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ABSTRACT	1	
To	dissect	the	genetic	architecture	of	blood	pressure	(BP)	and	assess	how	its	elevation	promotes	2	

downstream	cardiovascular	diseases,	we	analyzed	128,272	SNPs	from	targeted	and	genome-wide	arrays	3	

in	201,529	individuals	of	European	ancestry.		Genotypes	from	an	additional	140,886	individuals	of	4	

European	ancestry	were	used	as	validation	for	loci	reaching	genome-wide	significance	but	without	prior	5	

support	in	the	literature.	We	identified	66	BP	loci,	of	which	17	were	novel	and	15	harbored	multiple	6	

distinct	association	signals,	and	which	together	explain	up	to	3.5%	of	BP	variation.		The	66	index	SNPs	7	

were	enriched	for	cis-regulatory	elements,	particularly	in	vascular	endothelial	cells,	consistent	with	a	8	

primary	role	in	BP	control	through	modulating	blood	vessel	tone	and	fluid	filtration	across	multiple	9	

tissues,	not	solely	the	kidney.		Importantly,	the	66	index	SNPs	combined	in	a	risk	score	showed	10	

comparable	effects	in	64,421	individuals	of	non-European	descent	(South-Asian,	East-Asian	and	African),	11	

confirming	that	these	are	ancestral	physiological	effects	that	arose	prior	to	human	migration	out	of	12	

Africa.		The	66-SNP	BP	risk	score	was	significantly	associated	with	target-organ	damage	in	multiple	13	

tissues,	with	minor	effects	in	the	kidney.	Our	data	expand	current	knowledge	of	BP	pathways,	and	also,	14	

highlight	that	BP	regulation	and	its	effects	may	occur	in	multiple	organs	and	tissues	beyond	the	classic	15	

renal	system.	16	

-2-



	

There	are	considerable	physiological,	clinical	and	genetic	data	that	implicate	the	kidney	as	the	major	1	

regulator	of	BP	through	maintaining	salt-water	balance	and	that	renal	damage	is	consequent	to	long-2	

term	BP	elevation.		However,	alternative	hypotheses,	such	as	increasing	systemic	vascular	resistance,	3	

are	also	serious	contenders	to	explain	the	rise	of	BP	with	increasing	age.	The	genetic	basis	of	elevated	4	

blood	pressure	or	hypertension	(HTN)	involves	many	loci	that	have	been	identified	using	large-scale	5	

analyses	of	candidate	genes1,2,	linkage	studies,	and	genome-wide	association	studies	(GWAS)3-12.		The	6	

genes	underlying	BP	regulation	can	help	resolve	many	of	the	open	questions	regarding	BP	(patho-)	7	

physiology.		While	~40-50%	of	BP	variability	is	heritable13,14,	the	identified	genetic	variation	explains	only	8	

~2%1-12.	This	is	considerably	less	than	that	observed	for	other	cardiovascular	disease	(CVD)	risk	factors,	9	

such	as	plasma	lipid	fractions,	despite	the	fact	that	they	have	comparable	heritability15.		The	sources	of	10	

this	discrepancy	could	be	many,	but	the	major	reasons	are	likely	to	be	the	constraints	on	physiological	11	

variation	of	BP	and	contributions	from	diverse	organs	and	tissues,	potentially	resulting	in	hundreds	or	12	

thousands	of	genetic	variants	of	weak	effects.		Consequently,	the	fundamental	causes	of	hypertension	13	

susceptibility	also	remain	unknown.	14	

The	Cardio-MetaboChip	is	a	custom	genotyping	microarray	designed	to	facilitate	cost-effective	15	

follow-up	of	nominal	associations	for	metabolic	and	cardiovascular	traits,	including	BP.		This	array	16	

comprises	196,725	variants,	including	~5,000	SNPs	with	nominal	(P	<0.016)	evidence	of	BP	association	in	17	

our	previous	GWAS	meta-analysis5.		Furthermore,	the	array	includes	several	dense	scaffolds	for	fine	18	

mapping	of	selected	loci	spanning,	on	average,	genomic	regions	of	350	kilobases5,16,	of	which	24	include	19	

genome-wide	significant	BP	association	in	the	current	study5,16.		Here	we	performed	BP	GWAS	meta-20	

analysis	of	both	systolic	(SBP)	and	diastolic	(DBP)	BP	using	data	from	109,096	individuals	directly	21	

genotyped	using	the	Cardio-MetaboChip	array,	in	combination	with	imputed	data	from	an	additional	22	

92,433	individuals	with	genome-wide	genotyping,	all	of	European	(EUR)	ancestry.		Validation	of	loci	23	

reaching	genome-wide	significance	but	without	previous	support	in	the	literature	was	sought	using	24	

association	results	from	an	additional	140,886	individuals	of	European	ancestry	from	the	UK	Biobank.	25	

We	assessed	whether	the	genome-wide	significant	BP	SNPs	identified,	which	are	largely	in	non-coding	26	

DNA,	were	associated	with	expression	levels	of	nearby	genes,	and	tested	for	enrichment	of	BP	SNPs	in	27	

cis-regulatory	sequences.		Signal	refinement	and	analyses	of	associated	variants	were	performed	in	28	

64,421	individuals	of	South-Asian	(SAS),	East-Asian	(EAS),	and	African	(AFR)	ancestry	to	assess	their	29	

global	distribution.		Finally,	a	genotype	risk	score	was	constructed	to	examine	the	impact	of	the	BP	SNPs	30	

on	cardiovascular	and	other	end-organ	outcomes.	31	

	32	
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RESULTS	1	

Novel	genetic	loci	associated	with	SBP	and	DBP	2	

	 We	performed	meta-analyses	of	association	summary	statistics	from	a	total	of	201,529	3	

individuals	of	EUR	ancestry	from	74	studies:	(i)	109,096	individuals	from	46	studies	genotyped	on	4	

Cardio-MetaboChip;	and	(ii)	92,433	individuals	from	28	studies	with	imputed	genotype	data	from	5	

genome-wide	genotyping	at	SNPs	overlapping	the	variants	on	Cardio-MetaboChip.	Twenty-four	of	the	6	

28	studies	with	genome-wide	genotyping	data	had	contributed	to	previous	analyses	(Supplementary	7	

Tables	1-3)5,7.	8	

BP	was	measured	using	standardized	protocols	in	all	studies	(Supplementary	Table	1),	9	

regardless	of	whether	the	primary	focus	was	BP	or	another	trait.		We	initially	analyzed	affected	and	10	

unaffected	individuals	from	samples	selected	as	cases	(e.g.	type	2	diabetes)	or	controls,	separately.		11	

However,	because	sensitivity	analyses	did	not	reveal	any	significant	difference	in	BP	effect	size	estimates	12	

between	case	and	control	samples	(data	not	shown),	we	analyzed	all	samples	combined.		When	13	

available,	the	average	of	two	BP	measurements	was	used	for	association	analyses	(Supplementary	14	

Table	1).		If	an	individual	was	taking	a	BP-lowering	treatment,	the	underlying	SBP	and	DBP	were	15	

estimated	by	adding	15	mmHg	and	10	mmHg,	respectively,	to	the	measured	values,	as	done	in	prior	16	

analyses5,17.		Association	statistics,	in	models	adjusting	for	age,	age2,	sex,	and	body	mass	index	(BMI),	17	

were	obtained	for	each	study	separately,	with	genomic	control	applied	to	correct	for	study-specific	18	

population	structure.		Fixed-effects	meta-analysis	proceeded	in	4	stages,	separately	for	the	following	19	

associations:	Stage	1,	using	results	based	on	46	studies	using	Cardio-MetaboChip	genotypes	of	109,096	20	

participants;	Stage	2,	using	additional	results	based	on	imputed	genotypes	from	genome-wide	21	

genotyping	arrays	in	4	previously	unpublished	studies;	Stage	3	using	imputed	genotypes	from	genome-22	

wide	genotyping	arrays	in	24	previously	published	studies5;	and	Stage	4,		the	joint	meta-analysis	of	23	

Stages	1-3	including	a	total	of	201,529	independent	individuals	(Supplementary	Figure	1,	24	

Supplementary	Tables	2-3,	Supplementary	Note).	To	account	for	population	structure	between	studies	25	

in	Stages	1-3	of	our	meta-analysis,	genomic	control	correction	was	applied	in	each	of	these	stages.	The	26	

“double”	genomic	control	correction	applied	is	the	same	approach	as	other	published	large-scale	studies	27	

of	quantitative	cardio-metabolic	traits	that	combine	genotype	data	from	GWAS	and	Cardio-MetaboChip	28	
18,19.	29	

