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The dfect of delay on contact tracing

Johannes Mullér#, Bendix Koopmant

aTU Minchen, Centre for Mathematical Sciences, Boltzmar8)D-85747 Garching, Germany
b Helmholtz Center Munich, Institute for Computational Bigy, Ingolstadter Landstr. 1, D-85764 Neuherberg, Gerynan

Abstract

We consider a model for an infectious disease in the onset ofitbreak. We introduce contact tracing incorporating
a tracing delay. Theffect of randomness in the delay and tlkeet of the length of this delay in comparison to the
infectious period of the disease respectively to a laterciog on the &ect of tracing, given e.g. by the change of the
reproduction number, is analyzed. We focus particularlyhendtect of randomness in the tracing delay.
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1. Introduction

Contact tracing resp. partner notification programs arewed to be of central importance for the control of many
infectious diseases: infected persons are questioneedent potentially infectious contacts. In this way, furthe
infected and infectious persons are identified in a targetsd often quite early after infection. These persons can be
treated and isolated, and the number of further infectiamse reduced. For some emerging infections, data analysis
indicates that contact tracing has proven to be a valuabésune — e.g. in the case of SARS|[14] or Ebbla [18]. For
other infections, such as tuberculosis, contacts may Isectsual that they are hardly recognized; in these cases it
is under debate if contact tracing pa@ [E|0[|4, 7]. Still, ooderstanding of thefiectiveness of contact tracing is
incomplete. In particular, the consequences of tiieint time scales involved — latent period, typical timensen
contacts, and the delay in the tracing process — remain amcle

As contact tracing depends on the detailed contact stridtus — in contrast to e.g. mass screening — not immediately
clear how to model this method appropriately. Local intéoars and correlations have to be taken into account. In
recent years, basically twoftirent modelling approaches have been successfully dexet|dphe first approacE|[5,
,] relies on a fixed contact graph. The infection (as altontact tracing) spreads via the edges of this graph,
and is modeled as a stochastic contact process. Pair apyatian yields a model consisting of ordinaryffdrential
equations (ODEs) that gasps the most important featurdsealftnamics. The mean value of the stochastic process
is more or less met by these ODEs. This modeling approacls givearticular good results if the degree of nodes is
large.

The second approach is based on a branching process, anti¢nlpaused to describe the onset of an outbreak [16,
,]. On the tree of infecteds (the nodes are infectedihdals, a directed edge points from infector to infectae) t
tracing process takes place. If an individual is discoveadihcent edges have (independently) a certain probahbilit
the tracing probability — to be detected. As the underlyirapd) is directed, it is suggestive to define forward tracing
(if the infector is discovered, infectees are traced) artkWard tracing (if an infectee is discovered, the infector i
traced). Even in the very early papers [9] this concept has bieveloped, and it has been discussed if forward- or
backward tracing is more important.

In addition to these two mathematical approaches, a lot ek\Wwas been done based on simulation mo@S@Z, 13]
andor to understand theffect of contact tracing for certain diseases like influen2RS, tuberculosis or Ebol£|[6,

14,7]4[18).
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In the present work, we take up the discussion how a tracitaydethe time elapsing between the discovery of an
infected individual and the identification of ffier infector and infectees — influences tlfieceency of contact tracing.
Fraser|[B] and Kis< [12] already discussed the importaneelatent period for contact tracing: a latent period allows
one to detect cases before they start to spread the diseabsesthis makes contact tracing mor@astive. A tracing
delay has the converséect; persons may spread the infection also during the timeelapses between detection of
an index case and their own detection by contact tracingy @m models address this delay explicitly. Klinkenberg
et al. ml] extends the work of Fraser et &l. [8] by a tracintpyle Approximations of the next generation operator
for contact tracing were developed. Another approach wead bg Shaban et a|:L|19]. In that paper, a fixed contact
network is considered (as in most pair approximation mggdblg the authors focus on the onset of an outbreak and
use a branching process approximation of the process. Tiigytake into account forward tracing. In principle,
their model allows for general distributions for latencyipd and tracing delay, but the authors concentrate on the
special case of exponential distributions. Ball etﬁl[l]z,aike up this idea. They also consider only forward tracing
but assume a homogeneously mixing population. The autbomsulate a multitype-branching process for detected
individuals. This approach is mathematically particylappealing, as the theory of branching processes can be used
to derive analytical results.

In the present work we extend the methods developemn [1&hadyse delayed contact tracing with forward- and
backward tracing. We do this analysis first for an epidemitwonstant contact- and recovery rates, but extend the
ideas also to non-constant rates, opening the possihliso consider an infection with latent period. The central
technique relies on the derivation of the probability thatirdividual is still infectious at a given age of infection.
However, in general it is only possible to solve these eguatnhumerically. Approximate solutions are derived for
small tracing probabilities; also an approximation for taproduction number is given. The influence of the timing
(latent period and tracing delay) is discussed. We arequéatily interested in the question how randomness in the
tracing delay fects the #iciency of contact tracing as given by the reduction of theadpction number, if forward-

or backward tracing is more important, and how the interplayveen the time scales involved (tracing delay, mean
infectious period, and latency period) influences contacing.

