), andσ the recovery rate with direct (not via tracing) diagnosis ofthe infection. Note
that we focus on the onset of the epidemic. Therefore, all contacts of an infected individual connect to susceptible
individuals. The infection process without tracing is wellapproximated by a linear branching process (along the line
of the argument of Ball and Donnelly [1], see also [16, 2]). Only tracing introduces dependencies between individuals.
In order to analyze this process, we first look at backward tracing, then at forward tracing, and at the end we combine
both processes to full tracing.
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2.1. Backward tracing – recursive mode

Let us assume that only backward tracing takes place, and no forward tracing. We furthermore consider the recursive
tracing mode. As usual, convolution of two functionsf andg is defined by (f ∗g)(a) =

∫ a

0
f (a−τ)g(τ) dτ. Furthermore,

we define

f #(a) =
∫ a

0
f (τ) dτ = (1 ∗ f )(t).

Proposition 2.1. Let φ(t) denote the distribution of the tracing delay T,κ−(a) the probability to be infectious after
time of infection a. Then,

κ′−(a) = −κ−(a)
{
α + σ + pβ

[
(φ ∗ (1− κ−))(a) − α(φ ∗ κ#−)(a)

]}
, κ−(0) = 1. (1)

Proof: We start off with the relation

κ′−(a) = −κ−(a)
{
α + σ + rate of tracing (a)

}
.

In order to obtain the rate of (direct or indirect) detectionof an infected individual with age since infectiona , we
subtract from the total removal rate (or hazard)−κ′−(a)/κ−(a) the rate of spontaneous removalα,

−κ′−(a)
κ−(a)

− α.

In order to compute the contribution of backward contact tracing to the removal rate, we consider the infectees (gen-
erated at rateβ) that are still infectious afterc time units (probabilityκ−(c)) and are detected at age of the infectorτ,

∫ τ

0
β

(
−κ′−(c)
κ−(c)

− α

)
κ−(c) dc.

These individuals increase the removal rate of the infectorat age of infectiona, if the tracing delay is preciselya− τ
(probability densityφ(a− τ)), and the infector is traced, indeed (probabilityp). That is,

rate of tracing (a) = p
∫ a

0
φ(a− τ)

∫ τ

0
β

(
−κ′−(c)
κ−(c)

− α

)
κ−(c) dc dτ

= pβ
∫ a

0
φ(a− τ)

(
(1− κ−(τ) − ακ#−(τ)

)
dτ = pβ

[
(φ ∗ 1)(a) − (φ ∗ κ−)(a) − α(φ ∗ κ#−)(a)

]
.

We obtain the integro-differential equation stated above.

�

Let from now on̂κ(a) = e−(α+σ)a for a ≥ 0, and̂κ(a) = 0 for a < 0.

Proposition 2.2. The first order approximation ofκ−(a) in p reads

κ−(a) = κ̂(a) − p pobsβ κ̂(a) (1 ∗ φ ∗ (1− κ̂))(a) + O(p2). (2)

Proof: We go for a first order approximation. Note thatκ−(a) does not only depend ona but also onp (and some
other parameters that we keep constant). For a givena, we expandκ−(a) as a power series inp, viz.

κ−(a) =
∞∑

i=0

pi κ−,i(a).

In this formula, the functionsκ−,i(a) do not depend onp any more. We replaceκ−(a) by this expansion in the integro-
differential equation (1),

∞∑

i=0

pi κ′−,i(a) = −


∞∑

i=0

pi κ−,i(a)



α + σ + pβ

(φ ∗ (1−
∞∑

i=0

pi κ−,i))(a) − α(
∞∑

i=0

pi φ ∗ κ#−,i)(a)



 ,
∞∑

i=0

pi κ−,i(0) = 1
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and equate powers ofp. We find forp0 andp1

κ′−,0(a) = −κ−,0(a)(α + σ), κ−,0(0) = 1,

κ′−,1(a) = −(α + σ)κ−,1(a) − β κ−,0(a)
[
(φ ∗ 1)(a) − (φ ∗ κ−,0)(a) − α(φ ∗ κ#−,0)(a)

]
, κ−,1(0) = 0.

Therefore,κ−,0(a) = e−(α+σ) a = κ̂(a) and, withκ#
−,0(a) = (1− κ̂(a))/(α+ σ) we obtain that

[
(φ ∗ 1)(a) − (φ ∗ κ−,0)(a) − α(φ ∗ κ#−,0)(a)

]
= (φ ∗ (1− κ̂))(a) −

α

α + σ
(φ ∗ (1− κ̂))(a)

=
σ

α + σ
(φ ∗ (1− κ̂))(a).

Hence, the first order correction ofκ̂ by backward tracing reads

κ−,1(a) = −

∫ a

0
e−(α+σ)(a−τ) βσ

α + σ
e−(α+σ)τ (φ ∗ (1− κ̂))(τ) dτ

= −
βσ

α + σ
κ̂(a) (1 ∗ φ ∗ (1− κ̂))(a).

Therewith the result follows.

�

2.1.1. Special case: fixed delay

Assume that the tracing delay is a deterministic, fixed time periodT. That is,φ(a) = δT(a). Then,

(φ ∗ (1− κ̂))(a) = (1− κ̂(a− T))

for a > T and zero else. Hence, fora > T,

(1 ∗ φ ∗ (1− κ̂))(a) =

∫ a

0
φ ∗ (1− κ̂)(τ) dτ =

∫ a

T
(1− κ̂(a− T)) dτ

= (a− T) −
1
α + σ

(
1− e−(α+σ)(a−T)

)
.