At	stage	4,	67	loci	attained	genome-wide	significance	(P	<	5	x	10-8),	18	of	which	without	prior	30	

support	in	the	literature	(Supplementary	Table	4).	Quantile-quantile	plots	(Supplementary	Figure	2)	of	31	
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the	stage	4	meta-analysis	showed	an	excess	of	small	P	values,	with	an	elevated	genomic	control	lambda	1	

estimate	that	were	persistent,	albeit	attenuated,	after	excluding	all	66	loci.		This	observation	is	2	

compatible	with	either	residual	uncorrected	population	stratification	or	the	presence	of	a	large	number	3	

of	variants	that	are	truly	associated	with	BP	but	fail	to	achieve	genome-wide	significance	in	the	current	4	

meta-analysis.		The	Cardio-MetaboChip	array’s	inclusion	of	SNPs	from	a	prior	BP	GWAS5	does	not	appear	5	

to	be	the	sole	explanation,	as	we	did	not	observe	a	significant	decrease	of	the	excess	of	small	P	values	6	

when	we	excluded	all	SNPs	that	were	selected	based	on	BP	for	the	Cardio-MetaboChip.		Given	that	the	7	

quantile-quantile	plots	continued	to	show	deviation	from	the	null	expectation	even	after	removing	new,	8	

known,	and	additional	variants	related	to	BP	(Supplementary	Figures	3	and	4),	we	sought	additional	9	

validation	to	support	variants	(N=18)	attaining	genome-wide	significance,	but	without	prior	support	in	10	

the	literature,	in	up	to	140,886	individuals	of	European	ancestry	from	UK	Biobank20.		For	these	SNPs,	11	

stage	5	meta-analysis	combined	association	summary	statistics	from	stage	4	and	UK	Biobank,	in	a	total	12	

of	342,415	individuals	(Supplementary	Table	5).	13	

Upon	stage	5	meta-analysis,	17	of	18	variants	retained	genome-wide	significance	for	the	primary	14	

trait	(SBP	or	DBP	result	with	lower	P	value).		The	one	variant	that	was	not	genome-wide	significant	had	a	15	

borderline	P	value	of	4.49	x	10-8	at	stage	4.		These	findings	are	consistent	with	appropriate	calibration	of	16	

the	association	test	statistics	at	stage	4	such	that	observing	one	failure	among	18	validation	tests	is	17	

consistent	with	the	use	of	a	threshold	designed	(P	<	5	x	10-8)	to	have	a	1	in	20	chance	of	a	result	as	or	18	

more	extreme	solely	due	to	chance.		19	

In	total,	66	loci	attained	genome-wide	significance:	13	loci	for	SBP	only,	12	loci	for	DBP	only,	and	20	

41	for	both	traits.	Of	these,	17	BP	loci	were	novel,	while	49	were	previously	reported	at	genome-wide	21	

significance	(Table	1).	The	new	loci	were	defined	based	on	mapping	>1Mb	from	any	previously	22	

established	locus,	with	the	exception	of	one	region	characterized	by	long-range	LD	spanning	several	23	

mega-bases,	which	was	considered	a	single	locus.		Plots	of	association	results	across	the	genome	show	24	

the	genomic	features	of	each	locus	and	SNP	P	values,	with	loci	labeled	arbitrarily	according	to	the	25	

gene(s)	nearest	the	lead	SNP	(Figure	1).	26	

Compared	with	previous	BP	variants5,7,21,	the	average	absolute	effect	size	of	the	newly	27	

discovered	variants	is	smaller,	although	the	minor	allele	frequency	(MAF)	is	comparable,	presumably	28	

owing	to	the	increased	power	of	a	larger	sample	size	(Figure	2).		As	expected	from	the	high	correlation	29	

between	SBP	and	DBP	values,	the	observed	directions	of	effects	for	the	two	traits	were	generally	30	

concordant	(Supplementary	Figure	5),	and	the	absolute	effect	sizes	were	inversely	correlated	with	MAF	31	

(Table	1	and	Supplementary	Figure	6).	The	66	BP	SNPs	explained	3.46%	and	3.36%	of	SBP	and	DBP	32	
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variance,	respectively,	an	increase	from	2.95%	and	2.78%	for	SBP	and	DBP	for	the	49	previously	1	

reported	SNPs	alone	(Supplementary	Note).	The	low	percent	of	variance	explained	is	consistent	with	2	

earlier	estimates	of	large	numbers	of	common	variants	of	weak	effects	and	a	large	number	of	genes	3	

influencing	BP	levels5.	4	

Signal	refinement	at	the	66	BP	loci	5	

Quantitative	trait	associations	are	often	reported	in	the	literature	based	on	a	single	index	SNP,	6	

despite	the	fact	that	linkage	disequilibrium	(LD)	to	the	causal	variant	can	implicate	many	nearby	7	

variants.		To	identify	distinct	signals	of	association	at	the	66	BP	loci	and	the	variants	most	likely	to	be	8	

causal	for	each,	we	started	with	an	approximate	conditional	analysis	using	a	model	selection	procedure	9	

implemented	in	the	GCTA-COJO	package22,23	as	well	as	a	detailed	literature	review	of	all	published	BP	10	

association	studies.		GCTA-COJO	analysis	was	performed	using	the	association	summary	statistics	for	SBP	11	

and	DBP	from	the	Stage	4	EUR	ancestry	meta-analyses,	with	the	LD	between	variants	estimated	on	the	12	

basis	of	Cardio-MetaboChip	genotype	data	from	7,006	individuals	of	EUR	ancestry	from	the	GoDARTS	13	

cohort24.		More	than	one	distinct	BP	association	signal	was	identified	at	13	loci	at	P	<	5	x	10-8	14	

(Supplementary	Table	6,	Supplementary	Figures	7,	and	Supplementary	Note).		At	six	loci,	the	distinct	15	

signals	were	identified	in	separate	analyses	of	both	SBP	and	DBP;	these	trait-specific	associations	were	16	

represented	by	the	same	or	highly	correlated	(r2	>	0.8)	SNPs	at	5	of	the	6	loci	(Supplementary	Tables	7-17	

8).		We	repeated	GCTA-COJO	analyses	using	the	same	summary	association	results,	but	with	a	different	18	

reference	sample	for	LD	estimates	(WTCCC1-T2D/58BC,	N	=	2,947,	Supplementary	Note)	and	observed	19	

minimal	differences	arising	from	minor	fluctuations	in	the	association	P	value	in	the	joint	regression	20	

models	(Supplementary	Table	7-8).		LD-based	comparisons	of	published	association	signals	at	21	

established	BP	loci,	and	the	current	study’s	findings	suggested	that	at	10	loci,	the	signals	identified	by	22	

the	single-SNP	and	the	GCTA-COJO	analyses	were	distinct	from	those	in	the	literature	(Supplementary	23	

Table	9).	24	

We	then	performed	multivariable	regression	modeling	in	a	single	large	cohort	(Women’s	25	

Genome	Health	Study,	WGHS,	N	=	23,047)	with	simultaneous	adjustment	for	1)	all	combinations	of	26	

putative	index	SNPs	for	each	distinct	signal	from	the	GCTA-COJO	conditional	analyses,	and	2)	all	index	27	

SNPs	for	all	potential	distinct	signals	identified	by	our	literature	review	(Supplementary	Table	9,	28	

Supplementary	Note).		Although	WGHS	is	very	large	as	a	single	study,	power	is	reduced	in	a	single	29	

sample	compared	to	that	in	the	overall	meta-analysis	(23k	vs.	201k	individuals)	and	consequently	the	30	

failure	to	reach	significance	does	not	represent	non-replication	for	individual	SNPs.		The	WGHS	analysis	31	
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supported	two	distinct	signals	of	association	from	the	GCTA-COJO	analysis	at	eight	of	13	loci,	but	could	1	

not	provide	support	for	the	remaining	five	loci	(Supplementary	Table	10).		The	joint	SNP	modeling	in	2	

WGHS,	however,	indicated	two	distinct	signals	of	association	at	three	additional	loci	(GUCY1A3-3	

GUCY1B3,	SYNPO2L	and	TBX5-TBX3),	at	which	the	SNP	identified	in	the	current	study	is	distinct	from	4	

that	previously	reported	in	the	literature5,11.	5	

	 Established	loci	often	extend	over	hundreds	of	kilobases	and	contain	many	genes	that	could	6	

plausibly	underlie	the	BP	association.		We	sought	to	refine	the	localization	of	likely	functional	variants	at	7	

loci	with	high-density	coverage	on	the	Cardio-MetaboChip.		We	followed	a	Bayesian	approach	and	used	8	

the	association	summary	statistics	from	the	EUR	ancestry	meta-analyses	to	define,	for	each	signal,	9	

credible	sets	of	variants	that	have	99%	probability	of	containing	or	tagging	the	causal	variant	10	

(Supplementary	Note).		To	improve	the	resolution	of	the	method,	the	analyses	were	restricted	to	24	11	

regions	selected	to	fine-map	(FM)	genetic	associations,	and	that	included	at	least	one	SNP	reaching	12	

genome-wide	significance	in	the	current	meta-analyses	(Supplementary	Table	11).		Twenty-one	of	the	13	

