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Abstract 
 

Thousands of (Quantitative) Structure-Activity Relationships (Q)SAR models have been 

described in peer-reviewed publications; however, this way of sharing seldom makes models 

available for the use by the research community outside of the developer’s laboratory. 

Conversely, on-line models allow broad dissemination and application representing the most 

effective way of sharing the scientific knowledge. Approaches for sharing and providing on-line 

access to models ranges from web services created by individual users and laboratories to 

integrated modeling environments and model repositories. This emerging transition from the 

descriptive and informative, but “static”, and for the most part, non-executable print format to 

interactive, transparent and functional delivery of “living” models is expected to have a 

transformative effect on modern experimental research in areas of scientific and regulatory use 

of (Q)SAR models.  
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1. Introduction 
The development of the World Wide Web has significantly changed the way research results 

are delivered and used to fuel new research. The development of distributed and cloud 

technologies have made data collections (including “Big Data for chemicals such as Pubchem or 

ChEMBL), standalone applications and remote web-service based tools easily accessible and 

usable. This evolution of both chemical data and tool sharing technologies puts pressure on 

(Q)SAR researchers to make their models available, executable, and transparent for wider user 

communities. 

In spite of significant growth of the QSAR modeling field in recent years,[1, 2] there have also 

been noticeable publications reporting misuses and irreproducibility of (Q)SAR modeling 

results.[3-5] Indeed, not well-reasoned decisions about the selection of parameters for the 

modeling algorithm or poor and insufficient pre-processing of biological data and chemical 

structures is likely to result in non-reproducible models. These issues have been widely 

recognized in the scientific community.[6-11] The need and vision for wider application of 

(Q)SAR models in regulatory decision support has led to the establishment of OECD principles 

of QSAR model validation,[12] which were developed to emphasize best practices for model 

documentation and promote the use of (Q)SAR models in fulfilling needs of REACH legislation. 

One of the OECD main principles requires the use of “an unambiguous algorithm” as the 

prerequisite for the regulatory model acceptance. While this principle is very important, its 

practical implementation can be non-trivial.  

Even when there is a detailed scientific description of the model, factors like pre-processing 

of molecules, e.g., ionization or standardization of representation of chemical groups could affect 

the results of QSAR modeling. An example can be provided by recent studies of structure-

toxicity relationships for nitro-aromatic compounds.[13] Each compound was manually inspected 
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in order to create a curated dataset. During this process, five different representations of nitro 

groups were identified (Figure 1). Obviously, the difference in one or two bonds may appear to 

be insignificant in the context of the entire compound, but in reality, those inconsistencies in the 

representation of the same functional group would lead to different descriptors of the same 

molecule and, in some cases, to poor QSAR modeling results. Indeed, it was shown[14] for two 

different datasets that when instances of all five different nitro group representations were 

distributed between training and test sets the external model predictive accuracy R2
ext was less 

than 0.6 or close to zero for the two datasets vs. 0.9 or 0.5, respectively, when the standardized 

representation of the nitro group was used.  

Additional factors such as the choice of 3D molecular conformation, as well as natural 

variability of modeling steps, e.g., due to selection of a seed number to initialize neural networks 

weights, could influence the modeling results. Moreover, even implementation of the same 

chemical descriptor with different programs can result in dramatic differences in model 

performance. Good and vivid example is provided by the prediction of octanol-water partition 

coefficient (logP). Indeed, two implementations of logP calculator, MLOGP, by ADMET 

Predictor (SimulationsPlus, Inc.) and Dragon (Kode s.r.l.) resulted in 0.73 log unit error 

differences, RMSE 1.07 vs. 1.8, respectively, for the Pfizer in house data collection of more than 

95k compounds.[15] The MLOGP model for logP is fairly simple involving only 13 parameters in 

a linear equation and it may be considered “an unambiguous algorithm” according to the OECD 

rules; however, in this case it was not true, because the definition of the individual terms in the 

equation was ambiguous and thus contributed to the variability in the prediction results. Since 

there is no computational implementation of MLOGP by the original authors, one can never be 

sure that any of its application corresponds to the algorithm used in the original model. 
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Moreover, it introduces another level of uncertainty: prediction of any properties of the new 

compound with any model relying on MLOGP as a descriptor is only valid when MLOGP for 

this new compound is calculated with the same program (and even its particular version) that 

was used during the model development step. This example also makes clear that QSAR models 

require very thorough and exact documentation accompanied with full data used in the 

development in order to be reproducible and also for the independent model evaluation purposes. 