All in all, we obtain fora < T that
κ−(a) = e−(α+σ)a = κ̂(a)

and fora > T

κ−(a) = κ̂(a) − p pobsβ κ̂(a)

{
(a− T) −

1− κ̂(a− T)
α + σ

}
+ O(p2).

The numerical analysis shows an excellent agreement of theory as given by eq. (1) and simulation (figure 1). However,
the first order approximation (2) is not valid any more ifp becomes large.

2.1.2. Special case: exponential delay

Apart of a fixed delay, an exponentially distributed delay isanother natural choice. Let the mean value beT, φ(a) =
e−a/T/T. We assume thatT(α + σ) , 1. Straight forward computations yield

κ−(a) = κ̂(a) − p pobsβ κ̂(a)

{
a+ T

T(α + σ)
1− T(σ + α)

(
(1− e−a/T) −

1− κ̂(a)
(T(σ + α))2

)}
+ O(p2).

Figure 3 indicates that the exponentially distributed delay has a larger effect than the fixed delay. We come later back
to this observation and discuss the presumable mechanism behind this finding.
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Figure 1: κ−(a) for backward tracing (one step, recursive tracing,p = 0.3, andp = 0.8, as indicated). Solid line:
κ̂(a), gray line: simulated data, dashed line:κ−(a) according to the theory, dots: first order approximation ofκ−(a).
Parameters:β = 2,α = 0.1,σ = 0.9, fixed tracing delay,T = 0.5.

2.1.3. Rates depending on age since infection

We generalize the model assumptions and allow for the case thatβ, α andσ depend on the age since infection, e.g.,
β = β(a). These relaxed assumptions allow to consider the interplay between contact tracing and a latency period. We
only look at the fully recursive case, since the one-step tracing case is more simple.
The argument here parallels that of proposition 2.1. The rate at which an infectee is detected at age of infectorτ is
now given by ∫ τ

0
β(τ − c)

(
−κ′−(c)
κ−(c)

− α(c)

)
κ−(c) dc.

Hence, the removal rate due to contact tracing reads

rate of removal by contact tracing(a)

= p
∫ a

0
φ(a− τ)

∫ τ

0
β(τ − c)

(
−κ′−(c)
κ−(c)

− α(c)

)
κ−(c) dc dτ

= −p
∫ a

0
φ(a− τ)

∫ τ

0

(
β(τ − c)κ′−(c) + β(τ − c)α(c)κ−(c)

)
dc dτ.

Unfortunately, in general this expression cannot be simplified. We obtain the integro-differential equation forκ−(a)

κ′−(a) = −κ−(a)

(
σ(a) + α(a) − p

∫ a

0
φ(a− τ)

∫ τ

0

(
β(τ − c)κ′−(c) + β(τ − c)α(c)κ−(c)

)
dc dτ

)
. (3)

2.1.4. Backward tracing – one-step tracing

We turn to one-step backward tracing. The basic argument stays the same as above, but the equations become slightly
more simple.
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Proposition 2.3. Letφ(t) denote the distribution of the tracing delay,κ−(a) the probability to be infectious after time
of infection a, andκ#−(a) =

∫ a

0
κ−(τ) dτ. Then,

κ′−(a) = −κ−(a)
{
α + σ + pβσ (φ ∗ κ#−)(a)

}
, κ−(0) = 1. (4)

Proof: As before,
κ′−(a) = −κ−(a)

{
α + σ + rate of tracing (a)

}
.

The rate of (direct) detection as infected individual is just σ, that is,

rate of tracing(a) = p
∫ a

0
φ(a− τ)

∫ τ

0
βσκ−(c) dc dτ = pβσ

∫ a

0
φ(a− τ) κ#−(τ) dτ

We obtain the integro-integral equation stated above.

�

Proposition 2.4. The first order approximation in p reads

κ−(a) = κ̂(a) − p pobsβ κ̂(a) (1 ∗ φ ∗ (1− κ̂))(a) + O(p2). (5)

The proof parallels that of proposition 2. Note that a path oflength 2 has a probabilityO(p2) to be traced. Hence,
the first order approximation of the full recursive backwardtracing only takes into account the tracing of immediate
neighbors, similar to one-step tracing. This heuristics already indicates that the first order approximation for recursive-
and one-step-tracing coincide.

In order to obtain a numerical indication of the quality of our approximation, we useφ(a) = δT(a) as tracing delay.
We do not find a strong difference between one-step and recursive backward tracing (see figure 1). As in recursive
backward tracing, the first order approximation is well suited for the complete process if the tracing probability is
small (p = 0.3), while for larger tracing probabilities (p = 0.8) the discrepancy between approximation and exact
solution (resp. simulations) becomes more serious.

2.2. Forward tracing

Now we proceed to forward tracing. We only discuss recursiveforward tracing in detail, as one-step forward tracing
is very similar; we will note how to handle one-step forward tracing in remark 2.6. Before we formulate the central
proposition of this section, we introduce some more notation.

Definition: Let κi(a|b) denote the probability for an individual of generation i to be still infectious at age of infection
a if the infector has age of infection a+ b.

Proposition 2.5. We find forκ+i (a) the recursion formula

κ+i−1(b) κi(a|b) = κ̂(a)
{
κ+i−1(b) − p

∫ a

0

(
−κ+i−1

′(b+ c) − α κ+i−1(b+ c)
) ∫ a

c
φ(a′ − c) da′ dc

}

κ+i (a) =

∫ ∞
0
κ+i (a|b)κ+i−1(b) db
∫ ∞
0
κ+i−1(τ) dτ

.