2. Model and Analysis

We consider a randomly mixing, homogeneous population e Xwdt models assuming a homogeneous population
may behave dierently compared with models that assume an underlyingacbgtaph, in particular of the contact
graph is sparse. It depends on the disease which approaatrésappropriate. In order to model contact tracing,
we start ¢f with an SISSIR- type of model, and focus on the onset of an epidemic gthex we do not need to
specify if a recovered person will be susceptible again anime). In the long run, SIR and SIS models will, of
course, behave fierently. The contact rate is denotedfhyinfected persons recover at rateWith probability pops
recovered persons become index cases and trigger (at rgraveacing event. Tracing, however, does not take place
immediately but with a random deldly, distributed with density. We allow generalized functions for this density,
such that a fixed delay is covered by the model. For each dptitecdelay is an independent realization; it is not the
case that the tracing delay e.g. only depends on the index bi#ector and infectees of the index case have, if they are
still infectious at the time at which contact tracing aclyigdkes place, a probability to be diagnosed. We consider
two different modes: either a traced individual is again an indeg @sursive tracing), or the contact tracing stops
(one-step-tracing).

For technical reasons, we introduce the rates (1 — pongy ando = pobgy, and consider as the spontaneous
recovery rate (no diagnosis), andthe recovery rate with direct (not via tracing) diagnosigtaf infection. Note
that we focus on the onset of the epidemic. Therefore, alteatts of an infected individual connect to susceptible
individuals. The infection process without tracing is wagproximated by a linear branching process (along the line
of the argument of Ball and Donnelﬂ [1], see al ﬁ|6, 2]))yaracing introduces dependencies between individuals.
In order to analyze this process, we first look at backwardrig then at forward tracing, and at the end we combine
both processes to full tracing.



2.1. Backward tracing — recursive mode

Let us assume that only backward tracing takes place, andmaifd tracing. We furthermore consider the recursive
tracing mode. As usual, convolution of two functiohandg is defined by {+g)(a) = foa f(a-7)g(7) dr. Furthermore,
we define

#—a‘r‘r:*.
f@—ﬁfﬂd (L F)(t)

Proposition 2.1. Let ¢(t) denote the distribution of the tracing delay #_(a) the probability to be infectious after
time of infection a. Then,

K(@)=-k@{a+o+pB |+ (1L-x)@-alpH)@]. «(0)=1 1)
Proof: We start df with the relation
k" (a) = —k_(a) {@ + o + rate of tracingd)} .

In order to obtain the rate of (direct or indirect) detectafran infected individual with age since infectian, we
subtract from the total removal rate (or hazard) (a)/«_(a) the rate of spontaneous remowal

-« (a) .
k_(a)

In order to compute the contribution of backward contadtitrg to the removal rate, we consider the infectees (gen-
erated at ratg) that are still infectious after time units (probabilitk_(c)) and are detected at age of the infeator

T (—k(C) )
—alk_(c)dc
g oo
These individuals increase the removal rate of the infeatt@ge of infectiora, if the tracing delay is precisely—

(probability densityp(a — 7)), and the infector is traced, indeed (probabifily That is,

-k’ (c)

rate of tracingd) = p j(;aq)(a—r) jO‘T,B( 0 —a)K(C)dCdr

= pﬁﬁ¢@—ﬂ«rw4ﬂ—mﬂﬂﬁh=mﬂ@*n@—W*mxm—M¢wﬂ®]

We obtain the integro-flierential equation stated above.

Let from now orik(a) = e @*?a for a > 0, andk(a) = 0 fora < 0.

Proposition 2.2. The first order approximation af_(a) in p reads

k-(@) = K@) - p pobsBK@) (1 +(L-K)(@) +O(p?). (@)

Proof: We go for a first order approximation. Note tha{a) does not only depend ambut also onp (and some
other parameters that we keep constant). For a giyere expand_(a) as a power series ip, viz.

c@=>p @
i=0

In this formula, the functions_;(a) do not depend op any more. We replace (a) by this expansion in the integro-
differential equatiori{l),

0

iﬂé@ﬁ—ﬁ}“Aﬂ%HU+WPWG—ZﬂKM®—MiﬂWﬁM®
i=0 i=0 i=0

i=0
3
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and equate powers @ We find forp® andp*
—Kk-0(@)(a + 0), k-0(0) =1,
(@ + 0)k-1(8) = Br-0(@) (¢ * 1)(@) — (¢ * k-0)(@) — al¢ * £ (@], «-1(0) = 0.

Thereforex_o(a) = e(**7)2 =’{(a) and, with«” ,(a) = (1 -«(a))/(a + ) we obtain that

K/_,o(a)

& 1(2)

(6 1)@ - (¢ *x-0)@ - a6+ )(@)| = (¢« L -RN@ - ——(#+ (1-D)(@)

o

= (¢« (1-75))(@).

a+o

Hence, the first order correction@by backward tracing reads

K_’l(a) _ \f(;a e,(aJru—)(a—T) a[ﬂfo— e—(aﬂr)‘r (¢ * (1 —’IZ))(T) dr
. aﬂfa?(a) (1% 6+ (1-D)(@).

Therewith the result follows.

2.1.1. Special case: fixed delay
Assume that the tracing delay is a deterministic, fixed tieiequ T. That is,¢(a) = dr(a). Then,

(¢+(1-%)@)=(1-x@a-T)

fora> T and zero else. Hence, far> T,

L+ ¢+ (1-D)a) fo 6+ (L-T)(r) dr = fT (1-%a-T)dr

(a _ T) _ ﬁ (1 _ e—(<r+(r)(a—T)) )

Allin all, we obtain fora < T that
k_(a) = e @3 = qa)

andfora>T
1-ka-T)

a+o

«.(2) = 7(8) P PovsB F(@) {(a— - } 0.

