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Abstract

The elucidation of sources of heterogeneity in cell populations is crucial to fully understand biological

processes. A suitable method to identify causes of heterogeneity is reaction rate equation (RRE) constrained

mixture modeling, which enables the analysis of subpopulation structures and dynamics. These mixture

models are calibrated using single cell snapshot data to estimate model parameters which are not measured

or which cannot be assessed experimentally. In this manuscript, we evaluate different optimization methods

for estimating the parameters of RRE constrained mixture models under the normal distribution assumption.

We compare gradient-based optimization using sensitivity analysis with two other optimization methods –

gradient-based optimization with finite differences and a stochastic optimization method – for simulation

examples with artificial data. Furthermore, we compare different numerical schemes for the evaluation of the

log-likelihood function. We found that gradient-based optimization using sensitivity analysis outperforms

the other optimization methods in terms of convergence and computation time.

1 Introduction

In the past years, methods for studying biological processes on a single cell level have been developed and

improved. It is possible to quantify the (relative) abundance of molecular species in single cells using, e.g.

flow cytometry [2] or single cell microscopy [11]. With these techniques, it is possible to also detect het-

erogeneity in expression for cells of a same cell population. This heterogeneity has been shown to play an

important role for e.g. cancer cells or neurons [10, 14]. For homogeneous cell populations, dynamic mathe-

matical models are convenient tools to study biological systems [8]. However, they only capture the dynamic

of the mean response in the cell population and cannot account for possible subpopulations. To exploit

the information available in single cell data, dynamical models that are able to account for subpopulation

structures of the cells are needed.

A suitable method to study subpopulation structures of heterogeneous cell populations is the method

of RRE constrained mixture modeling introduced by Hasenauer et al. [5]. These models can in principle

be fitted to experimental single cell data to estimate unknown parameters of the biological system, such

as kinetic rates, initial conditions or subpopulation weights. Subsequently, hypotheses about mechanistic

differences between individual subpopulations can be tested. However, it has not yet been discussed how
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ẋ1 = f (x1,Â1,u)

µ2 = g (x1,Â2,u)
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Figure 1: Illustration of RRE constrained mixture modeling for an example of two subpopulations. The means of
measurement y for the individual subpopulations are calculated with RREs and plotted as purple and orange lines for
the high and low responsive subpopulation, respectively. The overall cell distribution Φ is plotted as black curve and
is calculated by a weighted mixture of the individual distributions for the subpopulations (purple and orange areas).

the parameters of RRE constrained mixture models can be estimated in an efficient and accurate way and

there is no comparison of methods available.

In this manuscript, we consider maximum likelihood methods for parameter estimation. For this, a

likelihood function which provides a measure of how well the data is explained by the current parametrization

of the model is maximized. This maximization can be performed using e.g. local deterministic or global

stochastic optimization techniques [3, 12, 15]. Most deterministic optimizers employ information about the

gradient of the likelihood function. This gradient with respect to the parameters can be approximated by

finite differences or, if possible, calculated with sensitivity analysis [12, 13]. An example of a global stochastic

optimizer is particle swarm optimization presented in [15]. This optimizer does not rely on information about

the gradient and has been shown to outperform other global optimizers [15].

We describe the concept of RRE constrained mixture models and provide the likelihood function and

the sensitivity equations for the calculation of its gradient with respect to the parameters. Additionally,

we explain the standard and a robust approach for the evaluation of a mixture likelihood. We compare the

deterministic optimization using sensitivities to the deterministic method using finite differences and to the

stochastic particle swarm optimization algorithm for artificial single cell snapshot data of a one stage and

three stage cascade.

2 Methods

In this section, we outline the method of RRE constrained mixture modeling for single cell snapshot data

and the corresponding likelihood formulation for the parameter estimation. We establish the gradient of

the likelihood with respect to the model parameters and the sensitivity equations. Further, a numerically

robust evaluation of the log-likelihood is presented.