Proof: If the individual has not been traced so far, then its probability to be infectious is that of the zero’th generation,
κ̂(a). This probability is decreased by tracing via the infector. Hence, to obtainκ+i (a|b), we multiply κ̂(a) by the
probabilitynot to be traced via the infector. This probability is one minus the probability to be traced. This, in turn, is
p times the probability that during the interval under consideration a (delayed) tracing event did take place.
The probability for the infector to be still infectious at age of infectiona+ b is given by

κ+i−1(a+ b)/κ+i−1(a)

6



as we know at agea an infectious event had happened. The rate at which the infector is observed at ageb+ c is given
by

κ+i−1(b+ c)

κ+i−1(b)

(
−κ+i−1

′(b+ c)

κ+i−1(b+ c)
− α

)
=

(
−κ+i−1

′(b+ c)

κ+i−1(b)
−
α κ+i−1(b+ c)

κ+i−1(b)

)

Therefore, the rate at which the infector triggers a tracingevent ata′ ∈ [0, a) reads

∫ a′

0

(
−κ+i−1

′(b+ c)

κ+i−1(b)
−
α κ+i−1(b+ c)

κ+i−1(b)

)
φ(a′ − c) dc

Since we only want to know if an tracing event has been triggered before agea of infection we integrate overa′, and
find

∫ a

0

∫ a′

0

(
−κ+i−1

′(b+ c)

κ+i−1(b)
−
α κ+i−1(b+ c)

κ+i−1(b)

)
φ(a′ − c) dc da′

=

∫ a

0

(
−κ+i−1

′(b+ c)

κ+i−1(b)
−
α κ+i−1(b+ c)

κ+i−1(b)

) ∫ a

c
φ(a′ − c) da′ dc.

Therefore,

κ+i (a|b) = κ̂(a)

{
1− p

∫ a

0

(
−κ+i−1

′(b+ c)

κ+i−1(b)
−
α κ+i−1(b+ c)

κ+i−1(b)

) ∫ a

c
φ(a′ − c) da′ dc

}
.

If we multiply this equation byκ+i−1(b), we obtain the first equation of our proposition. As the distribution of the
age-since-infection of the infector at an infectious eventis given by

κ+i−1(a)
∫ ∞

0
κ+i−1(τ) dτ

also the second equation holds true.

�

Remark 2.6. In order to obtain the parallel formula for one step tracing,we replace the rate for direct and indirect
detection (

−κ+i−1
′(b+ c)

κ+i−1(b+ c)
− α

)

by the rate for direct detection only,σ, and find in this way the recursive formula

κ+i−1(b) κi(a|b) = κ̂(a)
{
κ+i−1(b) − pσ

∫ a

0
κ+i−1(b+ c)

∫ a

c
φ(a′ − c) da′ dc

}

κ+i (a) =

∫ ∞
0
κ+i (a|b)κ+i−1(b) db
∫ ∞
0
κ+i−1(τ) dτ

.

Now we return to recursive forward tracing. In order to obtain a first order approximation ofκ+i (a), we note that the
recursion formula can be written as

κ+i (a) = κ̂(a)


1− p

∫ ∞
0

∫ a

0

(
−κ+i−1

′(b+ c) − α κ+i−1(b+ c)
) ∫ a

c
φ(a′ − c) da′ dc db

∫ ∞
0
κ+i−1(b) db


.
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For a first order approximation ofκ+i , only a zero order approximation ofκ+i−1 is required. We knowκ+i−1(a) = κ̂(a) +
O(p) = exp(−(σ + α)a) + O(p). Accordingly, we find for the appropriate approximation ofthe integral expression

∫ ∞

0

∫ a

0

(
−κ+i−1

′(b+ c) − α κ+i−1(b+ c)
) ∫ a

c
φ(a′ − c) da′ dc db

=

∫ ∞

0

∫ a

0
σe−(α+σ)(b+c)

∫ a

c
φ(a′ − c) da′ dc db+ O(p)

= σ

∫ ∞

0
e−(α+σ)b db

∫ a

0
e−(α+σ)c

∫ a

c
φ(a′ − c) da′ dc+ O(p)

=
−σ

(σ + α)2

∫ a

0

d
dc

e−(α+σ)c
∫ a−c

0
φ(a′′) da′′ dc+ O(p)

=
−σ

(σ + α)2

{
e−(α+σ)c

∫ a−c

0
φ(a′) da′

∣∣∣∣∣
a

c=0
−

∫ a

0
e−(α+σ)c d

dc

∫ a−c

0
φ(a′) da′ dc

}
+ O(p)

=
−σ

(σ + α)2

{
−

∫ a

0
φ(a′) da′ +

∫ a

0
e−(α+σ)c φ(a− c) dc

}
+ O(p)

=
−σ

(σ + α)2

(
(1− κ̂) ∗ φ

)
(a) + O(p)

where we assumed that
∫ ε
0
φ(a′) da′ → 0 for ε → 0; this may not the true if a fraction of index cases induce an

immediate contact tracing event. As
∫ ∞
0
κ+i−1(b) db =

∫ ∞
0
κ̂(b) db+ O(p) = 1/(α + σ) + O(p), andpobs = σ/(σ + α),

we obtain the following corollary.

Corollary If
∫ ε

0
φ(a′) da′ → 0 for ε → 0, then the first order approximation forκi(a) is independent on i (for i> 0)

and reads
κi(a) = κ̂(a) − p pobs κ̂(a)

(
(1− κ̂) ∗ φ

)
(a) + O(p2).