Cardio-MetaboChip	FM	regions	were	BP	loci	in	the	original	design,	with	three	of	the	newly	discovered	14	

BP	loci	in	FM	regions	that	were	originally	selected	for	other	traits.		We	observed	that	the	99%	credible	15	

sets	at	five	BP	loci	spanned	a	small	region,	<10	kb	(PLCE1	and	SLC39A8	for	SBP	and	DBP;	FGF5	for	SBP,	16	

with	<20kb	for	DBP;	JAG1	and	ZC3HC1	for	DBP,	with	<20kb	for	SBP).		The	greatest	refinement	was	17	

observed	at	the	SLC39A8	locus	for	SBP	and	DBP,	and	at	the	ZC3HC1	and	PLCE1	loci	for	DBP,	where	the	18	

99%	credible	sets	included	only	the	index	variants	(Supplementary	Table	12).	Although	credible	sets	19	

mapped	primarily	to	non-coding	sequence,	they	included	one	synonymous	and	seven	non-synonymous	20	

variants	that	attained	high	posterior	probability	of	driving	seven	distinct	association	signals	at	six	BP	loci	21	

(Supplementary	Table	12).		Of	these,	three	variants	alone	account	for	more	than	95%	of	the	posterior	22	

probability	of	driving	the	association	signal	observed	at	each	of	three	loci:	rs13107325	at	the	SLC39A8	23	

locus	with	posterior	probability	99.4%	for	SBP	and	nearly	100%	for	DBP;	rs1800562	at	the	HFE	locus	24	

accounting	for	98.1%	of	the	posterior	probability	for	DBP;	and	rs11556924	at	the	ZC3HC1	locus	with	25	

posterior	probability	97.8%	for	SBP	and	99.9%	for	DBP.		Despite	reduced	statistical	power,	the	analyses	26	

restricted	to	the	samples	with	Cardio-MetaboChip	genotypes	only	(N	=	109,096)	identified	as	credible	27	

causal	SNPs	the	majority	of	those	identified	in	the	analyses	of	the	GWAS+Cardio-MetaboChip	data	28	

(Supplementary	Table	12).		Given	that	the	Cardio-MetaboChip-only	data	included	more	eligible	SNPs,	a	29	

larger	number	of	credible	causal	SNPs	were	identified.		The	full	list	of	SNPs	in	the	99%	credible	sets	are	30	

listed	in	Supplementary	Table	13.	31	
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What	do	the	BP	SNPs	do?	1	

Index	SNPs	or	their	proxies	(r2	>	0.8)	altered	amino	acid	sequence	at	11	of	66	BP	loci	(Table	1).		2	

Thus,	the	majority	of	BP-association	signals	are	likely	driven	by	non-coding	variants	hypothesized	to	3	

regulate	expression	of	some	nearby	gene	in	cis.		To	identify	their	effects	we	first	sought	SNPs	associated	4	

with	gene	expression	(eSNPs)	from	a	range	of	available	expression	data	which	included	hypertension	5	

target	end	organs	and	cells	of	the	circulatory	system	(heart	tissue,	kidney	tissue,	brain	tissue,	aortic	6	

endothelial	cells,	blood	vessels)	and	other	tissue/cell	types	(CD4+	macrophages,	monocytes	7	

lymphoblastoid	cell	lines,	skin	tissue,	fat	tissue,	and	liver	tissue).		Fourteen	BP	SNPs	at	the	MTHFR-NPPB,	8	

MDM4,	ULK4,	CYP1A1-ULK3,	ADM,	FURIN-FES,	FIGN,	and	PSMD5	loci	were	eSNPs	across	different	tissues	9	

(Supplementary	Table	14).		Of	these	14	eSNPs,	three	were	predicted	to	alter	the	amino	acid	sequence	at	10	

the	MTHFR-NPPB,	MAP4	and	ULK4	loci,	providing	two	potential	mechanisms	to	explore	in	functional	11	

studies.		Second,	we	used	gene	expression	levels	measured	in	whole	blood	in	two	different	samples	12	

each	including	>5,000	individuals	of	EUR	descent.		We	tested	whether	the	lead	BP	SNP	was	associated	13	

with	expression	of	any	transcript	in	cis	(<1Mb	from	the	lead	SNP	at	each	locus)	at	a	false	discovery	rate	14	

(FDR)	of	<	0.05,	accounting	for	all	possible	cis-transcript	association	tests	genome-wide.		It	is	likely	that	15	

we	did	not	genotype	the	causal	genetic	variant	underlying	a	BP	association	signal.		A	nearby	SNP-16	

transcript	association,	due	to	LD,	may	therefore	reflect	an	independent	genetic	effect	on	expression	that	17	

is	unrelated	to	the	BP	effect.		Consequently,	we	assumed	that	the	lead	BP	SNP	and	the	most	significant	18	

eSNP	for	a	given	transcript	should	be	highly	correlated	(r2	>	0.7).		Furthermore,	we	assumed	that	the	19	

significance	of	the	transcript	association	with	the	lead	BP	SNP	should	be	substantially	reduced	in	a	20	

conditional	model	adjusting	for	the	best	eSNP	for	a	given	transcript.		Eighteen	SNPs	at	15	loci	were	21	

associated	with	22	different	transcripts,	with	a	total	of	23	independent	SNP-transcript	associations	22	

(three	SNPs	were	associated	with	two	transcripts	each,	Supplementary	Table	15,	Supplementary	Note).		23	

The	genes	expressed	in	a	BP	SNP	allele-specific	manner	are	clearly	high-priority	candidates	to	mediate	24	

the	BP	association.		In	whole	blood,	these	genes	included	obvious	biological	candidates	such	as	25	

GUCY1A3,	encoding	the	alpha	subunit	of	the	soluble	guanylate	cyclase	protein,	and	ADM,	encoding	26	

adrenomedullin,	both	of	which	are	known	to	induce	vasodilation25,26.	There	was	some	overlap	of	eSNPs	27	

between	the	whole	blood	and	other	tissue	datasets	at	the	MTHFR-NPPB,	MDM4,	PSMD5,	ULK4	and	28	

CYP1A1-ULK3	loci,	illustrating	additional	potentially	causal	genes	for	further	study	(MTHFR	and	CLCN6,	29	

MDM4,	PSMD5,	ULK4,	CYP1A1,	and	ULK3).	30	

An	alternative	method	for	understanding	the	effect	on	BP	of	non-coding	variants	is	to	determine	31	

whether	they	fall	within	DNaseI	hypersensitivity	sites	(DHSs).		DHSs	represent	open	regions	of	chromatin	32	
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that	are	accessible	to	protein	binding	and	can	indicate	transcriptional	activity.		We	performed	two	1	

analyses	to	investigate	whether	BP	SNPs	or	their	LD	proxies	(r2	>	0.8)	were	enriched	in	DHSs	in	a	cell-2	

type-specific	manner	(Supplementary	Note).		First,	we	used	Epigenomics	Roadmap	and	ENCODE	DHS	3	

data	from	123	adult	cell	lines	or	tissues27-29	to	estimate	the	fold	increase	in	the	proportion	of	BP	SNPs	4	

mapping	to	DHSs	compared	to	SNPs	associated	at	genome-wide	significance	with	non-BP	phenotypes	5	

from	the	NHGRI	GWAS	catalog30.		We	observed	that	7	out	of	the	10	cell	types	with	the	greatest	relative	6	

enrichment	of	BP	SNPs	mapping	to	DHSs	were	from	blood	vessels	(vascular	or	micro-vascular	7	

endothelial	cell-lines	or	cells)	and	11	of	the	12	endothelial	cells	were	among	the	top	quarter	most	8	

enriched	among	the	123	cell	types	(Figure	3	and	Supplementary	Table	16).		In	a	second	analysis	of	an	9	

expanded	set	of	tissues	and	cell	lines,	in	which	cell	types	were	grouped	into	tissues	(Supplementary	10	

Table	17),	BP-associated	SNP	enrichment	in	DHSs	in	blood	vessels	was	again	observed	(P	=	1.2	x	10-9),	as	11	

well	as	in	heart	samples	(P	=	5.3	x	10-8;	Supplementary	Table	18).	12	

We	next	tested	whether	there	was	enrichment	of	BP	SNPs	in	H3K4me331	sites,	a	methylation	13	

mark	associated	with	both	promoter	and	enhancer	DNA.	We	observed	significant	enrichment	in	a	range	14	

of	cell	types	including	CD34	primary	cells,	adult	kidney	cells,	and	muscle	satellite	cultured	cells	15	

(Supplementary	Table	19).		Enrichment	of	BP	SNPs	in	predicted	strong	and	weak	enhancer	states	and	in	16	

active	promoters32	in	a	range	of	cell	types	was	also	observed	(Supplementary	Table	20,	Supplementary	17	