2.1 RRE Constrained Mixture Models

RRE modeling provides the temporal evolution for the mean concentrations ~x = (x1, . . . , xnx) of nx chemical

species involved in a biological process, which is stimulated by an external stimulus u. These RREs can be

written as

~̇x = f(~x,ψ, u) , ~x(0) = ~x0(ψ, u) , (1)
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an ODE system with initial conditions ~x0(ψ, u) and vector field f . The parameter vector ψ comprises e.g.

kinetic rates, initial concentrations or observation parameters. Often, the concentrations ~x of the species

cannot be measured directly or only a subset of them can be observed. In most experiments, only a single

property is assessed. Therefore, we considered an observable

y = h(~x,ψ, u) ,

with h denoting the mapping. The observation process depends on observation parameters included in ψ

such as scaling and offset constants.

Mixture models enable the depiction of subpopulations within an overall population. The probability

distribution is described by the weighted sum of probability density functions φ for individual mixture

components, i.e., subpopulations

p(y|ws, µs, σs) =

ns∑
s=1

wsφ(y|µs, σ2s) .

In this manuscript, we assumed φ to be a normal distribution, which is parametrized by its mean µ and

variance σ2.

Combining these, every subpopulation is treated as a mixture component for which the mean concen-

tration is simulated using RREs [5]. This yields the following model for the distribution of an observable y

for some given parameters θ at a time point tk,

p(y|θ, tk) =

ns∑
s=1

ws(θ)φ
(
y|µs, σ2s(θ, tk)

)
with ~̇xs = f (~xs,ψs(θ), u) , ~xs(0) = ~x0(ψs(θ), u) ,

µs = h (~xs,ψs(θ), u) .

The parameter vector can comprise e.g. θ = ({ws, σs, ξs}nss=1, ξ), the subpopulation specific mixture weights

ws, standard deviations σs and mechanistic parameters ξs as well as mechanistic parameters ξ that are

shared across subpopulations. The mean of the mixture distribution is linked to the RREs, while the mixture

weights and standard deviations do not depend on the RREs. The parameters for the RREs of an individual

subpopulation as defined in (1) are thus given by ψs = (ξs, ξ). The concept of RRE constrained mixture

models is illustrated in Figure 1. For a more detailed explanation of these models, we refer to [5].

2.2 Single Cell Snapshot Data

We considered single cell snapshot data

D =

{{
ykj

}nc
j=1

}nt
k=1

.

These data contain the measurements y for nc cells, indexed by j, at nt time points, indexed by k. In the

case considered, the data captures the dynamics of the population on a single cell level after stimulation

with some input u.
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2.3 Parameter Estimation for RRE Constrained Mixture of Normal Distributions

To obtain the parameters of a RRE constrained mixture model, the model needs to be fitted to experimental

data D. This is done by maximum likelihood estimation. A likelihood function L(θ) describes the probability

of observing the data D given the parameters θ. For the case of RRE constrained mixture models, this

function is given by

L(θ) :=
∏
k,j

ns∑
s=1

ws(θ)φ
(
ykj |µs, σ2s(θ, tk)

)
with ~̇xs = f (~xs,ψs(θ), u) , ~xs(0) = ~x0(ψs(θ), u) ,

µs = h (~xs,ψs(θ), u) .

The mixture parameters µs implicitly depend on the parameter vector θ. A different variance parameter

σs can be used for every measured time point tk and subpopulation s. Since the number of parameters

increases with the number of measured time points and the number subpopulations, an efficient method for

parameter estimation is required. Due to its better numerical properties, we used the negative log-likelihood

function

J(θ) = − logL (θ)

= −
∑
k,j

log

ns∑
s=1

ws(θ)φ
(
ykj |µs, σ2s(θ, tk)

)
in the optimization, which has the same extrema as the likelihood function. In the following, we derive the

gradient of J with respect to θ, which can be employed by deterministic local optimization methods.