Note that the first order approximation coincides withκ+1 (a).

2.2.1. Special case: fixed delay

If we have a fixed delay, that isφ(a) = δT(a), then

φ ∗ (1− κ̂)(a) = (1− κ̂(a− T))

for a > T and zero else. Hence, fora > T,

κi(a) = κ̂(a) − p pobs κ̂(a) (1− κ̂(a− T)) + O(p2),

andκi(a) = κ̂(a) + O(p2) else. Numerical simulations indicate that the first order approximation is well suited for the
stochastic process, even if the tracing probability becomes larger (see figure 2).

2.2.2. Special case: exponential delay

In order to compare fixed and random delay, we choose forφ(a) an exponential distribution with expectationT,
φ(a) = e−a/T/Tand obtain

κi(a) = κ̂(a) − p pobŝκ(a)

(
1− e−a/T −

κ̂(a) − e−a/T

1− T(α + σ)

)
+ O(p2).

As before, the exponentially distributed delay induces a higher effect than the fixed delay (Figure 3).
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2.2.3. Rates depending on age since infection

We again generalize the considerations above to the case that β, α, andσ depend on the time since infection. It is
straight to obtain the equation forκi(a), but unfortunately, the equations become even more unhandy as those above.
However, a first order analysis inp is possible and yields useful results.

The arguments completely parallel that of proposition 2.5.We find forκ+i (a) the recursion formula

κ+i−1(b) κi(a|b) = κ̃(a)
{
κ+i−1(b) − p

∫ a

0

(
−κ+i−1

′(b+ c) − α(b+ c) κ+i−1(b+ c)
) ∫ a

c
φ(a′ − c) da′ dc

}

κi(a) =

∫ ∞
0
κ+i (a|b)β(b)κ+i−1(b) db
∫ ∞
0
β(τ)κ+i−1(τ) dτ

κ̃(a) = e
∫ a

0
σ(τ)+α(τ) dτ.

2.3. Full Tracing

Let κi(a) denote the probability to be infectious at age of infectiona. Its straight forward to combine forward and
backward tracing, as we only need to repeat the argumentation of the last section, but taking into account thatκ0(a) is
for full tracing not given byκ+0 (a) = exp(−(α + σ)a), but byκ−(a). Hence we have the following result.

Proposition 2.7. We find forκ0(a) the

κ′0(a) = −κ0(a)
{
α + σ + pβ

[
(φ ∗ (1− κ0))(a) − α(φ ∗ κ#0)(a)

]}
, κ0(0) = 1. (6)
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and forκi(a) for i > 0 the recursion formula

κi−1(b) κi(a|b) = κ0(a)
{
κi−1(b) − p

∫ a

0

(
−κi−1

′(b+ c) − α κi−1(b+ c)
) ∫ a

c
φ(a′ − c) da′ dc

}
(7)

κi(a) =

∫ ∞
0
κ+i (a|b)κi−1(b) db
∫ ∞
0
κi−1(τ) dτ

. (8)

These formulas are exact but not handy. For small tracing probabilities, however, a first order approximation is enough
to estimate the effect of contact tracing. In order to do so we again only need to put together the results obtained for
forward- and backward tracing.

Proposition 2.8. The first order approximation in p reads

κ0(a) = κ̂(a)
{
1− p pobs β (1 ∗ φ ∗ (1− κ̂))(a)

}
+ O(p2). (9)

If
∫ ε
0
φ(a′) da′ → 0 for ε→ 0, then the first order approximation forκi(a) is independent on i (for i> 0) and reads

κi(a) = κ̂(a)
{
1− p pobs β (1 ∗ φ ∗ (1− κ̂))(a) − p pobs

(
φ ∗ (1− κ̂)

)
(a)

}
+ O(p2). (10)

Remark 2.9. The reproduction number in the i’th generation with contacttracing simply reads

R(i) =

∫ ∞

0
βκi(a) da

= R0 − p pobs

{∫ ∞

0
β2 κ̂(a) (1 ∗ φ ∗ (1− κ̂))(a) da+

∫ ∞

0
β̂κ(a)

(
(1− κ̂) ∗ φ

)
(a) da

}
+ O(p2).

In this approximation, the effects of forward- and backward tracing are clearly separated.

2.3.1. Fixed delay

As indicated, the first order approximation forκi(a) is just a combination of the approximations for forward- and
backward tracing. We obtain fora < T thatκi(a) = κ̂(a) + O(p2) and fora > T

κ−(a) = e−(α+σ)a − p pobs κ̂(a)
{
β(a− T) −

β

α + σ

(
1− κ̂(a− T)

)
+ (1− κ̂(a− T))

}
+ O(p2).
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As before, numerical simulations indicate that the first order approximation is well suited as long as the probability is
not too large (see figure 4).
We find

∫ ∞

T
κ̂(a)(1 ∗ φ ∗ (1− κ̂))(a) da = κ̂(T)

∫ ∞

T
κ̂(a− T)

{
(a− T) −

1
α + σ

(
1− e−(α+σ)(a−T)

)}
da

=
κ̂(T)

2(α + σ)2
.

And, withφ ∗ (1− κ̂)(a) = (1− κ̂(a− T)), we conclude that
∫ ∞

T
κ̂(a) (φ ∗ (1− κ̂))(a) da = κ̂(T)

∫ ∞

0
κ̂(a)(1− κ̂(a)) da=

κ̂(T)
2(α + σ)

.

Hence, we obtain the following proposition.