The numerical analysis shows an excellent agreement ofitlasayiven by eq[{{1) and simulation (figlide 1). However,
the first order approximatiofil(2) is not valid any mor@ibecomes large.

2.1.2. Special case: exponential delay

Apart of a fixed delay, an exponentially distributed delagnn®ther natural choice. Let the mean valueThe(a) =
e¥T/T. We assume that(a + o) # 1. Straight forward computations yield

_ — T(a+0) T 1-7(a) )
(@) =T - P st (@) {0 T s (1= ) - RO ()
Figure[3 indicates that the exponentially distributed gélas a largerfect than the fixed delay. We come later back
to this observation and discuss the presumable mechanisimdahis finding.
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one-step, p=0.3 recursive, p=0.3
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] ‘\ one-step, p=0.8
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«(a)
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Figure 1: x_(a) for backward tracing (one step, recursive tracipgs 0.3, andp = 0.8, as indicated). Solid line:
k(a), gray line: simulated data, dashed line{a) according to the theory, dots: first order approximatior_g).
Parameters3 = 2, = 0.1, 0 = 0.9, fixed tracing delayT = 0.5.

2.1.3. Rates depending on age since infection

We generalize the model assumptions and allow for the cad@,thh ando- depend on the age since infection, e.g.,
B = B(a). These relaxed assumptions allow to consider the intelween contact tracing and a latency period. We
only look at the fully recursive case, since the one-stegiritgacase is more simple.

The argument here parallels that of proposifiod 2.1. The aatvhich an infectee is detected at age of infectis

now given by
T -« (c)
fo B(r-0) ( O a(c)) xk-(c) dc.

Hence, the removal rate due to contact tracing reads

rate of removal by contact tracira)(

2 ’ -«(C)
pfo ¢(a—r)f0ﬂ(r—c)(K—(c)—a(c))K_(c)dch

-p foa #a—-1) fOT (,B(T - o)k (c) +B(r - c)a(c)x,(c)) dcdr.

Unfortunately, in general this expression cannot be sifirepli We obtain the integro-fierential equation fox_(a)

K (3) = —«_(a) (o-(a) +a(a) - p fo #a-1) fo ' (,B(T — O (€) + Blr — C)a(C)K_(C)) dc dr). 3)

2.1.4. Backward tracing — one-step tracing

We turn to one-step backward tracing. The basic argumey #te same as above, but the equations become slightly
more simple.



Proposition 2.3. Let¢(t) denote the distribution of the tracing delay,(a) the probability to be infectious after time
of infection a, and*(a) = foax,(r) dr. Then,

K. (@) =-k(@)fe+o+ppo(p=)@)}, «(0)=1 (4)

Proof: As before,
k" (a) = —k_(a) {a + o + rate of tracingd)} .

The rate of (direct) detection as infected individual ig justhat is,

rate of tracingd) = p faqﬁ(a—r) fTﬂo-K,(c)dcdr = pﬂo-faq)(a—r)x#(r) dr
0 0 0

We obtain the integro-integral equation stated above.

Proposition 2.4. The first order approximation in p reads

k-(8) = X@) - ppobsBK(@) (1% ¢+ (1-1))(@) +O(P?). (5)

The proof parallels that of propositiah 2. Note that a patteafjth 2 has a probabilit®(p?) to be traced. Hence,
the first order approximation of the full recursive backwaetting only takes into account the tracing of immediate
neighbors, similar to one-step tracing. This heuristiosady indicates that the first order approximation for reiver
and one-step-tracing coincide.

In order to obtain a numerical indication of the quality of @pproximation, we usg¢(a) = dr(a) as tracing delay.
We do not find a strong fference between one-step and recursive backward traciedigsee1). As in recursive
backward tracing, the first order approximation is well edifor the complete process if the tracing probability is
small (p = 0.3), while for larger tracing probabilitiep(= 0.8) the discrepancy between approximation and exact
solution (resp. simulations) becomes more serious.

2.2. Forward tracing

Now we proceed to forward tracing. We only discuss recurivwward tracing in detail, as one-step forward tracing
is very similar; we will note how to handle one-step forwamraktng in remark216. Before we formulate the central
proposition of this section, we introduce some more notatio

Definition: Letk;(alb) denote the probability for an individual of generation i te btill infectious at age of infection
a if the infector has age of infection+ab.

Proposition 2.5. We find fork"(a) the recursion formula

i (0) ki(alb) = '/?(a){Kitl(b) -p fo (—Kitl'(b +0)— ak ,(b+ c)) fc (@ —c) da’dc}
@ = I Ki;(am)K; 1(b)db‘
fo Kt (r)dr

Proof: Ifthe individual has not been traced so far, then its proiighd be infectious is that of the zero’th generation,
k(). This probability is decreased by tracing via the infectbience, to obtain;(alb), we multiply’k(a) by the
probabilitynotto be traced via the infector. This probability is one mirtus probability to be traced. This, in turn, is
p times the probability that during the interval under copsadion a (delayed) tracing event did take place.