2.3.1 Gradient of Negative Log-likelihood Function.

For a simpler notation, we neglect the arguments of ws and σs. The gradient of the log-likelihood with

respect to parameters θ = (θ1, . . . , θnθ), with θ denoting an entry of the vector, is given by

dJ

dθ
= −

∑
k,j

d

dθ
log

(
ns∑
s=1

ws φ
(
ykj |µs, σ2s

))

= −
∑
k,j

1∑ns
s=1ws φ

(
ykj |µs, σ2s

) d

dθ

ns∑
s=1

ws φ
(
ykj |µs, σ2s

)

= −
∑
k,j

1∑ns
s=1ws φ

(
ykj |µs, σ2s

) ns∑
s=1

dws
dθ

φ
(
ykj |µs, σ2s

)
+ ws

dφ
(
ykj |µs, σ2s

)
dθ

 .

Under the assumption that φ is a normal distribution, it holds that

dφ
(
ykj |µs, σ2s

)
dθ

=
1

σs
φ
(
ykj |µs, σ2s

)ykj − µs
σs

dµs
dθ

+

(ykj − µs
σs

)2

− 1

 dσs
dθ

 ,
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with

dσks
dθ

=

1 θ = σks

0 otherwise
,

dws
dθ

=

1 θ = ws

0 otherwise
.

The gradient of the objective function comprises dµs
dθ , which can be calculated using sensitivity analysis.

The sensitivities z~xs =
(
∂xs,1
∂θ , . . . ,

∂xs,nx
∂θ

)
are defined by

∂z~xs

∂t
=

∂f

∂~xs
z~xs +

∂~xs
∂θ

, z~xs(0) =
∂~x0
∂θ

,

zµs =
∂h

∂~xs
z~xs +

∂h

∂θ
,

with ∂f
∂~xs

=
(
∂fm
∂xs,l

)
m,l
∈ Rnx×nx and ∂h

∂~xs
=
(
∂hm
∂xs,l

)
m,l
∈ Rnx×ny . For the case of RRE constrained mixture

models, we obtain µs and dµs
dθ = zµs by simulating an ODE system comprising the RREs and sensitivity

equations.

2.3.2 Robust Evaluation of the Log-Likelihood Function and Its Gradient.

We explain and tackle the problem occuring when numerically evaluating (log-) likelihood functions of mix-

ture distributions. For this, we formulate the standard and robust approach to evaluate the log-likelihood

function following [9]. As already mentioned, rather the log-likelihood than the likelihood function is calcu-

lated due to numerical properties. This means, instead of the probability density p, the logarithm log(p) is

evaluated. For the assumption of a normal distribution this circumvents e.g. exponentiation of the differ-

ence between measurement and simulation. This is especially advantageous for high differences, since e−x

might be numerically evaluated to zero for finite values of x. However, for mixture models, if ns > 1 and

ps := φ(y|µs, σ2s), it holds that

log(p) = log

(
ns∑
s=1

wsps

)
6=

ns∑
s=1

log (wsps) ,

i.e., for these cases it is not possible to use the logarithm of the probability density of an individual mixture

component directly. This problem also occurs in the calculation of the gradient. We refer to this approach

of evaluating the likelihood function as standard approach.

A more robust approach for the log-likelihood calculation is given in the following. With qs = log(ps)

and ŝ = argmaxsqs, we reformulate

log(p) = log

(
ns∑
s=1

wse
qs

)

= log

1 +
∑
s 6=ŝ

ws
wŝ

(
eqs−qŝ

)+ log(wŝ) + qŝ . (2)

Considering ps to be a normal distribution it follows that

log(ps) = qs = −1

2

(
y − µs
σs

)2

− log(
√

2π)− log(σs) .
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Regarding the calculation of the gradient it holds that

d log(p)

dθ
=

1

p

dp

dθ
=

ns∑
s=1

ps∑ns
j=1wjpj

Hs

=
1∑ns

j=1wje
qj−qŝ

ns∑
s=1

eqs−qŝHs , (3)

with Hs defined by

Hs =
1

ps

dwsps
dθ

=
dws
dθ

+
ws
ps

dps
dθ

.