Figure	8).	18	

We	used	Meta-Analysis	Gene-set	Enrichment	of	variaNT	Associations	(MAGENTA)33	to	attempt	19	

to	identify	pathways	over-represented	in	the	BP	association	results.		No	gene	sets	meeting	experiment-20	

wide	significance	for	enrichment	for	BP	association	were	identified	by	MAGENTA	after	correction	for	21	

multiple	testing,	although	some	attained	nominal	significance	(Supplementary	Table	21,	Supplementary	22	

Note).		We	also	adapted	the	DEPICT34	pathway	analysis	tool	(Data-driven	Expression	Prioritized	23	

Integration	for	Complex	Traits)	to	identify	assembled	gene-sets	that	are	enriched	for	genes	near	24	

associated	variants,	and	to	assess	whether	genes	from	associated	loci	were	highly	expressed	in	25	

particular	tissues	or	cell	types.		Using	the	extended	BP	locus	list	based	on	genome-wide	significant	loci	26	

from	this	analysis	and	previously	published	SNPs	that	may	not	have	reached	genome-wide	significance	27	

in	the	current	analysis	(Supplementary	Table	9),	we	identified	six	significant	(FDR	≤	5%)	gene	sets:	28	

embryonic	growth	retardation,	abnormal	cardiovascular	system	physiology,	abnormal	cardiac	muscle	29	

contractility,	SNTB1	protein	complex,	G	Alpha	1213	signaling	events,	and	prolonged	QRS	complex	30	

duration.		We	also	found	that	suggestive	SBP	and	DBP	associations	(P	<	1	x	10-5)	were	enriched	for	31	

reconstituted	gene-sets	at	DBP	loci	(mainly	related	to	developmental	pathways),	but	not	at	SBP	loci	32	
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(Supplementary	Table	22,	Supplementary	Note).		In	a	final	analysis,	we	assessed	Cardio-MetaboChip	1	

SNPs	at	the	fine-mapping	loci	using	formaldehyde-assisted	isolation	of	regulatory	elements	(FAIRE-gen)	2	

in	lymphoblastoid	cell	lines35.		Our	results	provided	support	for	two	SNPs,	one	of	which	SNP	(rs7961796	3	

at	the	TBX5-TBX3	locus)	was	located	in	a	regulatory	site.		Although	the	other	SNP	(rs3184504	at	the	4	

SH2B3	locus)	is	a	non-synonymous	variant,	there	was	also	a	regulatory	site	indicated	by	DNaseI	and	5	

H3K4me1	signatures	at	the	locus,	making	the	SNP	a	potential	regulatory	variant	(Supplementary	Table	6	

23)36.		Both	SNPs	were	included	in	the	list	of	99%	credible	SNPs	at	each	locus.	7	

Asian-	and	African	ancestry	BP	SNP	association	8	

We	tested	the	66	lead	SNPs	at	the	established	and	novel	loci	for	association	with	BP	in	up	to	9	

20,875	individuals	of	South	Asian	(SAS)	ancestry,	9,637	individuals	of	East	Asian	(EAS)	ancestry,	and	10	

33,909	individuals	of	AFR	ancestry.		As	expected,	the	effect	allele	frequencies	are	very	similar	across	11	

studies	of	the	same	ethnicity,	but	markedly	different	across	different	ancestry	groups	(Supplementary	12	

Figure	9).		Many	associations	of	individual	SNPs	failed	to	reach	P	<	0.05	for	the	BP	trait	with	the	lower	P	13	

value	(Supplementary	Table	24),	which	could	potentially	be	due	to	the	much	lower	statistical	power	at	14	

the	sample	sizes	available,	different	patterns	of	LD	at	each	locus	across	ancestries,	variability	in	allele	15	

frequency,	or	true	lack	of	association	in	individuals	of	non-European	ancestry.		The	low	statistical	power	16	

for	the	great	majority	of	SNPs	tested	is	visible	considering	SNP-by-SNP	power	calculations	using	17	

European	ancestry	effect	sizes	(Supplementary	Table	24).		However,	concordant	directions	of	allelic	18	

effects	for	both	SBP	and	DBP	were	observed	for	45/66	SNPs	in	SAS,	36/60	SNPs	in	EAS,	and	42/66	SNPs	19	

in	AFR	samples:	the	strongest	concordance	with	SAS	is	not	surprising	because	South	Asians	are	more	20	

closely	related	to	Europeans	than	are	East	Asians	or	Africans.		Moreover,	strong	correlation	of	effect	21	

sizes	was	observed	between	EUR	samples	with	SAS,	EAS,	or	AFR	samples	(r	=	0.55,	0.60,	and	0.48,	22	

respectively).		To	test	the	overall	effect	of	ancestry,	where	the	BP	effect	may	be	detectable	at	only	a	23	

subset	of	SNPs,	a	more	powerful	test	is	to	construct	a	combined	risk	score	weighted	by	allele-specific	24	

effects	across	66	index	SNPs,	separately	for	SBP	and	DBP,	as	a	predictor	of	BP	in	each	population	25	

sample.		A	shortcoming	of	the	use	of	a	score	test	aggregating	effects	across	multiple	variants	is	that	they	26	

obscure	the	subset	of	variants	that	does	not	show	reliable	association	in	multiple	ethnicities.		The	score	27	

represents	the	predicted	mm	Hg	change	for	an	individual	based	on	their	genotype	at	all	66	SNPs.		The	28	

SBP	and	DBP	risk	scores	were	significant	predictors	of	SBP	and	DBP,	respectively,	in	all	samples.	The	29	

change	in	risk	score	associated	with	a	1	mm	Hg	higher	SBP/DBP	in	EUR	samples	was	associated	with	a	30	

0.58/0.50	mm	Hg	higher	SBP/DBP	in	SAS	samples	(SBP	P	=	1.5	x	10-19,	DBP	P	=	3.2	x	10-15),	0.49/0.50	mm	31	
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Hg	SBP/DBP	in	EAS	samples	(SBP	P	=	1.9	x	10-10,	DBP	P	=	1.3	x	10-7),	and	0.51/0.47	mm	Hg	SBP/DBP	in	1	

AFR	samples	(SBP	P	=	2.2	x	10-21,	DBP	P	=	6.5	x	10-19).		The	attenuation	of	the	genetic	risk	score	estimates	2	

in	non-European	ancestries	is	presumably	due	to	inclusion	of	a	subset	of	variants	that	lack	association	in	3	

the	non-European	samples.	In	the	admixed	populations	tested	(mainly	African	ancestry	studies),	the	4	

degree	of	European	admixture	influences	the	extent	of	association.		We	subsequently	performed	a	5	

trans-ethnic	meta-analysis	of	the	66	SNPs	in	all	64,421	samples	across	the	three	non-European	6	

ancestries.		After	correcting	for	66	tests,	12/66	SNPs	were	significantly	associated	with	either	SBP	or	DBP	7	

(P	<	7.6	x	10-4),	with	a	correlation	of	EUR	and	non-EUR	effect	estimates	of	0.77	for	SBP	and	0.67	for	DBP;	8	

the	European-ancestry	SBP	or	DBP	risk	score	was	associated	with	0.53/0.48	mm	Hg	higher	BP	per	9	

predicted	mm	Hg	SBP/DBP	respectively	(SBP	P	<	6.6	x	10-48,	DBP	P	<	1.3	x	10-38).		For	7	of	the	12	10	

significant	SNPs,	no	association	has	previously	been	reported	in	genome-wide	studies	of	non-European	11	

ancestry.		While	some	heterogeneity	of	effects	was	observed	between	European	and	non-European	12	

effect	estimates	(Cochran’s	Q	p-value	<0.05	for	30/132	tests),	these	were	not	distinguishable	from	13	

chance	effects	when	considering	a	multiple	test	correction	(Supplementary	Table	24).		Taken	together,	14	

these	findings	suggest	that,	in	aggregate,	BP	loci	identified	using	data	from	individuals	of	EUR	ancestry	15	

are	also	predictive	of	BP	in	non-EUR	samples,	but	larger	non-European	sample	sizes	will	be	needed	to	16	

establish	precisely	which	individual	SNPs	are	associated	in	a	given	ethnic	group.	17	