The probability for the infector to be still infectious ateagf infectiona + b is given by

Ki_1(@+b)/k 4 (a)
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as we know at aga an infectious event had happened. The rate at which thetfiscobserved at age+ c is given
by

K, (b+0c) (—Ki*l'(b +0) ) B (—Ki*l'(b +C)  ak (b+0)
'+, (b) Kt (b+c) - ki, (b) K+, (b)
Therefore, the rate at which the infector triggers a traewent ai’ € [0, a) reads

fa/ (—K;rl'(b +0)  ax,(b+o)
o\ «4(b) x4 (b)

Since we only want to know if an tracing event has been triggéefore aga of infection we integrate over’, and

)¢(a’ —c)dc

find
¥k, (b+o) axiy(b+o))
»f(; \L‘ ( Kitl(b) B Kitl(b) )¢(a —c)dcdd
_ a —Kitl/(b +C) a/Kitl(b +0) a , ,
- fo ( '+, (b) B «*(b) )fc ¢(@ —c)dda dc.
Therefore,

. ~ alt (b+c) ak,(b+0)) (2 )
«;" (alb) =«(a) {1—pf0( PO EC) )fcqﬁ(a—c)dadc}.

If we multiply this equation by, (b), we obtain the first equation of our proposition. As theriisttion of the
age-since-infection of the infector at an infectious evegiven by

K1 (2)
Iy K (r)de

also the second equation holds true.

O

Remark 2.6. In order to obtain the parallel formula for one step tracingg replace the rate for direct and indirect
detection ,
(—Kﬁ_l (b+0) ~ a)
ki, (b+c)

by the rate for direct detection only,, and find in this way the recursive formula

HaB)a@b) = ﬂa){'(itl(b) I fo k_1(b+c) fc #@ —c)da dC}
K@ = fooo Ki:falb)’(itl(b) db.
fo K4 () dr

Now we return to recursive forward tracing. In order to obtaifirst order approximation af (a), we note that the
recursion formula can be written as

< =k (b+C) — akt, (b ®o(a@ - c)da dcdb
K@) = ﬂa){l—pfo b (o 0+ 9 - anty(0+9) [oter - dede }

Jo x4 (b) db



For a first order approximation af , only a zero order approximation ef , is required. We know;" ,(a) =k(a) +
O(p) = exp(=(o + a)a) + O(p). Accordingly, we find for the appropriate approximatiortloé integral expression

fwf(—K{f_l’(b+c)—a/<i+_1(b+c))f¢(a’—c)da’dcdb
0 0 c

f ) f o g (@rb+0) f #(@ - c)da dcdb+ O(p)

0

af e“””)bdbf e‘“*”)chﬁ(a—c)da dc+O(p)
— 7(a+0')c 1"
= (ﬁa)zf e f o(@") da’ de-+O(p)
a d a—C
_ —((t+0')c _ —(a+o)c 2 ’
_ (0'+a/)2{ f ¢(a)da’ . foe dcfo ¢(a)da’dc}+0(p)

- (o:l-—a/)z {_ fo P& da + fo e‘("+")°¢(a—c)dc}+0(p)
crap (@-D0@+0p)

where we assumed thg{f ¢(@)da — 0 fore — 0; this may not the true if a fraction of index cases induce an

immediate contact tracing event. AS «*,(b)db = ["%(b) db+ O(p) = 1/(a + &) + O(p), andpops = o7/ (o + a),
we obtain the following corollary.

Corollary If fog g(@)da — Ofor e — 0, then the first order approximation far(a) is independent on i (for# 0)
and reads

k(@) = k(@) ~ P Pobs K(a) (1 -7) * #)(@) + O(P?).

Note that the first order approximation coincides wifiga).

2.2.1. Special case: fixed delay
If we have a fixed delay, that ifa) = 61 (a), then

*(1-K)@=01-%@a-T))
fora> T and zero else. Hence, far> T,
ki(8) =1(@) — P Pobs (@) (1 -Ka~-T)) +O0(p),
andx;(a) = x(a) + O(p?) else. Numerical simulations indicate that the first orgggraximation is well suited for the
stochastic process, even if the tracing probability becolager (see figuild 2).
2.2.2. Special case: exponential delay

In order to compare fixed and random delay, we choosesfay an exponential distribution with expectatidn
#(a) = €T /Tand obtain

a/T
(@) =F(@) - P (@) [1- &7 - O o

As before, the exponentially distributed delay inducesghéi dfect than the fixed delay (Figuré 3).



one-step, p=0.3

recursive, p=0.3

x(a)
00 02 04 06 08 10
x(a)

00 02 04 0.6 0.8 1.0

8 \\ recursive, p=0.8

one-step, p=0.8

generation 1

«(a)
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Figure 2:«;"(a) for forward tracing (one step, recursive tracipgs 0.3, andp = 0.8, as indicated). Solid lin&f{a),
gray line: simulated data for generation 4 (if not indicatifierently), dashed linex(a) according to the theory
for generation 4 (if not indicated fierently), dots: first order approximation gf(a). Parameterss = 2, « = 0.1,
o = 0.9, fixed tracing delayl = 0.5.

2.2.3. Rates depending on age since infection

We again generalize the considerations above to the casg,thaando depend on the time since infection. It is
straight to obtain the equation fei(a), but unfortunately, the equations become even more unhasthose above.
However, a first order analysis mis possible and yields useful results.

The arguments completely parallel that of propositioh 2V&.find fork;"(a) the recursion formula

«_y(b)ki(alb) = f(a){/qtl(b) -p fo a(_,(:_ (0+¢) = ab+0) k4 (b+0)) ffﬁ(a’ o dc}
B ¢ (alb)a(o);4(b) db
Ki (a) = —
fo BTk, (7) dr
%a) = eb ora@or

2.3. Full Tracing

Let xj(a) denote the probability to be infectious at age of infectionts straight forward to combine forward and
backward tracing, as we only need to repeat the argumentattithe last section, but taking into account thg®g) is
for full tracing not given by (a) = exp(-(a + 0)a), but byx_(a). Hence we have the following result.