The above discussion highlights the critical importance of providing explicit documentation 

and adhering to best practices for model development and validation when making QSAR 

models publicly available. Models can be distributed as standalone tools and/or as publicly 

accessible web implementations; both approaches allow for wide dissemination and independent 

evaluation of the models. Both ways are currently widely used by academic community. In this 

review, we discuss state-of-the-art in sharing “live” (Q)SAR models as web services. The 

implementations of (Q)SAR models on the web range from very simple web sites and services 

offering predictions with one or several models to  the sophisticated integrated modeling 

environments, which allows model development, storage and prediction to  smart model 

repositories that give access to full model data. Sometimes such web resources are managed by 

individual research groups, and sometimes they are products of collaborative research projects 

conducted by large consortia. Irrespective of the scale and origin of such publicly available tools, 

these efforts represent a substantial departure from traditional descriptive publication of models 

towards making models publicly accessible on-line, interactive, and usable. 
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2. Research group centric model collections 
 
Collections of (Q)SAR models have been established by many research groups and 

laboratories working in the fields of computational chemistry and drug discovery. Even one 

model published and made publicly, or even commercially, available on the web improves 

accessibility. Often, while starting with a single model, such efforts result in model collections 

that incorporate new developments and frequently allow using models for the predictions. Such 

collections usually contain tools developed by one single group or/and a group of collaborators. 

Moreover, these web sites frequently contain not only tools per se, but also datasets, publications 

or pre-prints, etc. Several examples of such web sites and their main functionalities are discussed 

below. 

ChemDB portal [http://cdb.ics.uci.edu]: Enables different predictions ranging from 

molecular properties such as water solubility (AquaSol module) to reaction outcomes and protein 

targets.[16] The site also provides other tools, such as chemical search, prediction of 3D 

conformations, analysis of functional groups and others. 

ScreenDB [http://infochim.u-strasbg.fr/webserv/VSEngine.html]: This project was 

developed as a result of cooperative In Silico Design and Data Analysis (ISIDA)[17] effort 

including model development module, which incorporates multilinear regressions, k-nearest 

neighbors technique, neural networks, and support vector machines approaches to build 

structure-property models, and a knowledge base to store models. Presently the web portal 

enables prediction of twelve physico-chemical properties, AMES toxicity,[18] estrogen receptor 

models developed within CERAPP project,[19] as well as several target binding affinities. 

PROTOX [http://tox.charite.de/tox]: This web site is designed for the prediction of rodent 

oral toxicities of small molecules.[20] The prediction is based on the similarity analysis of small 
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molecules against different toxicophores collected and constantly improved by the authors and 

recently tested on Tox21 prediction challenge.[21] 

RS WebPredictor [http://reccr.chem.rpi.edu/software.html]. The web-service is an 

application of a predictor for cytochrome P450-mediated sites of metabolism. In addition to this 

tool, the Rensselaer Exploratory Center for Cheminformatics Research (RECCR) also provides a 

number of online tools to create (Q)SARs using support vector regression (SVR), partial least 

squares (PLS), Kernel-PLS and Support Vector Machines (SVM). 

Way2Drug includes PASS-Online, GUSAR-Online and BBB Predictor 

[http://way2drug.com/total_plus]. PASS-Online, predicts more than 4000 different end-points. 

GUSAR-Online includes (Q)SAR models on acute rat toxicity (4 models), ecotoxicity (4 

models), anti-target activity (32 models) and it allows consensus prediction capability. Other 

options are blood-brain-barrier predictor (BBB Predictor), in silico prediction of sites of 

metabolism (SOMP), as well as an access to several other tools. Some of the tools require 

registration and login (e.g., PASS on-line) while others are freely available on-line. 

GUSAR@NIH [http://cactus.nci.nih.gov/chemical/apps/cap]: It is a web service, which 

includes a total of 25 models many of which are collaborative effort and are overlapping with 

those available at Way2Drug. 

admetSAR [http://lmmd.ecust.edu.cn/admetsar1]: It is (Q)SAR based ADMET properties 

prediction web service including five regression and 26 classification models.[22] It also allows to 

search molecules by names, structure and/or perform a similarity search.  