Impact	on	hypertensive	target	organ	damage	18	

Long-term	elevated	BP	causes	target	organ	damage,	especially	in	the	heart,	kidney,	brain,	large	19	

blood	vessels,	and	the	retinal	vessels37.		Consequently,	the	genetic	effect	of	the	66	SBP	and	DBP	SNPs	on	20	

end-organ	outcomes	can	be	directly	tested	using	the	risk	score,	although	some	outcomes	lacked	results	21	

for	a	small	number	of	SNPs.		Interestingly,	BP	risk	scores	significantly	predicted	(Supplementary	Note)	22	

coronary	artery	disease	risk,	left	ventricular	mass	and	wall	thickness,	stroke,	urinary	albumin/creatinine	23	

ratio,	carotid	intima-medial	thickness	and	central	retinal	artery	caliber,	but	not	heart	failure	or	other	24	

kidney	phenotypes,	after	accounting	for	the	number	of	outcomes	examined	(Table	2).		Some	SNPs	could	25	

contribute	to	the	risk	score	with	effects	that	are	stronger	or	weaker	than	their	BP	effects	would	suggest	26	

when	considering	all	BP	variants	collectively.		We	sought	to	test	the	robustness	of	our	risk	scores	to	27	

removal	of	SNPs	with	such	outlier	effects.		We	therefore	repeated	the	risk	score	analysis	removing	28	

iteratively	SNPs	that	contributed	to	statistical	heterogeneity	(SNP	trait	effects	relative	to	SNP	BP	effects).	29	

Heterogeneity	was	defined	based	on	a	multiple	testing	adjusted	significance	threshold	for	Cochran’s	Q	30	

test	of	homogeneity	of	effects	(Supplementary	Note).		The	risk	score	analyses	restricted	to	the	subset	of	31	
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SNPs	showing	no	heterogeneity	of	effect	revealed	essentially	identical	results,	with	the	exception	that	1	

urinary	albumin/creatinine	ratio	was	no	longer	significant.		The	per-SNP	results	are	provided	in	2	

Supplementary	Table	25	and	Supplementary	Figures	10.		Because	large-scale	GWAS	of	non-BP	3	

cardiovascular	risk	factors	are	available,	we	examined	the	BP	risk	scores	as	predictors	of	other	4	

cardiovascular	risk	factors:	LDL-cholesterol,	HDL-cholesterol,	triglycerides,	type	2	diabetes,	BMI,	and	5	

height.	We	observed	nominal	(P	<0.05)	associations	of	the	BP	risk	scores	with	risk	factors,	although	6	

mostly	in	the	opposite	direction	to	the	risk	factor-CVD	association	(Supplementary	Table	26).		The	7	

failure	to	demonstrate	an	effect	of	hypertension	on	heart	failure	may	reflect	power	from	a	modest	8	

sample	size,	but	the	lack	of	significant	effects	on	renal	measures	suggests	that	the	epidemiologic	9	

relationship	of	higher	BP	and	worse	renal	function	may	not	reflect	direct	consequences	of	BP	elevation.	10	

DISCUSSION	11	

The	study	reported	here	is	the	largest	to	date	to	investigate	the	genomics	of	BP	in	multiple	12	

continental	ancestries.		Our	results	highlight	four	major	features	of	inter-individual	variation	in	BP:	(1)	13	

we	identified	66	(17	novel)	genome-wide	significant	loci	for	SBP	and	DBP	by	targeted	genotyping	of	up	14	

to	342,415	individuals	of	European	ancestry	that	cumulatively	explain	~3.5%	of	the	trait	variance	(novel	15	

loci	validated	using	data	from	additional	140,886	individuals);	(2)	the	variants	were	enriched	for	cis-16	

regulatory	elements,	particularly	in	vascular	endothelial	cells;	(3)	the	variants	had	broadly	comparable	17	

BP	effects	in	South	Asians,	East	Asian	and	Africans,	albeit	in	smaller	sample	sizes;	and,	(4)	a	66	SNP	risk-18	

score	predicted	target	organ	damage	in	the	heart,	cerebral	vessels,	carotid	artery	and	the	eye	with	little	19	

evidence	for	an	effect	in	kidneys.		Overall,	there	was	no	enrichment	of	a	single	genetic	pathway	in	our	20	

data;	rather,	our	results	are	consistent	with	the	effects	of	BP	arising	from	multiple	tissues	and	organs.	21	

Genetic	and	molecular	analyses	of	Mendelian	syndromes	of	hypertension	and	hypotension	point	22	

to	a	renal	origin,	involving	multiple	rare	deleterious	mutations	in	proteins	that	regulate	salt-water	23	

balance38.	This	is	strong	support	for	Guyton’s	hypothesis	that	the	regulation	of	sodium	excretion	by	the	24	

kidney	and	its	effects	on	extracellular	volume	is	the	main	pathway	determining	intra-arterial	pressure39.		25	

However,	our	genetic	data	from	unselected	individuals	in	the	general	community	argues	against	a	single	26	

dominant	renal	effect.	27	

First,	the	66	SNPs	we	identified	are	not	chance	effects,	but	have	a	global	distribution	and	impact	28	

on	BP	that	are	consistent	as	measured	by	their	effects	across	the	many	studies	meta-analyzed.		That	29	

they	are	polymorphic	across	all	continental	ancestries	argues	for	their	origin	and	functional	effects	prior	30	

to	human	continental	differentiation.	31	
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The	adrenergic	autonomic	system	has	been	considered	an	important	mediator	of	BP	regulation,	1	

and	is	targeted	by	beta-adrenergic	antagonists	for	the	treatment	of	hypertension.		The	SNP	rs6271	lies	2	

within	the	coding	sequence	of	the	dopamine	beta	hydroxylase	gene	(DBH),	encoding	the	enzyme	that	3	

catalyzes	the	conversion	of	dopamine	to	norepinephrine,	a	critical	neurotransmitter	and	effector	of	4	

sympathetic	control	of	BP.		The	variant	results	in	an	arginine	to	cysteine	amino	acid	change	at	the	highly	5	

conserved	position	549	(R549C)	and	is	predicted	to	be	potentially	damaging	by	Polyphen2.		Rare	loss-of-6	

function	mutations	in	this	gene	are	associated	with	low	plasma	dopamine	beta	hydroxylase	activity,	low	7	

plasma	norepinephrine	and	high	plasma	dopamine,	and	a	clinical	syndrome	including	orthostatic	8	

hypotension40,41.		Several	of	the	17	novel	loci	contain	other	strong	biological	candidates;	these	are	9	

described	in	greater	detail	in	Supplementary	Table	27	and	the	Supplementary	Note.	10	

The	single	most	common	feature	we	identified	was	the	enrichment	of	regulatory	elements	for	gene	11	

expression	in	vascular	endothelial	cells.		The	broad	distribution	of	these	cells	across	both	large	and	small	12	

vessels	and	across	all	tissues	and	organs	suggest	that	functional	variation	in	these	cells	affect	endothelial	13	

permeability	or	vascular	smooth	muscle	cell	contractility	via	multiple	pathways.		These	hypotheses	will	14	

need	to	be	rigorously	tested,	in	appropriate	models,	to	assess	the	contribution	of	these	pathways	to	BP	15	

control,	and	these	pathways	could	be	targets	for	systemic	anti-hypertensive	therapy	as	they	are	for	the	16	

pulmonary	circulation42.		In	summary,	the	genetic	observations	will	contribute	to	a	new	and	improved	17	

understanding	of	BP	biology	and	a	re-evaluation	of	the	pathways	considered	relevant	for	therapeutic	BP	18	

control.19	
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TABLE	LEGENDS	1	

Table	1.		SBP	and	DBP	association	at	66	loci.	2	

Meta-analysis	 results	 of	 up	 to	342,415	 individuals	 of	 European	ancestry	 for	 SBP	and	DBP:	 Established	3	

and	new	 loci	are	grouped	separately.	 	Nearest	genes	are	shown	as	 locus	 labels	but	 this	should	not	be	4	

interpreted	as	support	that	the	causal	gene	is	the	nearest	gene.		The	lead	SNP	with	the	lowest	P	value	5	

for	either	BP	trait	is	shown	as	the	lead	SNP	and	both	SBP	and	DBP	results	are	presented	even	if	both	are	6	

not	genome-wide	significant.		The	SNP	effects	are	shown	according	to	the	effect	in	mm	Hg	per	copy	of	7	

the	coded	allele	 (that	 is	 the	allele	coded	0,	1,	2)	under	an	additive	genetic	model.	“*”	 in	the	 lead	SNP	8	

column	 indicates	 a	 non-synonymous	 coding	 SNP	 (either	 the	 SNP	 itself	 or	 another	 SNP	 in	 r2	 >0.8).	 #	9	

Established	loci	have	smaller	total	sample	sizes	relative	to	novel	loci	(see	Supplementary	Note).	10	

Table	2.		Prediction	of	hypertensive	target	organ	damage	by	a	multi-BP	SNP	score.	11	

Shown	 are	 the	 estimated	 effects	 of	 a	 BP	 risk	 score	 comprised	 of	 up	 to	 66	 SNPs	 (see	 column	 “Total	12	