Under the assumption that ps is a normal distribution this is

Hs =
dws
dθ

+
ws
σs

(
y − µs
σs

dµs
dθ

+

((
y − µs
σs

)2

− 1

)
dσs
dθ

)
.

The proposed reformulations (2) and (3) are used for the robust evaluation of the log-likelihood function

and its gradient. For further details we refer to [9].

2.4 Implementation

The RRE constrained mixture models were implemented in MATLAB. The sensitivity equations were de-

rived and simulated using the toolbox CERENA [7]. For parameter estimation with deterministic optimiza-

tion, we used the toolbox PESTO,1 which employs the MATLAB function fmincon. For stochastic global

optimization we employed a toolbox for the algorithm PSwarm [15].

3 Results

We compared the different optimizers in terms of convergence and computation time for artificial data of a

one stage and a three stage cascade.

3.1 One Stage Cascade

For a first comparison of the optimizers we considered a small example of a one stage cascade comprising a

conversion between two species A and B.

3.1.1 Model and Artificial Data.

A conversion process describes a reversible reaction between two species, A and B that have the concentra-

tions [A] and [B], respectively. In our example, we assumed that the conversion from A to B takes place

with a basal rate k2[A] and is additionally increased by external stimulus u. Furthermore, B is converted

1available at https://github.com/ICB-DCM/PESTO
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Figure 2: Artificial data of a conversion process. (A) Illustration of a conversion process between chemical
species A and B in a cell population. The conversion from A to B is enhanced by a stimulus u. 30% of the cells
show a higher response to the external stimulus u than the other cells. Only the concentration of B denoted by [B]
is measured. (B) Artificial data for the conversion process. The system is stimulated with u = 0 for t < 0 and u = 1
for t ≥ 0.

back to A with kinetic parameter k3 yielding the reactions

R1 : A→ B, rate = k1u
[
A
]
,

R2 : A→ B, rate = k2
[
A
]
,

R3 : B→ A, rate = k3
[
B
]
.

We considered that there exist two subpopulations, s1 and s2, differing in the stimulus-dependent conversion

from A to B. This is described by the kinetic parameter k1, i.e., the subpopulations share the parameters

k2 and k3 but have individual parameters k1,s1 and k1,s2 with s1 and s2 indicating the kinetic parameters

of subpopulation 1 and 2, respectively. The system is in steady state before stimulation (u = 0 for t < 0).

To generate the artificial data we used the parameters (k1,s1 , k1,s2 , k2, k3, w) = (0.1, 0.75, 0.5, 1.5, 0.7) and

assumed that only the concentration of species B can be measured, yielding the observation model y =

h(~x,ψ, u) = x2, with ~x = (x1, x2)
T = ([A), [B])T . An illustration of the system including the subpopulations

is given in Figure 2A. This system was simulated using the stochastic simulation algorithm [4], which models

random births and deaths of individual molecules. We considered a system size of Ω = 1000 and divided

the number of molecules by Ω to obtain the concentration of the species. Moreover, the external stimulus

is set to u = 1 at t ≥ 0 and measurements of the concentration of B are recorded at t = 0, 0.1, 0.2, 0.3, 0.5, 1

minutes. The data are shown in Figure 2B: For t = 0, the system is in steady state and no subpopulation

structure is visible, since the subpopulations differ only in the response to stimulation. For t = 0.1, the

subpopulation structure becomes visible, but the subpopulations still highly overlap. However, for later

time points the subpopulations are clearly separated.

The mean of the stochastic single cell trajectories can be described by RREs, i.e., the temporal evolution

of x2 can be described by the ODE

ẋ2 = k1u+ k2 − (k1u+ k2 + k3)x2 , x2(0) =
k2

k2 + k3
,
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Figure 3: Comparison of optimization methods. (A) Convergence plot for the final negative log-likelihood
values for 100 starts. The values are sorted from lowest to highest implying a decreasing goodness of fit. (B) Data
and fit for the optimal value, which was found by all methods. Percentage of starts for which the initial value was ∞
(C) and converged starts (D).

using mass conservation, [A]+[B] = 1. We then assumed the parameters θ = (k1,s1 , k1,s2 , k2, k3, w, {{σs(tk)}
2
s=1}6k=1)

to be unknown and estimated them from the data. Since the data comprised six time points and we ac-

counted for two subpopulations, 12 parameters for the standard deviation σs(tk) need to be estimated.