The aforementioned web sites indicate a wide and growing diversity of on-line models and 

tools on the web. Each of these web sites has an individual design and functionality, which is 

determined by the research activities of the respective groups and their collaborators. The 



 8 

provided list is representative but by no means, exhaustive. Many more web sites are most likely 

available elsewhere. 
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3.  Model collections from (Q)SAR oriented projects 
 
Many research projects in the EU have been initiated with the goal of improving the quality 

of (Q)SAR models and their use in regulatory decision support. Those projects have relied on 

Web portals as very efficient dissemination channels and tools for sharing of models and results 

developed within the projects. Below, we provide an overview of several web sites, which 

collect models developed within completed or on-going research projects. 

VCCLAB [http://www.vcclab.org]: Virtual Computational Chemistry LABoratory 

(VCCLAB) web site provides calculation of molecular descriptors, machine modeling tools as 

well as on-line access to several models for the calculation of logP (logarithm of octanol-water 

partition coefficient) and water solubility. The web site was launched in 2002 as a result of 

INTAS project.[23] Since that time about a hundred thousand users (counted by unique IPs) 

performed more than 2 million calculations. The site was developed using Java applets and in 

recent years this seriously limited its functionality due to the increasing security-related 

limitations of modern browsers. 

QSPR-Thesaurus [http://www.qspr-thesaurus.eu]: The web site was developed within the 

FP7 CADASTER project [http://www.cadaster.eu].[24] It is based on a branch of OCHEM 

platform[25] and offers collection of data and models contributed by the project participants. The 

models are accompanied by the estimation of an accuracy of predictions and their applicability 

domain. Like the OCHEM web site, it allows upload of the user-supplied data and makes models 

available. 

iPRIOR [http:/iprior.ochem.eu]: This site was also developed as a branch of OCHEM 

platform. The site was used[26] to develop tens of thousands of models for in vivo and in vitro 

toxicity data from the ToxCast project.[27]  
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COSMOS KNIME WebPortal [http://knimewebportal.cosmostox.eu]: COSMOS is an EU 

FP7 funded project [http://www.cosmostox.eu] aiming to integrate in silico models for the 

prediction of human repeated dose toxicity of cosmetics. This project is part of the overarching 

efforts in the EU to optimize safety of the cosmetic products without the use of animals. 

Currently, this project makes available six models for biokinetics, absorption and nuclear 

receptor binding, with the access to models provided to registered users; the registration is free. 

eTOXsys [http://www.e-tox.net]: eTOX is an Innovative Medicines Initiative partnership 

between the European Community and the European Federation of Pharmaceutical Industries 

and Associations (EFPIA).  This partnership has developed a drug safety database from the 

pharmaceutical industry legacy toxicology reports and public toxicology data to better predict the 

toxicological profiles of small molecules in early stages of the drug development. The 

partnership maintains the eTOXsys web-service that allows access to 74 models developed with-

in eTOX[28] for different types of endpoints: physicochemical properties, ADME, transport 

(binding/inhibition), carcinogenicity, genotoxicity, organ toxicity, safety pharmacology. Models 

are developed within the eTOXlab model building environment making use of various built-in 

machine-learning methods such as Partial Least Squares Regression (PLS-R), Partial Least 

Squares Discriminant Analysis (PLS-DA), Fractional Factorial Design (FFD) variable selection, 

etc. Strong emphasis is also placed on the reporting of prediction results and working with 

confidential chemical data. At the time of writing the eTOXsys web-service was not available for 

the external evaluation. 

 
Not always can research groups providing web services for accessible models secure 

continuing support and quite often support for online services ceases within a few years after the 

project ends. Two examples of such web sites include VEGA-QSAR and ToxPredict. 
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VEGA-QSAR [http://www.vega-qsar.eu]: This site agglomerates results of several EU 

projects (CALEIDOS, ORCHESTRA, ANTARES, CAESAR) and says to provide on-line access 

to models developed within those projects. At the time of writing of this review, the access to 

models on-line was not available. Project, however, provides a standalone application that is 

updated frequently. 