Proposition 2.10. For a fixed delay,φ(a) = δT(a), we obtain for i> 0

Rct := R(i) = R0 −
1
2

p pobŝκ(T)R0(R0 + 1)+ O(p2). (11)

The effect of contact tracing is (in first order ofp) exponentially decreasing in the tracing delay. The time scale of this
exponential decrease is given by the total removal rateγ = α + σ.

2.3.2. Special case: exponential delay

We chooseφ(a) = e−a/T/T. We do not state the first order approximation ofκi(a), as it is only necessary to combine
the corresponding results from forward- and backward tracing. We focus on the first order effect of contact tracing on
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the reproduction number. The effect due to backward tracing is described by

β

∫ ∞

0
p pobsβ κ̂(a)

{
a+ T

T(α + σ)
1− T(σ + α)

(
(1− e−a/T) −

1− κ̂(a)
(T(σ + α))2

)}
da=

p pobsR2
0

2(1+ T(α + σ))

and that for forward tracing

β

∫ ∞

0
p pobŝκ(a)

(
1− e−a/T −

κ̂(a) − e−a/T

1− T(α + σ)

)
da=

p pobsR0

2(1+ T(α + σ))
.

Proposition 2.11. For an exponentially distributed delay,φ(a) = e−a/T/T, we obtain for i> 0

Rct := R(i) = R0 −
1
2

p pobs
R0(R0 + 1)

1+ T(α + σ)
+ O(p2). (12)

We again find that the exponential distributed delay yields ahigher effect than the fixed delay (if we compare distribu-
tions with the same expectation). While the effect of the fixed delay decrease exponentially inT, the exponential delay
only yields a polynomial decay. Indeed, 1/(1+ T(α +σ)) is the [0/1]-Padé approximation of̂κ(T) = exp(−T(α+ σ)).
It is remarkable that in both cases, the effect of the delay only depends onT(α + σ), that is, on the quotient of the
expected delay over the expected time of infection (in absence of contact tracing).

2.3.3. Rates depending on age since infection

To obtain the full model for the case if the rates depend on theage since infection, we again only have to combine
forward- and backward tracing for this case. All in all, we obtain the equations for the probability to be infective at
age of infectiona for an infected individual of thei’th generationκi(a),

κ′0(a) = −κ0(a)
(
σ(a) + α(a)

−p
∫ a

0
φ(a− τ)

∫ τ

0

(
β(c)κ′0(c) + β(c)α(c)κ0(c)

)
dc dτ

)
(13)

κi−1(b) κi(a|b) = κ0(a)
{
κi−1(b)

−p
∫ a

0

(
−κi−1

′(b+ c) − α(b+ c) κi−1(b+ c)
) ∫ a

c
φ(a′ − c) da′ dc

}
(14)

κi(a) =

∫ ∞
0
κi(a|b)β(b)κi−1(b) db
∫ ∞
0
β(τ)κi−1(τ) dτ

. (15)

2.3.4. Error analysis

We did focus on an approximate technique: though we are able to derive exact equations forκi(a), these equations
are too complex to be solved, and hence we basically focus on afirst order approximation in the tracing probability
p. However, in comparison with “real world epidemics” this isnot the only simplification. The model itself is
a simplification (SIS/SIR within an unstructured population), and also the branching process with tracing is only
valid for the onset of the epidemic. Depletion of the class ofsusceptibles and tracing via contacts between infected
individuals (no transmission of infection happen in these contacts) are neglected. Both effects gain importance if the
disease approaches an endemic state.

Truncation error: In Figures 1 and 2, we compare simulationsof the stochastic process resp. the numerical solution
of the exact equations with the approximate solutions. For these simulations, the basic reproduction numberR0 = 2,
and pobs = 0.9. While a reproduction of two is in an realistic range, the fraction of observed casespobs = 0.9 is
rather high to focus on the effect of contact tracing as well as to uncover potential approximation errors. We find by
visual inspection that for reasonable tracing probabilities (p below 0.3, say), the agreement of our approximation and
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Figure 5: Simulation of the stochastic (non-smooth line) and the approximate deterministic (smooth line) model. We
use a fixed delayT, β = 2, α = 0.2, σ = 0.9, and recursive tracing. Fort < 15, p = 0. At t = 15 (indicated by
the vertical solid line)p is increased to 0.3. The tracing delay is indicated by the difference between the dashed and
the solid vertical line; at the solid line, contact tracing is introduced, at the dashed line, the first time tracing effects
appear.

simulations is satisfying. Only if the tracing probabilitybecomes larger (p ≈ 0.8), the error is noticeable. Here, in
particular the fraction of cases that become an index casepobs plays a role: ifpobs is small, then even large tracing
probabilities do not play a role.

Error due to the branching approximation: Reduction of the abundance of susceptibles due to the spread of the disease
reduces the number of secondary cases, and in this, the number of infectious persons that can be detected by contact
tracing. In order to have at least a heuristic method to deal this source of error, we propose to approximate what may
be called the effective removal rate. This removal rate should induce in average the same mean infectious period as
the stochastic process. Let us assume that the relative number of susceptibles is constantu over a relatively long time
period. The rate of infectious contacts is reduced fromβ to βu. For a fixed delay, the effective reproduction number
for a contact rateβu is given by

Rct ≈
βu
α + σ

{
1−

1
2
κ̂(T)(βu/(α+ σ) + 1)

}
.

This, in turn, is equivalent with a mean recovery rateγ = γ(u) given by

γe f f(u) =
βu
Rct
≈

α + σ

1− 1
2 κ̂(T)(βu/(α + σ) + 1)

.