3.1.2 Convergence of Optimization Methods.

To evaluate the optimizers, we compared deterministic gradient-based optimization using sensitivities with

deterministic gradient-based optimization using finite differences and a stochastic particle swarm algo-

rithm [15]. For all optimizers, the parameter values for the kinetic rates ki were restricted to the interval

[10−6, 104], the mixture weight w to [0, 1] and the parameters for the standard deviation of the normal

distributions σs(tk) to [10−2.5, 102.5]. Each algorithm was started 100 times and the deterministic optimizers

were started from the same randomly drawn start points.

The final negative log-likelihood values for every start are sorted with decreasing goodness of fit and

shown in Figure 3A. The data and fit, which correspond to the optimal value found by all methods, are

shown in Figure 3B. The model shows a good agreement with the data. For a detailed comparison of the

results obtained by the different optimization methods, we assessed the percentage of failed starts, i.e., the
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Figure 4: Performance comparison of optimization methods. (A) Time needed for one optimization start.
(B) Number of objective function evaluations for one optimization start. (C) Average computation time needed per
converged start.

starts for which the log-likelihood function was infinite at the start point (Figure 3C). For almost 20%

of all drawn start points the log-likelihood has an infinite value when using the standard evaluation of

the log-likelihood. However, the log-likelihood can be evaluated for all start points when using the robust

calculation approach. Since for PSwarm an initial particle population is used instead of a single initial value,

there are no failed starts and it is not possible to compare this property with the deterministic optimizers.

We expect the percentage of failed log-likelihood evaluations for the initial particle population to be similar

to the percentages found for the failed starts in the deterministic optimization using the standard approach.

The likelihood was numerically evaluated to zero for all start points. For the log-likelihood, we counted

the number of objective function values that are close to the minimal objective function value found, i.e.,

below a statistical threshold according to a likelihood ratio test [6]. These starts are then likely to have

converged to the global optimum. The percentage of converged starts determined for each optimizer is

depicted in Figure 3D. Clearly, the best convergence is obtained by deterministic local optimization with

an analytical gradient that is calculated with sensitivities. For this optimizer, the robust calculation of the

log-likelihood and the gradient yielded better convergence compared to the standard approach. For both

approaches, standard and robust evaluation of the log-likelihood function, deterministic local optimiziation

with finite difference approximation to the gradient shows less convergence than when using sensitivites.

The stochastic optimization with PSwarm has even less converged runs than the deterministic optimization

with finite differences.

3.1.3 Computation Time of Optimization Methods.

We compared the performance of the optimizers in terms of computation time (Figure 4A). The best compu-

tation time was achieved for the deterministic optimization with sensitivities, while the highest computation

time is needed for stochastic optimization. Also regarding the number of function evaluations, the stochastic

optimization needed most function evaluation and the deterministic optimization with sensitivities performed

best (Figure 4B). Furthermore, regarding the average computation time needed per converged start shown in

9



Figure 4C, the deterministic optimizer using sensitivities outperforms the other optimizers. However, there

were almost no additional computational costs when using the robust approach instead of the standard

approach to evaluate the log-likelihood function for all optimizers.

3.2 Three Stage Cascade

To validate the results obtained for the simple conversion process, we studied artificial data of a three stage

cascade, namely the Raf/Mek/Erk cascade.