ToxPredict [http://toxpredict.org]: This web site was developed within FP7 OpenTox 

project.[29] The web site provided access to several dozens of models generated by the 

collaborators of the project as well as by external providers, including those available on the 

QSPR-Thesaurus web site.[24] Unfortunately, this web site is no longer active. 
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4.  (Q)SAR models in integrated modeling environments 
 
As described in many reviews,[30-32] (Q)SAR models have been most commonly provided in 

the form of standalone software that could be open, or restricted, or commercial. Good examples 

are EPI SuiteTM from the US EPA,[33] VEGA-QSAR,[34] ChemProp 

[http://www.ufz.de/index.php?en=6738], ToxTree,[35] QSARINS-Chem,[36] the OECD QSAR 

Toolbox [http://www.qsartoolbox.org]. During the past decade, with the advent of the web, as 

well as the distributed and cloud computing technologies serious attempts have been made to 

move model development and subsequent access to the models into two-in-one solutions, i.e., 

integrated modeling environments on the web. The Internet based tool for model development 

using Polynomial Neural Networks (PNN)[37] first made available in 2000 from the web site of 

the Neuroheuristic Laboratory of the University of Lausanne was probably the first documented 

implementation of distributed QSAR modeling efforts in chemistry (Figure 2). In 2001 it was 

complemented with Java Applet to predict solubility and lipophilicity.[38] These developments 

were extended with new tools to develop models,[39, 40] calculate descriptors[41] and analyze 

data,[42, 43] some of which have been publicly available at the VCCLAB[23] since 23 March, 2002. 

VCCLAB provided access to tools developed and running in the laboratories of six partners from 

five countries in Europe. OpenMolGRID[44, 45] was started in 2002; it adapted distributed 

computing and grid technologies for (Q)SAR model development and deployment in the field of 

drug design, in particularly in predicting cytotoxicity and other ADMET endpoints, with the 

emphasis on sharing and reproducibility of models. In 2006, Chemomentum,[46] the successor of 

OpenMolGRID, integrated 24 different tools for predictive modeling as distributed computing 

solutions with focus on (Q)SAR and predictive toxicology towards effective use of models in 

REACH for decision support as one of three application lines. Since 2008, Chembench[47] and 
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OCHEM[25] have provided public (for registered users; registration is free) access to several 

QSAR modeling tools and growing collection of bioactivity and ADME/Tox models. Below the 

active integrated modeling environments on the web are described. 

CHEMBENCH [http://chembench.mml.unc.edu]: The Chembench is one of the first 

publicly accessible, for registered users, integrated portal that was started in 2008 and described 

in an application note in 2010.[47] Chembench is designed to integrate translational 

cheminformatics research conducted both in the Tropsha group over a period of more than 

twenty years as well as in collaborating laboratories elsewhere. The current ChemBench system 

consists of four modules: Dataset, Modeling, Prediction, and My Bench. The functionality 

contained under Dataset allows users to upload, store, and standardize chemical structures. My 

Bench enables the analysis and visualization of chemical structures, to examine the distribution 

of activities, and generate a heat map to check for obvious relationships between global 

compound similarity and activity. Through Modeling module, users can select a dataset (either 

an uploaded dataset or a provided benchmark) and build a (Q)SAR model. Several methods for 

model development (e.g., support vector machines, k-nearest neighbors, and random forest) are 

available for the use. The Prediction module allows users to predict new compounds’ activities 

using one or more of the models built on Chembench by the user or by Chembench developers; 

compound structures could be drawn within the Chembench environment or uploaded in the SDF 

format. Chembench implements best practices of QSAR modeling and validation[11] and models 

developed within Chembench are fully compliant with the OECD guidelines on QSAR model 

validation.[12] Chembench has been extensively used for the development of QSAR models, as 

well as a teaching tool. 
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OCHEM [http://ochem.eu]: OCHEM, which became publicly available in 2008, provides a 

full spectrum of model development tools, allows upload of previously published linear models 

or storage and archiving of results of other modeling experiments.[25] This platform was used to 

develop models for datasets incorporating hundreds of thousands of molecules.[48-50] OCHEM 

currently stores 105 published models developed and contributed by different teams across the 

world. Some are consensus models and include up to seventeen individual sub-models, as is the 

case for the predictor of the compound solubility in DMSO.[48] All individual submodels 