#SNPs”)	 on	 risk	 of	 dichotomous	 outcome	 (as	 odds	 ratios)	 or	 increment	 in	 continuous	 measures	 per	13	

predicted	mmHg	of	the	SBP	or	DBP	score.		The	effect	sizes	are	expressed	as	incremental	change	in	the	14	

phenotype	for	quantitative	traits	and	natural	logarithm	of	the	odds	ratio	for	binary	traits,	per	1	mmHg	15	

predicted	 increase	 in	 SBP	 or	 DBP.	 P	 values	 are	 bolded	 if	 they	 meet	 an	 analysis-wide	 significance	16	

threshold	(<	0.05/18	=	0.0028).	Results	for	all	SNPs	(“all”)	and	for	pruned	results	(“p”)	are	shown.		The	17	

pruned	results	were	obtained	by	iterative	removal	of	SNPs	from	the	risk	score	starting	with	the	SNP	with	18	

lowest	heterogeneity	P	value.	Iterations	to	remove	SNPs	were	continued	until	the	heterogeneity	P value	19	

was	<	0.0028	 (see	Supplementary	Note).	 	The	number	of	SNPs	 removed	when	calculating	 the	pruned	20	

results	 is	 indicated	by	 “#	 SNPs	 rem.”.	 	 The	 results	 per	 individual	 SNP	 can	be	 found	 in	Supplementary	21	

Table	15.		CAD:	coronary	artery	disease,	LV:	left	ventricle,	CKD:	chronic	kidney	disease,	eGFR:	estimated	22	

glomerular	 filtration	 rate,	 cr:	 creatinine,	 cIMT:	 carotid	 intima:	media	 thickness.	 Var.	 type	 denotes	 the	23	

variable	type	and	cont.	for	continuous,	or	dic.	for	dichotomous.	Eth.	=	Ethnicity,	Consort.	=	Consortium,	24	

EUR	=	European	ancestry,	EAS	=	East	Asian	ancestry.	 	25	
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Table	1.		New	and	known	BP	loci.	1	
Locus	no.	 Locus	name	 Lead	SNP	

Ch
r	 Position	(hg19)	 CA	

/NC	
Coded	
allele	
freq	

Traits	 SBP		 		 	DBP	
Effect	 SE	 P	value	 Total	N	 		 Effect	 SE	 P	value	 Total	N#	

NEW	1	 HIVEP3	 rs7515635	 1	 42,408,070	 T/C	 0.468	 SBP	 0.307	 0.0444	 4.81E-12	 340,969	 		 0.1365	 0.0263	 2.05E-07	 340,934	
NEW	2	 PNPT1	 rs1975487	 2	 55,809,054	 A/G	 0.464	 DBP	 -0.2107	 0.045	 2.81E-06	 337,522	 	 -0.1602	 0.0266	 1.75E-09	 337,517	
NEW	3	 FGD5	 rs11128722	 3	 14,958,126	 A/G	 0.563	 SBP	&	DBP	 -0.3103	 0.0469	 3.61E-11	 310,430	 		 -0.1732	 0.0279	 5.16E-10	 310,429	
NEW	4	 ADAMTS9	 rs918466	 3	 64,710,253	 A/G	 0.406	 DBP	 -0.0865	 0.0459	 5.94E-02	 336,671	 	 -0.1819	 0.027	 1.73E-11	 336,653	
NEW	5	 TBC1D1-FLJ13197	 rs2291435	 4	 38,387,395	 T/C	 0.524	 SBP	&	DBP	 -0.3441	 0.0449	 1.90E-14	 331,382	 		 -0.156	 0.0266	 4.26E-09	 331,389	
NEW	6	 TRIM36	 rs10077885	 5	 114,390,121	 A/C	 0.501	 SBP	&	DBP	 -0.284	 0.0444	 1.64E-10	 338,328	 	 -0.1735	 0.0263	 3.99E-11	 338,323	
NEW	7	 CSNK1G3	 rs6891344	 5	 123,136,656	 A/G	 0.819	 DBP	 0.2811	 0.058	 1.24E-06	 338,688	 		 0.2311	 0.0343	 1.58E-11	 338,678	
NEW	8	 CHST12-LFNG	 rs2969070	 7	 2,512,545	 A/G	 0.639	 SBP	&	DBP	 -0.2975	 0.0464	 1.44E-10	 335,991	 	 -0.1821	 0.0274	 2.92E-11	 335,972	
NEW	9	 ZC3HC1	 rs11556924

*	

7	 129,663,496	 T/C	 0.384	 SBP	&	DBP	 -0.2705	 0.0468	 7.64E-09	 325,929	 		 -0.2141	 0.0276	 8.15E-15	 325,963	
NEW	10	 PSMD5	 rs10760117	 9	 123,586,737	 T/G	 0.415	 SBP	 0.283	 0.0457	 6.10E-10	 333,377	 	 0.0999	 0.0269	 2.08E-04	 333,377	
NEW	11	 DBH	 rs6271*	 9	 136,522,274	 T/C	 0.072	 SBP	&	DBP	 -0.5911	 0.0899	 4.89E-11	 306,394	 		 -0.4646	 0.0532	 2.42E-18	 306,463	
NEW	12	 RAPSN,	PSMC3,	SLC39A13	 rs7103648	 11	 47,461,783	 A/G	 0.614	 SBP	&	DBP	 -0.3349	 0.0462	 4.43E-13	 335,614	 	 -0.2409	 0.0272	 9.03E-19	 335,592	

NEW	13	 LRRC10B	 rs751984	 11	 61,278,246	 T/C	 0.879	 SBP	&	DBP	 0.4074	 0.0691	 3.80E-09	 334,583	 		 0.3755	 0.0409	 4.20E-20	 334,586	
NEW	14	 SETBP1	 rs12958173	 18	 42,141,977	 A/C	 0.306	 SBP	&	DBP	 0.3614	 0.0489	 1.43E-13	 331,007	 	 0.1789	 0.0289	 5.87E-10	 331,010	
NEW	15	 INSR	 rs4247374	 19	 7,252,756	 T/C	 0.143	 SBP	&	DBP	 -0.5933	 0.0673	 1.23E-18	 302,458	 		 -0.3852	 0.0396	 2.08E-22	 302,459	
NEW	16	 ELAVL3	 rs17638167	 19	 11,584,818	 T/C	 0.047	 DBP	 -0.4784	 0.1066	 7.13E-06	 333,137	 	 -0.3479	 0.0632	 3.71E-08	 333,107	
NEW	17	 CRYAA-SIK1	 rs12627651	 21	 44,760,603	 A/G	 0.288	 SBP	&	DBP	 0.3905	 0.0513	 2.69E-14	 310,738	 		 0.2037	 0.0301	 1.36E-11	 310,722	
EST	1	 CASZ1	 rs880315	 1	 10,796,866	 T/C	 0.641	 SBP	&	DBP	 -0.475	 0.062	 2.09E-14	 184,226	 	 -0.257	 0.038	 1.34E-11	 184,212	
EST	2	 MTHFR-NPPB	 rs17037390

*	

1	 11,860,843	 A/G	 0.155	 SBP	&	DBP	 -0.908	 0.081	 5.95E-29	 195,493	 		 -0.499	 0.05	 1.20E-23	 195,481	
EST	3	 ST7L-CAPZA1-MOV10	 rs1620668	 1	 113,023,980	 A/G	 0.822	 SBP	&	DBP	 -0.535	 0.076	 1.45E-12	 197,966	 	 -0.285	 0.047	 9.00E-10	 197,948	
EST	4	 MDM4	 rs4245739	 1	 204,518,842	 A/C	 0.737	 DBP	 0.326	 0.068	 1.37E-06	 191,594	 		 0.243	 0.041	 4.63E-09	 191,578	
EST	5	 AGT	 rs2493134*	 1	 230,849,359	 T/C	 0.579	 SBP	&	DBP	 -0.413	 0.058	 9.65E-13	 199,505	 	 -0.275	 0.036	 9.53E-15	 199,502	
EST	6	 KCNK3	 rs2586886	 2	 26,932,031	 T/C	 0.599	 SBP	&	DBP	 -0.404	 0.059	 5.94E-12	 197,269	 		 -0.254	 0.036	 1.92E-12	 197,272	
EST	7	 NCAPH	 rs772178	 2	 96,963,684	 A/G	 0.64	 DBP	 -0.072	 0.061	 2.39E-01	 192,513	 	 -0.208	 0.038	 3.58E-08	 192,501	
EST	8	 FIGN-GRB14	 rs1371182	 2	 165,099,215	 T/C	 0.443	 SBP	&	DBP	 -0.444	 0.058	 1.89E-14	 196,262	 		 -0.252	 0.036	 1.50E-12	 196,240	
EST	9	 HRH1-ATG7	 rs2594992	 3	 11,360,997	 A/C	 0.607	 SBP	 -0.334	 0.06	 2.31E-08	 189,895	 	 -0.136	 0.037	 2.20E-04	 189,854	
EST	10	 SLC4A7	 rs711737	 3	 27,543,655	 A/C	 0.604	 SBP	 0.334	 0.058	 9.93E-09	 200,282	 		 0.17	 0.036	 2.24E-06	 200,260	
EST	11	 ULK4	 rs2272007*	 3	 41,996,136	 T/C	 0.18	 DBP	 -0.11	 0.077	 1.52E-01	 193,915	 	 0.328	 0.047	 3.94E-12	 193,900	
EST	12	 MAP4	 rs6442101*	 3	 48,130,893	 T/C	 0.692	 SBP	&	DBP	 0.396	 0.062	 1.62E-10	 200,543	 		 0.303	 0.038	 1.60E-15	 200,534	
EST	13	 MECOM	 rs6779380	 3	 169,111,915	 T/C	 0.539	 SBP	&	DBP	 -0.439	 0.06	 1.85E-13	 186,535	 	 -0.239	 0.037	 6.87E-11	 186,521	
EST	14	 FGF5	 rs1458038	 4	 81,164,723	 T/C	 0.3	 SBP	&	DBP	 0.659	 0.065	 5.36E-24	 188,136	 		 0.392	 0.04	 7.36E-23	 188,088	
EST	15	 ARHGAP24	 rs17010957	 4	 86,719,165	 T/C	 0.857	 SBP	 -0.498	 0.082	 1.51E-09	 196,325	 	 -0.173	 0.051	 6.63E-04	 196,292	
EST	16	 SLC39A8	 rs13107325