3.2.1 Model and Artificial Data.

The considered pathway comprises the protein kinases Raf, Mek and Erk and their corresponding phospho-

rylated/active forms pRaf, pMek and pErk. Raf is activated with a stimulus-dependent rate k1u
[
Raf
]

and a

basal rate k2
[
Raf
]
. The activation rate of Mek is proportional to the amount of phosphorylated Raf, while

active Mek in turn phosphorylates Erk. These reactions and the dephosphorylation of the active kinases are

given by

R1 : Raf→ pRaf, rate = k1u
[
Raf
]
,

R2 : Raf→ pRaf, rate = k2
[
Raf
]
,

R3 : pRaf→ Raf, rate = k3
[
pRaf

]
,

R4 : Mek→ pMek, rate = k4
[
pRaf

][
Mek

]
,

R5 : pMek→ Mek, rate = k5
[
pMek

]
,

R6 : Erk→ pErk, rate = k6
[
pMek

][
Erk

]
,

R7 : pErk→ Erk, rate = k7
[
pErk

]
,

with mass conservation

[
Raf
]

+
[
pRaf

]
=
[
Raf
]
0
,[

Mek
]

+
[
pMek

]
=
[
Mek

]
0
,[

Erk
]

+
[
pErk

]
=
[
Erk

]
0
.

For the data generation, we assumed to observe y = h(~x,ψ, u) = s
[
pErk

]
. To circumvent structural non-

identifiabilities, we consider the reformulations

x1 = k4
[
pRaf

]
,

x2 = k6
[
pMek

]
,

x3 = s
[
pErk

]
.

10
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ȳi(tk) ≠ yi(tk, ◊)

‡i,k(◊)

B2

.

L(◊) =
ntŸ

k=1

nyŸ

i=1

1Ô
2fi ‡

exp

A
≠1

2
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(ȳi(tk) ≠ yi(tk, ◊))2

‡2

B

◊ = (k27, k36, d27, d36, d, s, ‡)

pRafRaf

Mek

Erk

k4 k5 k6 k7 k8

Ÿs

Ÿm

Ÿs,m

k4 k5 k6 k7 k8

Ÿs

Ÿm

Ÿs,m

k4 k5 k6 k7 k8

Ÿs

Ÿm

Ÿs,m

k4 k5 k6 k7 k8

Ÿs

Ÿm

Ÿs,m

pMek

pErk

k1,s1k1,s2k2k3

d 21

dt
= k27 11 + k36 20 ≠ d27 31 ≠ d36 22

J(◊) =
1

2

ntÿ

k=1

nyÿ

i=1

log(2fi‡2
i,k(◊)) +

A
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Figure 5: Artificial data of the Raf/Mek/Erk cascade. (A) Illustration of the considered signaling pathway,
which comprises the kinases Raf, Mek and Erk and its corresponding actived forms. The model comprises two
subpopulations differing in their response to stimulus u. (B) Artificially generated data of the Raf/Mek/Erk cascade
for measurements of pErk levels.

This yields the ODE system

ẋ1 = (k1u+ k2)(k4
[
Raf
]
0
− x1)− k3x1 , x1(0) =

k2k4
[
Raf
]
0

k3 + k2
,

ẋ2 = x1(k6
[
Mek

]
0
− x2)− k5x2 , x2(0) =

x1(0)k6
[
Mek

]
0

x1(0) + k5
,

ẋ3 = x2(s
[
Erk

]
0
− x3)− k7x3 , x3(0) =

x2(0)s
[
Erk

]
0

x2(0) + k7
,

with y = x3 and parameters (k1, k2, k3, k5, k7, k4
[
Raf
]
0
, k6
[
Mek

]
0
, s
[
Erk

]
0
). For details regarding the model

we refer to [5]. In this example, we considered two subpopulations that differ in their response to stimulus

u, captured by parameter k1 (Figure 5A). We generated measurements of 1000 cells by simulating the ODE

system for log10(k1,s1 , k1,s2 , k2, k3, k5, k7, k4
[
Raf
]
0
, k6
[
Mek

]
0
, s
[
Erk

]
0
) = (-2, -1, -2, -0.15, -0.15, -0.15, -2, 2, 3),

w = 0.7 and normally-distributed measurement noise (Figure 5B). The stimulus u is set to 0 for t < 0 and

to 1 for t ≥ 0.