(N=390) can be also accessed on the web site (Figure 3). The model development methods 

include inspired by thalamo-cortical organization of brain[51] associative neural networks,[52] and 

their library mode approach,[53] support vector machines,[54] partial least squares, linear 

regression analysis, fast stage wise multivariate linear regression,[55] k nearest neighbors as well 

as several Weka algorithms.[56] OCHEM also includes other useful tasks, such as calculation of 

molecular descriptors, virtual screening of compounds collections as well as comparison of sets 

of molecules[57] using SMARTS patterns, namely toxicological alerts,[58] functional groups,[59] 

frequent hitters[60, 61] and others. The predicted Matched Molecular Pairs[62] allow interpreting of 

models as well as identification of experimental errors. The OCHEM models report confidence 

intervals and applicability domain[63] for new predictions and thus help user to interpret the 

calculated results. The web site supports the development of models with several different 

properties (also combinations of regression and classification properties) simultaneously.[64] 

Neural network models support the development of models with intervals and ranges. OCHEM 

can use externally uploaded user-provided descriptors including measured data (e.g., in vitro 

measurements), support conditions (e.g., temperature can be specified as a condition for boiling 

point), automatic unit conversion, support mixtures[65] as well as use predictions by models as 
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descriptors for developing new models.[64] The users can also upload results of previously 

developed models, namely calculated values and descriptors. If the uploaded descriptors are 

available, the uploaded linear models can be applied to new molecules. OCHEM provides 25 

descriptor blocks, including several commercial software packages such as Dragon,[41] 

Adriana,[66] ChemAxon and Mera/Mersy.[67] 

Models available on OCHEM were frequently top-performing within different benchmarking 

exercises, e.g., prediction of metal complexation,[68] environmental toxicity,[69] readily 

biodegradability,[57] endocrine disruptors,[19] logP,[15, 70, 71] AMES toxicity,[72] CYP450 

inhibition,[73] etc., as well as contributed the top-rank model for the EPA ToxCast[74] and the best 

overall balanced accuracy for twelve targets of the NIH Tox21[75] challenges. The OCHEM is 

widely used for educational purposes by a number of Universities across the world. It was used 

as a part of educational process in the FP7 Marie Curie Initial Training Network “Environmental 

ChemOinformatics” (ECO) [http://www.eco-itn.eu][76] and will be also used in Horizon2020 

Marie Skłodowska-Curie Innovative Training Network European Industrial Doctorates, “Big 

Data in Chemistry” (“BIGCHEM”) [http://bigchem.eu].[77] It has more than 3000 registered users 

and it has performed more than 32 million calculations. Being backed-up by more than 1500 

CPU-cores, OCHEM can easily handle models requiring thousands of CPU-hours by using 

parallel calculations with up to 48 cores. OCHEM efficiently supports sparse data format, which 

made it possible to develop models with 300k molecules and more than 700k individual 

descriptors (i.e., with full matrix of >200,000,000,000 entries).[50] All these features make 

OCHEM a powerful framework for (Q)SAR analysis of the emerging Big Data in chemistry and 

chemogenomics.[77] 
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CHARMMing [http://www.charmming.org]: This web site was previously developed as a 

Web-based front-end to the CHARMM molecular simulation package.[78] Since 2015 it has been 

extended with tools to develop (Q)SAR models using several machine learning algorithms for 

both regression and classification tasks.[79] The web site (that requires free registration) uses 

2048-bit Morgan fingerprints calculated using RDkit [http://www.rdkit.org/docs]. The users can 

upload data as SD file, select the target property and submit calculations. There is no option to 

specify or optimize parameters of machine learning methods. Unexpectedly, the authors of this 

manuscript failed to develop a model using uploaded data. Thus, while this web site could 

become an interesting tool in the future, it still requires significant efforts to achieve this status. 
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5.  (Q)SAR model repositories 
 
(Q)SAR model web collections described in previous sections focused on models developed 

and made available by the same group, collaborators within a project, or in integrated modeling 

environments. They rely on internal protocols and standards, employed by different contributors. 

Model repositories provide solutions where modeling is left to the developers such that the 

repositories are focusing on systematic storage and delivery of models and also on predictions 

when architecture allows this. The (Q)SAR model repositories require the development of 

standards for organizing both models and underling data. There have been several efforts in 

organizing (Q)SAR model information where emphasis and strategies have been very different. 