We neglect in our considerations that also contacts betweentwo infected persons take place. Also these contacts
may lead to tracing events. However, if we compare stochastic simulations of the full epidemic process with contact
tracing on the one hand, and a deterministic SIS-model with the nonlinear recovery rate given above, we find a
satisfying agreement (see Fig. 5). The errors introduced bythe saturation of the epidemic process are well met by the
heuristic formula for the effective recovery rate given here.

2.3.5. The interplay between tracing delay and latency period

The equation above is too complex to be directly useful in thesense that we obtain deeper inside into the interplay of
the timing of the disease on the one hand, and tracing on the other hand. Therefore we concentrate on a special case:
a fixed latency periodTi and a fixed tracing delayT,

β(a) = χa>Ti β, α(a) = χa>Ti α, σ(a) = χa>Ti σ, φ(a) = δT(a)

where, as usual,χa>Ti denotes the characteristic function (χa>Ti = 1 if a > Ti and 0 else). We emphasize thatβ(a)
denotes a function, whileβ is a constant (the same forα andσ). A first order approximation of the reproduction
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number is straightforward, but tedious; we move the computations to Appendix A, and only present the result here.
Let Rct denote the reproduction number with contact tracing if the number of generations tends to infinity, andR0 the
reproduction number without contact tracing.

Corollary 2.12.

Rct = R0 −
1
2

p pobsR0

[
R0 κ̂(T + Ti) +

κ̂(max(Ti ,T))
κ̂(Ti)

(
2−
κ̂(max(Ti ,T))
κ̂(T)

)]
+ O(p2) (16)

The tracing effect is monotonously decreasing in the tracing delayT. The first order effect consists of two parts, that
for backward tracing (see Appendix Appendix A.1)

1
2

p pobsR2
0 κ̂(T + Ti)

and that for forward tracing (see Appendix Appendix A.2)

1
2

p pobsR0
κ̂(max(Ti ,T))
κ̂(Ti)

(
2−
κ̂(max(Ti ,T))
κ̂(T)

)
.

The backward tracing part is simply exponentially decreasing in the tracing delay and the latent period.
The dependency of the froward tracing effect on tracing delay resp. latent period is more complex. First of all, we find
that forTi = T, the two delays in the forward effect cancel each other: There is a race between tracing and infection.
If both mechanisms are subject to the same delay, the effects of the delays do cancel. IfT < Ti , the forward tracing
effect is even larger than that without any delay; only ifT > Ti , the effect decreases exponentially inT.

In order to compare the relative importance of forward- and backward tracing, we distinguish the casesT > Ti and
T < Ti .
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CaseT > Ti :

Rct = R0 −
1
2

p pobsR0 κ̂(T + Ti))
[
R0 + 1

]
+ O(p2)

As the backward term incorporatesR0, and the forward term 1, the backward tracing will contribute considerable
more to the (first order) tracing effect.

CaseT < Ti :

Rct = R0 −
1
2

p pobsR0 κ̂(T + Ti)

[
R0 +

2− κ̂(Ti − T)
κ̂(T + Ti)

]
+ O(p2)

This time we compareR0 with (2 − κ̂(Ti − T))/̂κ(Ti + T). In principle, the latter term can be arbitrarily large, in
particular ifTi is large andT small; note that (2− κ̂(Ti − T))/̂κ(Ti + T) is always increasing inTi (for T fixed). For
long latency periods and small tracing delays, forward tracing gains increasingly importance. Forward tracing benefits
from a long latency period.

If we fix Ti , the first order effect is simply decreasing inT. If Ti is rather large, a small tracing delay affects the effect
only weakly (see Fig. 6); only if the latency period is small or the tracing delay is in the same magnitude (or larger)
than the latency period, the delay in the tracing process strongly decreases the effect.
If T is fixed, then the effect is in general non-monotonously inTi : If T is below a certain value, the effect is simply
decreasing inTi , if T is above this value, the effect is in a first interval decreasing, but eventually increasing in Ti . The
reason for this observation is based on the effect that we observe the sum of forward- and backward tracing.Backward
tracing is always decreasing inTi if T is fixed. Forward tracing, however, is decreasing ifTi < T, but increasing for
Ti > T. If the impact of forward tracing is large enough, a non-monotone effect (inTi) may appear.

3. Discussion

In the present work, we continued the investigations of Ballet al. [2, 3] about tracing delays, taking into account
forward- and backward tracing. This study particularly focused on the questions how randomness in the tracing delay
affects the effect of contact tracing to fight an epidemic during the initialphase of an outbreak, if forward- or backward
tracing plays a more decisive role, and how the interplay between the time scales involved influences contact tracing.
With respect to the last question, we focused on the mean tracing delay on the one hand, and the average time of
infection (without control measure) respectively a latentperiod.
In order to approach these questions, we focused on the onsetof an epidemic, and used a branching process approx-
imation for the spread of infections. On top of this linear branching process, contact tracing has been introduced.
The tracing leads to dependencies between individuals, which makes the stochastic process more complex to analyze
analytically. The main tool to analyze the process is the probability for an infected individual to be still infectious at
a given age of infection. It has been possible to derive a system of integro-differential equations for this probability.
As an explicit solution seems to be difficult to obtain, approximate solutions (for small tracing probability) have been
derived. Based upon these approximations, an approximation for the reproduction number has been proposed.