*	

4	 103,188,709	 T/C	 0.07	 SBP	&	DBP	 -0.837	 0.127	 4.69E-11	 175,292	 		 -0.602	 0.078	 1.63E-14	 175,372	
EST	17	 GUCY1A3-GUCY1B3	 rs4691707	 4	 156,441,314	 A/G	 0.652	 SBP	 -0.349	 0.06	 7.10E-09	 198,246	 	 -0.163	 0.037	 1.08E-05	 198,226	
EST	18	 NPR3-C5orf23	 rs12656497	 5	 32,831,939	 T/C	 0.403	 SBP	&	DBP	 -0.487	 0.06	 3.85E-16	 194,831	 		 -0.228	 0.037	 4.73E-10	 194,829	
EST	19	 EBF1	 rs11953630	 5	 157,845,402	 T/C	 0.366	 SBP	&	DBP	 -0.38	 0.065	 3.91E-09	 167,698	 	 -0.23	 0.04	 8.07E-09	 167,708	
EST	20	 HFE	 rs1799945*	 6	 26,091,179	 C/G	 0.857	 SBP	&	DBP	 -0.598	 0.086	 3.28E-12	 185,306	 		 -0.43	 0.053	 3.10E-16	 185,273	
EST	21	 BAT2-BAT5	 rs2187668	 6	 32,605,884	 T/C	 0.126	 DBP	 -0.291	 0.092	 1.60E-03	 189,806	 	 -0.372	 0.057	 4.31E-11	 189,810	
EST	22	 ZNF318-ABCC10	 rs6919440	 6	 43,352,898	 A/G	 0.57	 SBP	 -0.337	 0.058	 4.92E-09	 200,733	 		 -0.125	 0.035	 4.25E-04	 200,730	
EST	23	 RSPO3	 rs1361831	 6	 127,181,089	 T/C	 0.541	 SBP	&	DBP	 -0.482	 0.058	 7.38E-17	 197,027	 	 -0.271	 0.036	 2.34E-14	 197,012	
EST	24	 PLEKHG1	 rs17080093	 6	 150,997,440	 T/C	 0.075	 DBP	 -0.564	 0.111	 3.83E-07	 194,728	 		 -0.411	 0.068	 1.71E-09	 194,734	
EST	25	 HOTTIP-EVX	 rs3735533	 7	 27,245,893	 T/C	 0.081	 SBP	&	DBP	 -0.798	 0.106	 6.48E-14	 197,881	 	 -0.445	 0.065	 1.09E-11	 197,880	
EST	26	 PIK3CG	 rs12705390	 7	 106,410,777	 A/G	 0.227	 SBP	 0.619	 0.069	 2.69E-19	 198,297	 		 0.059	 0.042	 1.63E-01	 198,290	
EST	27	 BLK-GATA4	 rs2898290	 8	 11,433,909	 T/C	 0.491	 SBP	 0.377	 0.058	 8.85E-11	 197,759	 	 0.167	 0.036	 3.17E-06	 197,726	
EST	28	 CACNB2	 rs12243859	 10	 18,740,632	 T/C	 0.326	 SBP	&	DBP	 -0.402	 0.061	 6.13E-11	 199,136	 		 -0.335	 0.038	 8.11E-19	 199,124	
EST	29	 C10orf107	 rs7076398	 10	 63,533,663	 A/T	 0.188	 SBP	&	DBP	 -0.563	 0.076	 1.72E-13	 187,013	 	 -0.409	 0.047	 2.55E-18	 187,024	
EST	30	 SYNPO2L	 rs12247028	 10	 75,410,052	 A/G	 0.611	 SBP	 -0.364	 0.063	 8.16E-09	 180,194	 		 -0.159	 0.039	 3.89E-05	 180,094	
EST	31	 PLCE1	 rs932764*	 10	 95,895,940	 A/G	 0.554	 SBP	&	DBP	 -0.495	 0.059	 6.88E-17	 195,577	 	 -0.224	 0.036	 6.28E-10	 195,547	
EST	32	 CYP17A1-NT5C2	 rs943037	 10	 104,835,919	 T/C	 0.087	 SBP	&	DBP	 -1.133	 0.105	 2.35E-27	 193,818	 		 -0.482	 0.064	 4.48E-14	 193,799	
EST	33	 ADRB1	 rs740746	 10	 115,792,787	 A/G	 0.73	 SBP	&	DBP	 0.486	 0.067	 4.59E-13	 184,835	 	 0.32	 0.041	 8.63E-15	 184,868	
EST	34	 LSP1-TNNT3	 rs592373	 11	 1,890,990	 A/G	 0.64	 SBP	&	DBP	 0.484	 0.063	 2.02E-14	 177,149	 		 0.282	 0.039	 3.61E-13	 177,134	
EST	35	 ADM	 rs1450271	 11	 10,356,115	 T/C	 0.468	 SBP	&	DBP	 0.413	 0.059	 3.40E-12	 191,246	 	 0.199	 0.036	 4.11E-08	 191,221	
EST	36	 PLEKHA7	 rs1156725	 11	 16,307,700	 T/C	 0.804	 SBP	&	DBP	 -0.447	 0.072	 5.65E-10	 200,889	 		 -0.292	 0.044	 3.67E-11	 200,899	
EST	37	 SIPA1	 rs3741378*	 11	 65,408,937	 T/C	 0.137	 SBP	 -0.486	 0.084	 8.04E-09	 194,563	 	 -0.183	 0.052	 4.17E-04	 194,551	
EST	38	 FLJ32810-TMEM133	 rs633185	 11	 100,593,538	 C/G	 0.715	 SBP	&	DBP	 0.522	 0.067	 6.97E-15	 183,845	 		 0.288	 0.041	 2.38E-12	 183,825	
EST	39	 PDE3A	 rs3752728	 12	 20,192,972	 A/G	 0.737	 DBP	 0.331	 0.066	 4.32E-07	 200,440	 		 0.319	 0.04	 2.35E-15	 200,408	
EST	40	 ATP2B1	 rs11105354	 12	 90,026,523	 A/G	 0.84	 SBP	&	DBP	 0.909	 0.081	 3.88E-29	 195,206	 	 0.459	 0.05	 2.61E-20	 195,195	
EST	41	 SH2B3	 rs3184504*	 12	 111,884,608	 T/C	 0.475	 SBP	&	DBP	 0.498	 0.062	 9.97E-16	 177,067	 		 0.362	 0.038	 1.28E-21	 177,122	
EST	42	 TBX5-TBX3	 rs2891546	 12	 115,552,499	 A/G	 0.11	 DBP	 -0.529	 0.1	 1.36E-07	 172,012	 	 -0.38	 0.061	 4.71E-10	 171,980	
EST	43	 CYP1A1-ULK3	 rs936226	 15	 75,069,282	 T/C	 0.722	 SBP	&	DBP	 -0.549	 0.067	 3.06E-16	 187,238	 		 -0.363	 0.041	 1.03E-18	 187,221	
EST	44	 FURIN-FES	 rs2521501	 15	 91,437,388	 A/T	 0.684	 SBP	&	DBP	 -0.639	 0.069	 3.35E-20	 164,272	 	 -0.358	 0.042	 1.85E-17	 164,255	
EST	45	 PLCD3	 rs7213273	 17	 43,155,914	 A/G	 0.658	 SBP	 -0.413	 0.066	 4.71E-10	 164,795	 		 -0.185	 0.041	 7.23E-06	 164,788	
EST	46	 GOSR2	 rs17608766	 17	 45,013,271	 T/C	 0.854	 SBP	 -0.658	 0.083	 2.27E-15	 188,895	 	 -0.218	 0.051	 1.95E-05	 188,928	
EST	47	 ZNF652	 rs12940887	 17	 47,402,807	 T/C	 0.38	 DBP	 0.321	 0.06	 7.06E-08	 192,546	 		 0.261	 0.037	 1.07E-12	 192,524	
EST	48	 JAG1	 rs1327235	 20	 10,969,030	 A/G	 0.542	 SBP	&	DBP	 -0.395	 0.059	 2.23E-11	 192,680	 	 -0.308	 0.036	 1.78E-17	 192,659	
EST	49	 GNAS-EDN3	 rs6026748	 20	 57,745,815	 A/G	 0.125	 SBP	&	DBP	 0.867	 0.089	 3.15E-22	 192,338	 		 0.552	 0.055	 4.86E-24	 192,327	
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Table	2.		BP	risk	score	effects	on	disease	outcomes.	