For example QSAR Model Reporting Format (QMRF) [http://eurl-

ecvam.jrc.ec.europa.eu/databases/jrc-qsar-model-database-and-qsar-model-reporting-formats] 

originates directly from the aforementioned OECD principles[12] and from the need to allow 

model developer to suggest their models for the legislative use in the framework of REACH. 

QMRF organizes model information in the text-rich form in a single XML file with 

accompanying SDF files for the chemical structures. QSAR-ML[6] also uses single XML file 

focusing on QSAR data sets and their exchange, without the mathematical definition of the 

model, which is left for the software used for model development. MIAQMR-ML collects 

minimum information about a QSAR model representation also into the XML format according 

to the six rules of model provenance, description, data reference, development reliability and 

predictivity.[80] These rules are derived from the OECD QSAR model validation principles[12] 

and MIAQMR-ML is used by Syngenta Ltd. in frame of Model and Data Farm (MADFARM) 

that also has web interface.[81] QSAR DataBank or QsarDB archive format[82] uses the ‘collection 

of files’ approach that systematically names and groups files containing information about a 
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QSAR model: molecular and experimental data, mathematical representation of models and full 

provenance information of model and its components. QsarDB archive format is fully machine-

readable, keeps data and model information as the original developer designed it and allows easy 

reuse of the model(s). Detailed review about formats for (Q)SAR model organization can be 

found elsewhere.[83] Models delivered in QMRF and QsarDB archive format are organized in 

repositories, which are briefly reviewed below. 

 
QMRF Inventory [http://qsardb.jrc.it]: This site was developed in response for a need to 

organize QSAR models documented in QMRF format for assessment of various endpoints within 

REACH. The site uploads reviewed and accepted QMRF-s and accompanying SDF files. The 

authors can either provide links to their models (in case when the model is available somewhere, 

e.g., as public or free software tools) and reference to articles, which provide more detailed 

scientific descriptions. In practice, the textual information in QMRF and original publication 

overlaps, and is extended in some cases. The web site itself does not store models in directly 

usable form but instead it provides information, which could be sufficient either to reproduce 

models or to locate them. The web-based interface allows users to search for QMRF documents 

via QMRF number, free text, pre-defined lists of endpoints, algorithms, software, structures and 

authors of the models. Inventory is accompanied with the QMRF Editor that supports the 

development of QMRF XML files. The web site allows chemical authorities and companies who 

need to predict various endpoints for the registration of their compounds in REACH to locate 

models and their providers. At the time of writing, the QMRF Inventory included 109 (Q)SAR 

models. 

QsarDB Repository [http://qsardb.org]: The QsarDB repository[84] was developed for 

efficient electronic organization of (Q)SAR models, that could be easily accessible, reproducible 
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and also discoverable by other users and in the form that allows independent validation. QsarDB 

repository is essentially a large collection of QDB archives[82] that include information about 

model development, original data used for the model development and full mathematical 

representation of models. Providing mathematical representation in machine readable form is 

essential, because (Q)SAR models are de-facto mathematical models Mathematical models used 

in (Q)SAR transform input (chemical) data according to some rules, while coefficients and 

weights provide the resulting values. The implementation of these transformations can be in the 

form of programming language or be developer specific, but their results should be the same. 

The problem of re-use of the developed models has been a target for the Data Mining Group 

[http://dmg.org] that developed a standard for representing mathematical models in XML format, 

the Predictive Model Markup Language (PMML). If models are expressed in this format, they 

can be understood and executed by other users in exactly the same way. This feature is used by 

QsarDB for the mathematical representation of (Q)SAR models. It was made to work with our 

current knowledge as to how to handle the experimental chemical structure data by converting 

the structure to molecular descriptors. This synergy of the mathematical model representation 

and the original data, i.e., primary information, facilitates reproducibility and provides a 

possibility for the independent evaluation. QsarDB always calculates all statistical 

characteristics, i.e., secondary information, on the fly. QsarDB repository improves the 

conventional (Q)SAR model publishing via assigning unique resource identifiers, i.e. DOI-s, for 

predictive models, allowing both easy access to the models and citing of models. The data and 

mathematical representation of the model in QDB archive is organized together with the 

provenance information, the references to the literature or the original data source(-s), what 

modeling workflow was used, and how descriptors were calculated. QsarDB repository along 
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with data collects (Q)SAR specific metadata from the well-organized and correctly populated 

QDB archive (or asks metadata from model provider) that helps to locate (Q)SAR models and 

leaves longer meta-information about model development and its scientific interpretation for the 

scientific publication or for any other published media, where original authors of the models can 

discuss in detail all constraints and assumptions during the model development. QsarDB open 

repository allows easy establishment of supplementary material for conventional PDF 

publications and makes these publications interactive. Linking with scientific publications can be 

established through DOI links via manually inserting them into the publication text and/or 

automatically, as in the case of Taylor & Francis, who provides automatic links to external 

repositories as supplementary information (currently available for 29 QDB archives).  