Proposition 2.7. We find forkg(a) the

k(@) = —ko(@) [ + o + B [(6 * (1 - k0))(@) — (¢ + k)@ ]} #0(0) = 1. 6)
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Figure 3: First order approximation &f(a) overk(a); left panel: backward-tracing, right panel: forwardeiray.
Solid line: 6(a) = 6t (a), dashed linep(a) = e ¥T/T. Parametersr = o = 1, p= 0.3, = 3, andT = 1.

and for;(a) for i > 0 the recursion formula

@1 -p fo (~«i-2'(b+¢) ~ aria(b+ ) fcarﬁ(a/ - g aa dc) @)
57 ki (@lb)ii-1(b) db
o kia@dr

These formulas are exact but not handy. For small traciniggiitities, however, a first order approximation is enough
to estimate theféect of contact tracing. In order to do so we again only needitdggether the results obtained for
forward- and backward tracing.

ki-1(b) xi(alb)

(8)

«i(a)

Proposition 2.8. The first order approximation in p reads
K@ = T@1- P pos (Lx 6+ (1-R)(@)} + O(P). (©)

If fos ¢(@)da — Ofor e — 0, then the first order approximation faf(a) is independent on i (for# 0) and reads

a@ = T@{L-p poosf (L (L-R)@ ~ P Pos (¢ + (L=} + O(P). (10)
Remark 2.9. The reproduction number in the i'th generation with contimating simply reads

RO = fom,&q(a)da

= Ro-p s { [ F@ (o -R@dar [ ARE) (-7« i@ dal + O

In this approximation, thefgects of forward- and backward tracing are clearly separated

2.3.1. Fixed delay

As indicated, the first order approximation fa(a) is just a combination of the approximations for forwarddan
backward tracing. We obtain far< T thatk;(a) = x(a) + O(p?) and fora> T

(@) = €1~ p s R(@ {Ba-T) - L= (1-Fa-T) + L -Ta- T} + O(p?).
10



one-step, p=0.3 recursive, p=0.3

x(a)

00 02 04 06 08 10
x(a)
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\ one-step, p=0.8 1\ recursive, p=0.8
A \\

generation 1

«(a)
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generation 4

«(a)
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Figure 4: «(a) for full tracing (one step, recursive tracing,= 0.3, andp = 0.8, as indicated). Solid lin€k(a),
gray line: simulated data for generation 4 (if not indicati&tierently), dashed linex;(a) according to the theory for
generation 4 (if not indicated fiierently), dots: first order approximation afa).

As before, numerical simulations indicate that the firseo@pproximation is well suited as long as the probability is
not too large (see figufé 4).

We find
f ) k@@1x¢x(1-0))(@)da = (T) f ) k@-T) {(a— T)-—1_ (1- e-<”+‘f><a-T>)} da
T T a+ o
_ KT
2@+ 0)?

And, with ¢ = (1 -%)(a) = (L —x(a— T)), we conclude that

[ F@ @ra-@da = 7 [ Ha-T@)das 51
. o 2(a + o)
Hence, we obtain the following proposition.
Proposition 2.10. For a fixed delayg(a) = 61(a), we obtain for i> 0
i 1
Ret := RY = Ry = 5 p Pabsk(T)Ro(Ro + 1) + O(P). 1)

The dfect of contact tracing is (in first order gj exponentially decreasing in the tracing delay. The tinadesof this
exponential decrease is given by the total removalyater + o.
2.3.2. Special case: exponential delay

We chooses(a) = e ¥T/T. We do not state the first order approximationg#), as it is only necessary to combine
the corresponding results from forward- and backwardnigciVe focus on the first ordeffect of contact tracing on
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the reproduction number. Thé&ect due to backward tracing is described by

S T +0) amy 1-F@) \| o PPusRS
R e ] S v o L e

and that for forward tracing

0 _ AT «(a) - e /T B P PobsRo
ﬁfo ppobsk(a)(l e 1—T(a/+o-))da_ 2L+ T(a@ +0))

Proposition 2.11. For an exponentially distributed delag(a) = e T /T, we obtain for i> 0

Ro(Ro + 1)

1+ T(a+0) +o(p). (12)

Ret:=RY = Ro—% P Pobs
We again find that the exponential distributed delay yieldgyaer dfect than the fixed delay (if we compare distribu-
tions with the same expectation). While theeet of the fixed delay decrease exponentially jnhe exponential delay
only yields a polynomial decay. Indeed,(1 + T(a + o)) is the [§1]-Padé approximation @{(T) = expT(a + o).
It is remarkable that in both cases, th&eet of the delay only depends dria + o), that is, on the quotient of the
expected delay over the expected time of infection (in atsei contact tracing).

2.3.3. Rates depending on age since infection

To obtain the full model for the case if the rates depend oratieesince infection, we again only have to combine
forward- and backward tracing for this case. All in all, weaib the equations for the probability to be infective at
age of infectiora for an infected individual of théth generatiork;(a),

%@ = @@ + @
- [ 0@ [ (660 + AQa(a(o) decr) (13
(@ -0
“p fo (—ki_t'(b+C) — a(b+ ) kia(b+C)) fc #(@ —c)da dc} (14)

Iy xi(alb)B(b)xi—1(b) db
fow Bk (r)dr

«i-1(b) xi(alb)

(15)

ki(@)

2.3.4. Error analysis

We did focus on an approximate technique: though we are ablerive exact equations faf(a), these equations
are too complex to be solved, and hence we basically focusfiost @rder approximation in the tracing probability
p. However, in comparison with “real world epidemics” thisrist the only simplification. The model itself is

a simplification (SISIR within an unstructured population), and also the brangchprocess with tracing is only
valid for the onset of the epidemic. Depletion of the classusfceptibles and tracing via contacts between infected
individuals (no transmission of infection happen in thesetacts) are neglected. Botlfects gain importance if the
disease approaches an endemic state.