Phenotype	 Var.	
type	
(cont./
dic.)	

Eth.	 Consort.	 Total	N	
or	no.	
ca/co	

Total	
#SNPs	

SBP_score	 		 DBP_score	

		 		 effect	
(all)	

P	value	
(all)	

het.		P	
value	(all)	

P	value	
(p)	

#	
SNPs		
rem.	

		 effect	
(all)	

P	value	
(all)	

het.	P	
value	(all)	

P	value	
(p)	

#	
SNPs	
rem.	

HEART	 		 		 		 		 		 	 		 	 		 		 		 	 		 	 		 		
CAD		 dich.	 EUR

SAS	
CARDIoG
RAMplus
C4D	

63,746	
/130,681	

61	 1.042	 1.72E-44	 1.75E-25	 4.08E-32	 10	 		 1.069	 1.19E-42	 6.63E-27	 2.2E-38	 10	

heart	
failure	

dich.	 EUR	 CHARGE	 2,526	
/18,400		

66	 1.021	 2.77E-02	 1.63E-01	 2.77E-02	 0	 	 1.035	 2.31E-02	 1.70E-01	 2.31E-02	 0	

LV	mass	 cont.	 EUR	 CHARGE	 11,273	 66	 0.480	 6.43E-04	 3.58E-01	 6.43E-04	 0	 		 0.754	 1.23E-03	 3.21E-01	 1.23E-03	 0	

LV	wall	
thickness	

cont.	 EUR	 CHARGE	 11,311	 66	 0.004	 4.45E-06	 5.83E-02	 4.45E-06	 0	 		 0.007	 3.19E-06	 6.40E-02	 3.19E-06	 0	

KIDNEY	 		 		 		 		 		 	 	 	 		 		 		 	 	 	 		 		

CKD		 dich.	 EUR	 CHARGE	 6,271	
/68,083	

65	 1.010	 1.37E-01	 1.77E-03	 2.65E-01	 1	 	 1.008	 4.49E-01	 1.25E-03	 7.69E-01	 1	

eGFR	
(based	on	
cr)		

cont.	 EUR	 CHARGE		 74,354	 65	 0.000	 7.07E-01	 3.12E-05	 3.22E-01	 2	 		 0.000	 9.41E-01	 3.02E-05	 9.65E-01	 2	

eGFR	
(based	on	
cystatin)		

cont.	 EUR	 CHARGE	 74,354	 65	 0.001	 9.05E-02	 9.28E-06	 4.11E-01	 1	 		 0.001	 3.30E-01	 5.64E-06	 6.9E-01	 1	

creatinine		 cont.	 EUR	 KidneyGE
N	

23,812	 66	 0.000	 9.42E-01	 6.31E-03	 9.42E-01	 0	 		 0.000	 4.11E-01	 7.16E-03	 4.11E-01	 0	

microalbu
minuria		

dich.	 EUR	 CHARGE	 2,499	
/29,081	

65	 0.011	 2.10E-01	 4.79E-02	 2.1E-01	 0	 	 0.023	 1.02E-01	 5.66E-02	 1.02E-02	 0	

urinary	
albumin/cr	
ratio	

cont.	 EUR	 CHARGE	 31,580	 65	 0.009	 2.52E-03	 3.02E-04	 0.53E-03	 1	 		 0.015	 2.40E-03	 3.08E-04	 8.31E-03	 1	

STROKE	 		 		 		 		 		 	 	 	 		 		 		 	 	 	 		 		

stroke,	all	
subtypes	

dich.	 EUR	 CHARGE	 1,544	
/18,058	

66	 0.056	 6.11E-06	 8.26E-02	 6.11E-06	 0	 	 0.085	 3.79E-05	 4.98E-02	 3.79E-05	 0	

stroke,	
ischemic	
subtype	

dich.	 EUR	 CHARGE	 1,164	
/18,438	

66	 0.067	 3.33E-06	 1.75E-01	 3.33E-06	 0	 		 0.096	 5.63E-05	 8.82E-02	 5.63E-05	 0	

stroke,	
ischemic	
subtype	

dich.	 EUR	 MetaStro
ke	

11,012	
/40,824	

66	 0.036	 1.69E-10	 4.72E-02	 1.69E-10	 0	 	 0.056	 1.29E-09	 2.51E-02	 1.29E-09	 0	

VASCULATURE	
		

		 		 		 		 	 	 	 		 		 		 	 	 	 		 		

cIMT	 cont.	 EUR	 CHARGE	 27,610	 66	 0.004	 4.80E-15	 5.06E-08	 7.32E-10	 4	 		 0.005	 4.15E-11	 3.84E-10	 6.2E-07	 5	

EYE	 		 		 		 		 		 	 	 	 		 		 		 	 	 	 		 		

mild	
retinop.	

dich.	 EUR	 CHARGE	 1,122	
/18,289	

66	 1.021	 1.37E-01	 6.01E-03	 1.37E-01	 0	 	 1.046	 5.78E-02	 7.81E-03	 5.78E-02	 0	

central	
retinal	
artery	
caliber	

cont.	 EUR	 CHARGE	 18,576	 66	 0.343	 3.29E-14	 2.56E-06	 2.06E-13	 2	 		 0.570	 3.61E-14	 2.44E-06	 7.05E-13	 3	

mild	
retinop.	

dich.	 EAS	 SEED	 289	
/5,419	

66	 1.033	 2.55E-01	 2.42E-01	 2.55E-01	 0	 	 1.087	 8.55E-02	 2.87E-01	 8.55E-02	 0	

central	
retinal	
artery	
caliber	

cont.	 EAS	 SEED	 6,976	 63	 0.320	 1.39E-04	 9.07E-01	 1.39E-04	 0	 		 0.533	 2.19E-04	 8.91E-01	 2.19E-04	 0	
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Figure 1. Manhattan plots for SBP and DBP from the stage 4 Cardio-
MetaboChip-wide meta-analysis. P values (expressed as −log10P ) are plot-
ted by physical genomic position labeled by chromosome. SNPs in new loci
(3.5MB window around the index SNP), identified in this study, are labeled in
dark red (SBP) or dark blue (DBP); SNPs in previously known loci are labeled
in orange (SBP) or light blue (DBP). The locus names are indicated. The grey
crosses indicate genomic positions at which the y-axis was truncated (SNPs with
P < 10−15).
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Figure 2. Overview of novel and known BP variant properties. Key
characteristics of the novel and established BP loci are shown. MAF and effect
size estimates are derived from the Cardio-MetaboChip data. Variance explained
estimates are estimated from one large study (Supplementary Note). Novel
loci are classified as previously unknown to be linked to BP by a systematic
PubMed review of all genes in a 200kb window (Supplementary Note).
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#2: lung−derived lymphatic microvascular EC
#3: dermal−derived lymphatic microvascular EC, adult 
#6: dermal−derived microvascular EC, neonatal 
#7: umbilical vein EC
#8: dermal microvascular EC, adult
#9: dermal−derived microvascular EC, adult blood
#11: dermal−derived lymphatic microvascular EC, neonatal
#13: dermal−derived microvascular EC, neonatal blood 
#17: brain microvascular EC
#23: lung−derived microvascular EC
#26: renal glomerular EC
#70: pulmonary artery EC
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Figure 3. Enrichment of DNAse hypersensitive sites among BP loci in
different cell-types. Enrichment analyses of SBP or DBP associated loci
according to discovery P value using narrow peaks (panel A) or broad peaks
(panel B). SNPs were selected according to different P value cutoffs (x-axis)
and a fold enrichment of overlap with DNAse hypersensitive sites compared to
unrelated GWAS SNPs was calculated (y-axis) (see Supplementary Note). The
12 endothelial cell-lines are indicated in color and for each endothelial cell-type
the rank using the 10−14 P value cutoff is indicated. EC denotes endothelial
cells.
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