In addition to basic information about stored models (Figure 4), the QsarDB repository has a 

smart component that allows detailed visualization and analysis of the model content via the 

QDB Explorer module and the use of models for prediction, through the QDB Predictor module. 

All models in QsarDB are readily executable and can be used for the prediction purposes directly 

from the repository, by using (i) built-in slide-bar feature for descriptors, (ii) inserting in-house 

calculated molecular descriptor values via web-form or (iii) directly from structure for cases 

when descriptor calculator is implemented in QsarDB (currently available for models with 

CDK[85] descriptors). The latter option is also available as a web-service. Both QDB Explorer 

and Predictor allow visualization of applicability domain and simple indication if prediction is 

within the domain of the model. QDB Predictor module allows saving prediction results into 

specialized reporting formats required by the regulatory authorities. QsarDB allows full text 

search of QDB archives and also structure/sub-structure search of compounds in the models. At 

the time of writing, the QsarDB repository included 410 unique (Q)SAR models. QsarDB 
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provides access to a variety of model types supported by the PMML. Presently, the following 

regression and classification model types have been tested and application examples provided: 

(multi-) linear regression (MLR), decision tree (DT), neural network (NN), random forest (RF), 

support vector machine (SVM), k-nearest neighbors (k-NN), and ensemble (consensus) model. 

At the time of writing this text, repository included models for 70 different endpoints, including 

38 specifically listed and required by the REACH. The design of QsarDB archive format and the 

repository follow the OECD principles[12] for predictive model documentation and it allows easy 

access to both data and mathematical representation of the model thereby providing full 

transparency for any users, including evaluators or regulators. 
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6. Summary and Outlook 
 
More than fifty years of active studies in the (Q)SAR field has resulted in great number of 

studies and large number of models.[84] Many new chemicals have been discovered and 

developed for therapeutic or industrial use with the active use of (Q)SAR models, and these 

significant achievements of the QSAR modeling field cannot be overlooked.[86] However, until 

recently, published models could not be really accessed regardless of how detailed their 

description was in respective scientific papers or monographs. The traditional textual publishing 

format has restricted if not prevented the practical application of many QSAR models by users 

outside of the developer’s lab or company. Simple cause for this is that conventional 

PDF/HTML articles in vast amount of the cases do not describe models with enough detail to be 

reproduced and reused. The quality documentation is also not required by the publishers. With 

simple multi-linear regression and small datasets it was relatively easy to provide description 

sufficient to understand and reproduce the model. However, with the growing transition to the 

use of machine learning algorithms and big datasets model development has become much more 

serious undertaking that requires specialized and standardized data formats and software 

solutions relying on web technologies for proper model and data representation. 

(Q)SAR as research filed and more importantly its methodological framework has matured 

tremendously during past decades.[87, 88] Various artificial intelligence and machine learning 

approaches have been successfully utilized to improve the coding of (Q)SARs. This has been 

guided by the explosion of experimental information becoming available for small molecules and 

increasing chemical complexity needed to be analyzed and modeled as the approaches to how the 

molecular structure can be characterized and what molecular descriptors can be calculated for 

numerical characterization of the structure have become very diverse as well. Many different 
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software can be used for the development of (Q)SARs.[30, 31, 77] For example, as the analysis of 

the QsarDB repository[84] indicates, thirty six programs are commonly used for the calculation of 

molecular descriptors and twenty programs are implemented for model development. These 

developments indicate that (Q)SAR methodological framework is very diverse and requires the 

practitioner to have larger spectra of knowledge in multiple fields. Diversity of tools and expert 

knowledge required to build and validate models makes (Q)SAR model development a 

sophisticated scientific art. At the same time one must admit that the times when (Q)SAR model 

developer and user were the same person is over for the most part; today the model user 

community is much larger than that of developers, and therefore users require the ease of access 

and ability to routinely employ models as part of their experimental studies. 