Truncation error: In Figures 1 and 2, we compare simulatafrthe stochastic process resp. the numerical solution
of the exact equations with the approximate solutions. kese¢ simulations, the basic reproduction nuniet 2,

and pops = 0.9. While a reproduction of two is in an realistic range, thacfion of observed case®ps = 0.9 is
rather high to focus on theffect of contact tracing as well as to uncover potential appration errors. We find by
visual inspection that for reasonable tracing probabditp below Q3, say), the agreement of our approximation and
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Figure 5: Simulation of the stochastic (non-smooth ling) Hre approximate deterministic (smooth line) model. We
use a fixed delay, 8 = 2, @« = 0.2, 0 = 0.9, and recursive tracing. For< 15, p = 0. Att = 15 (indicated by
the vertical solid line)yp is increased to @. The tracing delay is indicated by thdfdrence between the dashed and
the solid vertical line; at the solid line, contact tracisgritroduced, at the dashed line, the first time traciffigots
appear.

simulations is satisfying. Only if the tracing probabilthgcomes largem(~ 0.8), the error is noticeable. Here, in
particular the fraction of cases that become an index paseplays a role: ifpopsis small, then even large tracing
probabilities do not play a role.

Error due to the branching approximation: Reduction of thenalance of susceptibles due to the spread of the disease
reduces the number of secondary cases, and in this, the nofribéectious persons that can be detected by contact
tracing. In order to have at least a heuristic method to desisburce of error, we propose to approximate what may
be called the #ective removal rate. This removal rate should induce inayethe same mean infectious period as
the stochastic process. Let us assume that the relativeenohbusceptibles is constambver a relatively long time
period. The rate of infectious contacts is reduced fota S u. For a fixed delay, thefiective reproduction number

for a contact rat@ u is given by

Ry~ P {1— %ﬂT)(,Bu/(a+ o) + 1)}.

a+o
This, in turn, is equivalent with a mean recovery rate y(u) given by

a+o

W= 2"

i(l) = 5 = .
ve R 1- IM@u/(a+ o)+ 1)

We neglect in our considerations that also contacts betweernnfected persons take place. Also these contacts
may lead to tracing events. However, if we compare stoahastiulations of the full epidemic process with contact
tracing on the one hand, and a deterministic SIS-model wighrtonlinear recovery rate given above, we find a
satisfying agreement (see Hig. 5). The errors introducetiégaturation of the epidemic process are well met by the
heuristic formula for the fective recovery rate given here.

2.3.5. The interplay between tracing delay and latency period

The equation above is too complex to be directly useful irstirese that we obtain deeper inside into the interplay of
the timing of the disease on the one hand, and tracing on tieg baind. Therefore we concentrate on a special case:
a fixed latency period; and a fixed tracing delay,

B@) = xa1 B, @) =xar, @ 0(d) =xar0. $(a) =61(a)
where, as usuaka-1, denotes the characteristic function(r, = 1 if a > T; and 0 else). We emphasize tiB{#)
denotes a function, whilg is a constant (the same ferando). A first order approximation of the reproduction
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Figure 6: Strength of first ordeffectRy &(T + T;) +W (2- W) in dependency off andT; (measured
in multiples of ¥/ (a + o), the mean infectious period) f& = 2. Left panel: contour plot. Right panelffect overT,
T, fixed at indicated values.

number is straightforward, but tedious; we move the contjurta tofAppendix_A, and only present the result here.
Let Rt denote the reproduction number with contact tracing if theaber of generations tends to infinity, aRglthe
reproduction number without contact tracing.

Corollary 2.12.

+0(p%) (16)

RctzRO_% ppobsRO RO/K\(T+Ti)+M (Z_M)

«(Ti) «T)

The tracing €ect is monotonously decreasing in the tracing dlayhe first order fect consists of two parts, that
for backward tracing (see Appendlix Appendix A.1)

1 —
5P Pobs RS K(T + Ti)
and that for forward tracing (see Appenflix Appendix |A.2)

k(max(Ti, T)) (2 B ?(maX(Ti,T)))
(i) () '

1
E p pobsRO

The backward tracing part is simply exponentially decmeggi the tracing delay and the latent period.

The dependency of the froward tracinieet on tracing delay resp. latent period is more complest Birall, we find

that forT; = T, the two delays in the forwardfect cancel each other: There is a race between tracing asxtio.

If both mechanisms are subject to the same delay, ftieets of the delays do cancel. Tf < T;, the forward tracing
effect is even larger than that without any delay; only i# T;, the @fect decreases exponentiallyTin

In order to compare the relative importance of forward- aadkiward tracing, we distinguish the cades- T; and
T< Ti.
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CaseT > Tj:

1
Ri=Ro= 5 P PobsRoR(T + Ti))[Ro ¥ 1] +0(p?)

As the backward term incorporat&s, and the forward term 1, the backward tracing will contrébabnsiderable
more to the (first order) tracingtect.