The present study addressed the effect of randomness in the tracing delay: If we compare a fixed and an exponentially
distributed tracing delay, we find that the effect of the fixed delay is smaller than that of the exponential distribution
(if both have the same expectation). Most likely, the main reason for this observation is the exponential decrease
of the probability to be infected at a certain age of infection: The expected number of infections produced after a
certain age of infection will decrease exponentially (notethat we do not condition on the fact that a person reaches
this age of infection). In a situation with randomness in thedelay, some persons are detected earlier, and some later in
comparison with the fixed delay. Due to the exponential decrease, the gain in the effect by the more early detections is
higher than the loss in effect by the later detections. This difference leads to an exponential respectively a polynomial
decrease of the effect on the mean tracing delay. This finding may underline the importance to avoid outliers in the
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tracing delay: if the time between detection of an index caseand investigation of contacts becomes large, contact
tracing for this index case becomes inefficient. The efficiency of tracing for one index case does not decrease linearly
in the tracing delay, but exponentially. Considering the high costs for contact tracing, it may be worth to implement
a tracing program in such a way that a long tracing delay for anindex cases is not likely to occur. However, a delay
becomes notable only if it is in the range of the infectious period, as it is to expect. If it is distinctively shorter, the
delay hardly plays a role, if it is longer, contact tracing becomes inefficient.

If we introduce a latency period, we find the same result for backward tracing (and a deterministic, fixed delay)
as before: the effect decreases exponentially, where the ratio between tracing delay and latency period (delay in
infectivity) is decisive. It is slightly different in forward tracing: here, the effect is even stronger compared with
the case without any delay (no tracing delay and no latency period) if the tracing delay is shorter than the latency
period. We clearly find a race between forward tracing and infections. Only if the tracing delay becomes larger than
the latency period, we again find an exponential decrease in the effect. Forward tracing benefits from a long latency
period, and may even become stronger than backward tracing.If the tracing- and the latency period are in the same
range, backward tracing is more likely to play the central role.

Basically, we have three ingredients of the implementationof a contact tracing program that decide about its efficiency:
(a) the probability for an infectious person to become an index case (b) how likely is a contact reported by an index
case and (c) how large is the tracing delay. At lowest order, the effect (measured by the reproduction number) is
the product of the first two probabilities times an exponentially decreasing function in the tracing delay. The time
scale of this decrease is given by the recovery rate, and affected by the latency period. One may think about resource
allocation within a tracing program. As long as the tracing delay is distinctively shorter than the latency period resp.
the infectious period, it seems to be better to put effort in the detection of more contacts or index cases. Only if the
disease is fast (short latency period/infectious period), it is of importance to decrease the tracing delay. If, however,
the time scale of the infection is too fast, contact tracing as a control measure could be inadequate. These findings are
in line with, e.g., results by Fraser et al. [8]
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Appendix A. Latency period

We aim at a first order approximation (the only analysis that is feasible in general); we find

κ′0(a) = −κ0(a)
(
σ(a) + α(a)

−p
∫ a

0
φ(a− τ)

∫ τ

0

(
β(c)̃κ′(c) + β(c)α(c)̃κ(c)

)
dc dτ

)
+ O(p2)

κi−1(b) κi(a|b) = κ0(a)
{
κi−1(b)

−p
∫ a

0

(
−̃κ
′(b+ c) − α(b+ c) κ̃(b+ c)

) ∫ a

c
φ(a′ − c) da′ dc

}
+ O(p2)

κi(a) =

∫ ∞
0
κi(a|b)β(b)κi−1(b) db
∫ ∞
0
β(τ)κi−1(τ) dτ

κ̃(a) = e
∫ a

0 σ(τ)+α(τ) dτ.

Proposition Appendix A.1. Up to second order in p,κi(a) = κ1(a) for i > 0.

Proof: We first find

κi(a|b)

= κ0(a)
{
1−

p
κi−1(b)

∫ a

0

(
−̃κ
′(b+ c) − α(b+ c) κ̃(b+ c)

) ∫ a

c
φ(a′ − c) da′ dc

}
+ O(p2)

= κ0(a)
{
1− p

∫ a

0

(
−̃κ
′(b+ c)
κ̃(b)

− α(b+ c)
κ̃(b+ c)
κ̃(b)

) ∫ a

c
φ(a′ − c) da′ dc

}
+ O(p2) (A.1)

and henceκi(a|b) = κ1(a|b) + O(p2). We drop the index and simply writeκ(a|b) = κ1(a|b) + O(p2), whereκ(a|b)
is defined by equation (A.1), where theO(p2) terms are neglected. In zero order,κ0(a) = κ̃(a), and hence also
κ(a|b) = κ̃(a); we write

κ(a|b) = κ̃(a) + pζ(a|b)

whereζ(a|b) does not depend onp. Hence,

κi(a) =

∫ ∞
0

(̃
κ(a) + pζ(a|b)

)
β(b)κi−1(b) db

∫ ∞
0
β(τ)κi−1(τ) dτ

+ O(p2) = κ̃(a) + p

∫ ∞
0
ζ(a|b)β(b)κi−1(b) db
∫ ∞

0
β(τ)κi−1(τ) dτ

+ O(p2)

= κ̃(a) + p

∫ ∞
0
ζ(a|b)β(b)̃κ(b) db
∫ ∞

0
β(τ)̃κ(τ) dτ

+ O(p2).

�

As a consequence, the first order correction of the asymptotic reproduction number (i → ∞) consist of two clearly
separated parts: that due to forward tracing, and that due tobackward tracing. Note that we choose the signs in the
definition ofη± below in such a way, that the correction terms of the reproduction number have a minus sign.
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Proposition Appendix A.2. Let κ0(a) = κ̃(a) − pη−(a) + O(p2),

η+(a) = κ̃(a)

∫ ∞
0

∫ a

0

(
−̃κ
′(b+c)
κ̃(b) − α(b+ c) κ̃(b+c)

κ̃(b)

) ∫ a

c
φ(a′ − c) da′ dc β(b)̃κ(b) db

∫ ∞
0
β(τ)̃κ(τ) dτ

r± =
∫ ∞
0
β(a) η±(a) da. Then,

Rct = R0 − p(r+ + r−) + O(p2).