3.2.2 Convergence of Optimization Methods.

For parameter estimation, the intervals for the parameters were set to [10−3, 105] for the kinetic parameters,

to [0, 1] for the mixture weight and to [10−3, 102] for σs(tk). The resulting objective function values for 100

runs of the optimization procedures are shown in Figure 6A, and a zoom in of the five best runs in Figure 6B.

The optimization with sensitivities and a robust evaluation of the log-likelihood function converged to the

optimal value 44 times. This optimal value yields a good fit to the data (Figure 6C). Using deterministic

optimization with sensitivities and the standard evaluation of the log-likelihood function the same optimal

value as with the robust evaluation was found only once. The other optimizers were not able to find the

optimal value at all. For the deterministic optimization and the standard evaluation of the log-likelihood

function, only three out of 100 initial parameter values yielded a finite log-likelihood value. Consequently,

the remaining runs could not be started. These findings indicate that for higher-dimensional estimation

problems, the use of sensitivity-based methods and robust log-likelihood evaluation becomes increasingly
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Figure 6: Comparison of optimization methods. (A) Final negative log-likelihood values for 100 runs, sorted
according to a decreasing goodness of fit. (B) Zoom for the five best starts. The black line indicates the statistical
threshold according to a likelihood ratio test, which was used to obtain the number of converged starts. (C) Data
and fit for the optimal parameter value found by deterministic optimization with sensitivities and a robust evaluation
of the log-likelihood function.

important.

3.2.3 Performance of Optimization Methods.

We compared the computation times and needed function evaluations of the different optimization methods

(Figure 7). Since only the deterministic optimization with sensitivities and robust evaluation reached a

sufficient number of converged starts, we did not compare the optimizers in terms of average computation

time per converged starts. The analysis for the deterministic optimization with standard evaluations is

only based on three starts that have not failed and is therefore not meaningful for the comparison. Among

the optimizers for which 100 starts could be analyzed in terms of their computation time and number

of function evaluations, the optimization with sensitivities and the robust evaluation of the log-likelihood

function performs best. The proposed approach therefore yields better optimization results and is also more

efficient than the other optimizers.

4 Conclusion

In this manuscript, we summarized the concept of RRE constrained mixture modeling and studied the

calibration of those models to experimental data under the normal distribution assumption. An often used

approach to estimate the parameters of mixture models in general is the Expectation-Maximization (EM)

algorithm (see e.g. [1]). This algorithm highly depends on the initialization of the mixture components,
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Figure 7: Performance of optimization methods. (A) CPU time needed for one optimization start. (B) Number
of objective function evaluations for one optimization start. The representation is based on three starts for deterministic
optimization with the standard approach to evaluate the log-likelihood (grey shaded), while it is based on 100 starts
for the other optimizers.

which is challenging for RRE constrained mixture models since the components depend on the dynamic

parameters of the model. In preliminary studies the EM algorithm showed poor convergence. Therefore, we

did not consider the EM algorithm in this manuscript and focused on a maximum likelihood approach.

We derived the log-likelihood function and its gradient, which can be used to perform gradient-based

deterministic optimization. Additionally, a robust approach of numerically evaluating these terms has been

provided. We compared three optimization schemes, two deterministic gradient-based methods, one using

the analytical gradient and one using an approximation of the gradient by finite differences, and a stochastic

particle swarm algorithm. For each optimizer, we assessed performance and convergence for the standard

and robust approach to evaluate the log-likelihood function. The comparison was carried out for examples

of artificial single cell snapshot data of a one stage and a three stage cascade. We found that deterministic

gradient-based optimization with sensitivities and robust calculation of the mixture probability outperformed

all other methods in terms of robustness and convergence. This is especially important, since the complexity

of RRE constrained mixture models increases with the number of measured time points. For the example

of the three stage cascade only gradient-based optimization with sensitivites and a robust evaluation of the

log-likelihood function yielded a reasonable calibration of RRE constrained mixture models to the data.

We expect this also to hold when considering even more complicated systems. Accordingly, the proposed

approach facilitates a robust and efficient calibration of RRE constrained mixture models to elucidate the

sources of heterogeneity.
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