CaseT < T;:

2-%Ti-T)

Tty | T o(r’)

1
Ret = Ro = 5 P PopsRok(T +Ti) |Ro +

This time we compar®, with (2 —%(T; — T))/«(Ti + T). In principle, the latter term can be arbitrarily large, in
particular if T; is large andl small; note that (2 «(T; — T))/(T; + T) is always increasing ifi; (for T fixed). For
long latency periods and small tracing delays, forwardmigagains increasingly importance. Forward tracing begefit
from a long latency period.

If we fix T;, the first order #ect is simply decreasing ih. If T; is rather large, a small tracing delafjexcts the &ect
only weakly (see Fid.]6); only if the latency period is smalklee tracing delay is in the same magnitude (or larger)
than the latency period, the delay in the tracing processigly decreases thefect.

If T is fixed, then the fect is in general non-monotonouslyTi If T is below a certain value, thefect is simply
decreasing i, if T is above this value, thefect is in a first interval decreasing, but eventually incireg T;. The
reason for this observation is based on tliea that we observe the sum of forward- and backward tra@8agkward
tracing is always decreasing if T is fixed. Forward tracing, however, is decreasin@jik T, but increasing for

Ti > T. If the impact of forward tracing is large enough, a non-ntone dfect (inT;) may appear.

3. Discussion

In the present work, we continued the investigations of Ball. Ei,[i?] about tracing delays, taking into account
forward- and backward tracing. This study particularlyufsed on the questions how randomness in the tracing delay
affects the &ect of contact tracing to fight an epidemic during the injpilahse of an outbreak, if forward- or backward
tracing plays a more decisive role, and how the interplayween the time scales involved influences contact tracing.
With respect to the last question, we focused on the meamgraelay on the one hand, and the average time of
infection (without control measure) respectively a lateatiod.

In order to approach these questions, we focused on the ohaetepidemic, and used a branching process approx-
imation for the spread of infections. On top of this lineaarching process, contact tracing has been introduced.
The tracing leads to dependencies between individualghwhiakes the stochastic process more complex to analyze
analytically. The main tool to analyze the process is thédabdity for an infected individual to be still infectious a

a given age of infection. It has been possible to derive aaystf integro-diferential equations for this probability.
As an explicit solution seems to befitiult to obtain, approximate solutions (for small tracinglpability) have been
derived. Based upon these approximations, an approximgtidhe reproduction number has been proposed.

The present study addressed tffee of randomness in the tracing delay: If we compare a fixeédaarexponentially
distributed tracing delay, we find that th&ext of the fixed delay is smaller than that of the exponentsfibution

(if both have the same expectation). Most likely, the massom for this observation is the exponential decrease
of the probability to be infected at a certain age of infattidhe expected number of infections produced after a
certain age of infection will decrease exponentially (rnbgt we do not condition on the fact that a person reaches
this age of infection). In a situation with randomness indetay, some persons are detected earlier, and some later in
comparison with the fixed delay. Due to the exponential desaethe gain in thefiect by the more early detections is
higher than the loss infiect by the later detections. Thidi@irence leads to an exponential respectively a polynomial
decrease of thefkect on the mean tracing delay. This finding may underlinetiygortance to avoid outliers in the
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tracing delay: if the time between detection of an index case investigation of contacts becomes large, contact
tracing for this index case becomestiindent. The #iciency of tracing for one index case does not decrease linear
in the tracing delay, but exponentially. Considering thghhtosts for contact tracing, it may be worth to implement
a tracing program in such a way that a long tracing delay fandex cases is not likely to occur. However, a delay
becomes notable only if it is in the range of the infectiousquk as it is to expect. If it is distinctively shorter, the
delay hardly plays a role, if it is longer, contact tracingbmes inéficient.

If we introduce a latency period, we find the same result farkbard tracing (and a deterministic, fixed delay)
as before: the féect decreases exponentially, where the ratio betweemgatzlay and latency period (delay in
infectivity) is decisive. It is slightly dierent in forward tracing: here, thdfect is even stronger compared with
the case without any delay (no tracing delay and no latenopgif the tracing delay is shorter than the latency
period. We clearly find a race between forward tracing anelctiéns. Only if the tracing delay becomes larger than
the latency period, we again find an exponential decreadeidtiect. Forward tracing benefits from a long latency
period, and may even become stronger than backward tralfittge tracing- and the latency period are in the same
range, backward tracing is more likely to play the centréd.ro

Basically, we have three ingredients of the implementatiacontact tracing program that decide aboutfii€iency:

(a) the probability for an infectious person to become aminchse (b) how likely is a contact reported by an index
case and (c) how large is the tracing delay. At lowest ordier,efect (measured by the reproduction number) is
the product of the first two probabilities times an exporadhjtidecreasing function in the tracing delay. The time
scale of this decrease is given by the recovery rate, indtad by the latency period. One may think about resource
allocation within a tracing program. As long as the tracietpg is distinctively shorter than the latency period resp.
the infectious period, it seems to be better to irein the detection of more contacts or index cases. Onlydf t
disease is fast (short latency perfiodectious period), it is of importance to decrease theitigadelay. If, however,

the time scale of the infection is too fast, contact tracieg@ @ontrol measure could be inadequate. These findings are
in line with, e.g., results by Fraser et al. [8]
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Appendix A. Latency period

We aim at a first order approximation (the only analysis thd¢asible in general); we find

—Ko(a)(O'(a) + ()
p fo "o fo (B0 (@ + Bl)a(x(©))de o) + O(E)
ro(@{x-1(0)
-p ﬁ (-K(b+c)— ab+c)x(b+c)) j; ¢(@ —c)da dc} +0(p?)