This proposition is a direct consequence of equ. (A.1).

Now we specify the parameters as indicated above:β(a), α(a) andσ(a) = 0 for a < ti , and are constant (β, α,
σ) afterwards; The contact tracing delay is a constantT. We compute the reproduction number and the first order
correction terms forRct. We will use

κ̂(a) = e−(α+σ) a, κ̃(a) = e−
∫ a

0
(α(τ)+σ(τ)) dτ

such that̃κ(a) = κ̂(a− Ti) for a > Ti . The zero order term is a direct consequence ofR0 =
∫ ∞
0
β(a) κ̃(a) da.

Proposition Appendix A.3. R0 =
β

α+σ
.

Appendix A.1. First order approximation: backward tracing

Proposition Appendix A.4. The first order approximation reads

κ0(a) = κ̂(a) + O(p2) for a ≤ Ti + Tt.

and for a> Ti + T

κ0(a) = κ̂(a)

[
1− pβ pobs

(
(a− Ti − T) −

1
α + σ

(1− κ̃(a− T − Ti)

)]
+ O(p2)

Proof: The proof consist of direct computations.

κ′−(a) = −κ−(a)

(
σ(a) + α(a) − p

∫ a

0
φ(a− τ)

∫ τ

0

(
β(τ − c)̃κ′(c) + β(τ − c)α(c)̃κ(c)

)
dc dτ

)
+ O(p2)

= −κ−(a)

(
σ(a) + α(a) − p

∫ a

0
φ(a− τ)

∫ τ−Ti

0

(
βσ(c)̃κ(c)

)
dcχτ>Ti dτ

)
+ O(p2)

= −κ−(a)

(
(σ + α) χa>Ti + pβσ

∫ a

0
φ(a− τ)

∫ τ−Ti

Ti

e(α+σ)(c−Ti ) dc χτ>2Ti dτ

)
+ O(p2)

= −κ−(a)

(
σ(a) + α(a) + pβ pobs

∫ a

0
φ(a− τ)

(
1− κ̂(τ − 2Ti)

)
χτ>2Ti dτ

)
+ O(p2)

= −κ−(a)
(
σ(a) + α(a) + pβ pobs

(
1− κ̂(a− T − 2Ti)

)
χa>2Ti+T

)
+ O(p2)

where we used the definition̂κ(a) = e−(α+σ)a for a > 0. Then,

κ−(a) = κ̂(a) eχa>2Ti+T pβ pobs((a−2Ti−T)− 1
α+σ

(1−̂κ−(a−T−Ti ))) + O(p2)

= κ̃(a)

[
1− pβ pobsχa>2Ti+T

(
(a− 2Ti − T) −

1
α + σ

(1− κ̃−(a− T − 2Ti))

)]
+ O(p2)

�

18



The term 2Ti is a consequence of backward tracing: An infectee is only produced afterTi time units, and the earliest
time point at which this infectee can be observed isTi time units after his/her infection. Hence, the earliest time point
at which a backward tracing event can be triggered is 2Ti , and the infector is then traced at age of infection 2Ti + T.

Consequently, we have (note our sign convention)

η−(a) = κ̃(a) β pobsχa>2Ti+T

(
(a− 2Ti − T) −

1
α + σ

(1− κ̂(a− T − 2Ti))

)
.

Evaluating the integralr− =
∫ ∞
0
β(a) η−(a) dayields

r− =
1
2

pobs R2
0 κ̂(T + Ti). (A.2)

Appendix A.2. First order approximation: forward tracing

Proposition Appendix A.5. η+(a) = pobs χa>T κ̃(a)(1− κ̂(a− T)).

Proof: We evaluate

η+(a) = κ̃(a)

∫ ∞
0

∫ a

0

(
−̃κ
′(b+c)
κ̃(b) − α(b+ c) κ̃(b+c)

κ̃(b)

) ∫ a

c
φ(a′ − c) da′ dc β(b)̃κ(b) db

∫ ∞
0
β(τ)̃κ(τ) dτ

which yields the result for our special case as
∫ ∞
0
β(τ)̃κ(τ) dτ = R0,

∫ a

c
φ(a′ − c) da′ = χa>T χc<a−T , and

(
−̃κ
′(b+ c)
κ̃(b)

− α(b+ c)
κ̃(b+ c)
κ̃(b)

)
= σ(b+ c)

κ̃(b+ c)
κ̃(b)

.

Note that the out-most integral only extends overb ∈ [Ti,∞) asβ(b) = 0 for b < Ti . Forb > Ti , we have

σ(b+ c) κ̃(b+ c)/̃κ(b) = σ κ̂(b+ c− Ti)/̂κ(b− Ti) = σ κ̂(c).

That is, the inner integral does not depend onb, and the result follows easily.

�

Integratingβ(a) η+(a) overa ∈ R+ yields the correction term for forward tracing,

r+ =
1
2

pobsR0 κ̂(max(Ti ,T) − Ti)
(
2− κ̂(max(Ti ,T) − T)

)

=
1
2

pobsR0
κ̂(max(Ti ,T))
κ̂(Ti)

(
2−

κ̂(max(Ti ,T))
κ̂(T)

)
. (A.3)
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