J5 xi(alb)B(b)xi—1(b) db
fooo B()ki-1(r) dr
%a) = eb sMra@dr

«o(8)

ki-1(b) xi(alb)

«i(@)

Proposition Appendix A.1. Up to second order in pg(a) = «1(a) fori > 0.

Proof: We first find

«i(alb)
- Ko(a){l—ﬁp(b)j:(-??(b+c)—a(b+c)7?(b+c))jj¢(a’—c)da’dc}+0(p2)
) N ®b+9\ (L
- Ko(a){l D fo (7},@ alb+ ) ) fc #(& - 0 da dc}+0(p2) (A1)

and hence;(alb) = «1(alb) + O(p?). We drop the index and simply writgalb) = «1(alb) + O(p?), wherex(alb)
is defined by equatiori{Al.1), where tii¥p?) terms are neglected. In zero ordeg(a) = x(a), and hence also
k(alb) =x(a); we write

«(alb) =«(a) + pZ(alb)

where(alb) does not depend om Hence,

5 (@) + pZ(alb))B(b)xi-1(b) db 5 ¢(alb)B(b)«i-1(b) db N

4 . 2
" B B@)Ki-a(7) dr +O(p) = (@) + p () dr o(p’)
_ fooo Z(alb)B(b)x(b) db 5
= % — o).
@+p N (P

O

As a consequence, the first order correction of the asyneptegiroduction numbei (— o) consist of two clearly
separated parts: that due to forward tracing, and that dbadkward tracing. Note that we choose the signs in the
definition ofr.. below in such a way, that the correction terms of the reprodnaumber have a minus sign.
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Proposition Appendix A.2. Letko(a) = «(a) — pn_(a) + O(p?),

£ (- o0 %) [otw -9 depor
kT BOR@ dr

n+(a) =«(a)
r. = |, B(@)n:(a)da. Then,
Ret = Ro— p(rs +1-) + O(p?).

This proposition is a direct consequence of egu.](A.1).

Now we specify the parameters as indicated abg(a), a(a) ando(a) = 0 for a < t;, and are constang{ «,
o) afterwards; The contact tracing delay is a constaniVe compute the reproduction number and the first order
correction terms foR.;. We will use

@) = g (@rn)a @) = e J5 (@) +o(0) dr
such thak(a) =«(a— T;) fora > T;. The zero order term is a direct consequencef me,B(a)’E(a) da
Proposition Appendix A.3. Ry = Qf—(r
Appendix A.l. First order approximation: backward tracing
Proposition Appendix A.4. The first order approximation reads
ko(@) =x@) +0(p?) for a<T +T.

andfora>Ti+T

k@ = wa) +0(p%)

1 - pp Pobs ((a—Ti -T) - ﬁa_;(a_ T- Ti))

Proof: The proof consist of direct computations.

K (a)

~« (a) (a(a) +o(@) - p fo "ot 1) fo (B~ (@) + e - c)a(c)’z(c))dcdr) +0(p?)

~c@fr@+a@-p [ sa-n [ (prRO)dorr o)+ o)

a T*Ti
(@) ((a+ Dxer +ppo [ oa-n [ Mo oy dr) + o)
0 T;

(@) (o(a) o)+ pppas [ oa-1) Q=K - 2T) xoan dr) Lo

_Kf(a)(o'(a) +a(@) + pBpops (1 -«(@a-T-2T)) Xa>2Ti+T) + O(pz)
where we used the definitiaita) = e @+)a for a > 0. Then,
k(a) = Wa) ereenr PAPs(@2Ti-T-ZH (R (-T-T)) 4 o(p?)

1 —
1- pﬂ PobsXa>2T+T (a— 2T, - T) - m(l - K,(a— T- 2T|)))

@) +0(p%)
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The term ZT; is a consequence of backward tracing: An infectee is onlgyeed afteiT; time units, and the earliest
time point at which this infectee can be observed isme units after hi§er infection. Hence, the earliest time point
at which a backward tracing event can be triggeredis &1d the infector is then traced at age of infectioh 2 T.

Consequently, we have (note our sign convention)
— 1
1-6) = @) B Pavsxsanr (@~ 2T =)= ——(1-Ta-T-2T)).
Evaluating the integral. = [ 5(a) 7-(a) dayields
1 —~
r_= 5 Pobs Rg (T +T)). (A.2)

Appendix A.2. First order approximation: forward tracing
Proposition Appendix A.5. 1.(@) = Pobs YasT K(@Q)(L—«(@a—T)).

Proof: We evaluate

NN (—ggg;@ — a(b+0) 7%;;;” ) I ¢(a - ©) da dc B(b)x(b) db
5 B@)&(x) dr

n+(2) =«(@)

which yields the result for our special casefé"sﬂ(r)?(r) dr = Ry, fca ¢(@ —c)dd = yasT Xc<a-T, and

%+ ©)

(b + ©)
%(0) '

%(b)

(—7(b+c) B

W Q’(b+ C)

) =o(b+c)
Note that the out-most integral only extends over[T;, =) asp(b) = 0 forb < T;. Forb > T;, we have
o(b+c)k(b + c)/k(b) = ck(b+ c—T;)/x(b - Ti) = ok(C).

That is, the inner integral does not dependxand the result follows easily.

O
Integratings(a) n.(a) overa € R, yields the correction term for forward tracing,
1
= 5 PosdRo R(max(T,T) - T) (2= Rmax(,T) - T))
_ 1 o ®max(TiT)) (,  Rmax(T,T))
= 5 Poo oy (2 - ) (A3)
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