As we discussed herein, there is a highly significant emerging trend in making models work 

for the users. This trend is enabled by the developments in web technologies and the willingness 

of model developers to make the products of their intellectual labor available to wider 

community. This is also pushed by the funding agencies’ data sharing requirements. However, 

the ease of use that comes with web based model distribution puts additional pressure on the 

developers in that the models must be developed using rigorous best practices, validation 

protocols and must be well documented.  This feature must be in place to ensure that users would 

truly benefit from, rather than misled by, the available models so the model sharing has the 

transformative rather than detrimental effect on the users’ ability to discover or regulate new 

compounds. Further developments should focus on how to make (Q)SAR models even more 

transparent and easily understandable. Considering the above-described complexity of (Q)SAR 

methodological framework this will be the true challenge for sharing, distribution and using of 

models for many application scenarios. 
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The availability of (Q)SAR models on the web has been rapidly growing and is becoming an 

accepted and popular way for knowledge dissemination. Many individual laboratories as well as 

projects use the web as an important tool to spread information about their research. In this way 

the developed models can be delivered to the end-users as they are created. However there are 

drawbacks. The support of such individual developments requires a lot of efforts, which and can 

be handled by the relatively large and established groups of specialists. The same is true and 

even more pertinent for the web sites developed within the projects. While the research group 

web sites are frequently supported thanks to the research funding, the support for the web sites 

developed within the project is frequently terminated after the end of the project. Without 

continuity such web sites lose their functionality with time due to problems with bug fixes and 

updates of the operation system, change of the software version, and licensing issues. However 

even in these cases it is important to keep the developed models alive and preserved to extend 

life of such models and to accommodate models and data for further use. Considering the fairly 

large and growing number of (Q)SAR publications,[1, 84] efforts on model sharing on the web 

discussed above compile only a tiny fraction of knowledge available in the scientific literature in 

the form of descriptive, predictive, and potentially useful but unavailable models. In the future, 

the requirements by the publisher[89] to make models available not only in print but also on the 

web can be one of the possible measures to support model sharing. This can be mandatory or 

voluntary. Web technologies already provide support for it and example of such realizations have 

been described above.  

Diversity of (Q)SAR methodological frameworks offers a lot of creativity to model 

developers. As a rule, the selection of tools and approaches depends on the problem at hand. 

Creativity, however, must consider best practices of model development and model 
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documentation. Despite of the fifty plus years of active methodological development and 

dissemination via traditional publications, very little attention has been given to preserving 

comprehensive information concerning (Q)SAR models. Previously, with fairly small datasets 

and mostly multi-linear models this has not been an issue. However, with the experimental data 

explosion in chemistry, the need for much more effective and impactful (Q)SAR data 

organization and dissemination is timely and one of the essential development areas for coming 

years. We most likely do see new developments in this area with (i) individual models as focused 

services, (ii) integrated modeling web environments where model development and storage 

solution are integrated and (iii) model repositories, in providing access to the vast amount of 

models. 

As already discussed, model documentation is important for the preserving and reuse of the 

published models. From this point, a scientific article must contain sufficient information to re-

build, i.e., reproduce the published model and also include information what constraints one 

must consider when applying the model. Therefore, to ensure the reproducibility of the model 

described in the publications, better documentation of data and model information is needed, 

where emerging advanced web technologies can contribute substantially in future. In deploying 

the model, the next level of reproducibility is required that is related to the workflow. In this 

case, built-in workflow components (like descriptor calculation together with geometry 

optimization) can be used within prediction services. During the model development process 

many approximations are often introduced and those approximations are too easily forgotten or 

not documented, which can contribute to difficulties with reproducing and reusing the models. 

The standardized and well documented model development protocols could contribute to solving 

this problem. This is particularly important for the regulatory decision support scenarios where 
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once used prediction must be backtracked and therefore models must be preserved for longer 

time.  

An important aspect of the reuse of models and to a certain extent also of the model 

reproducibility is the availability of molecular descriptor calculation software. Whereas 

algorithms for molecular descriptor calculations are usually available in the scientific literature, 

their software realizations are mainly commercial. As a result, only small portion of models is 

developed with open molecular descriptor calculators, which contribute another difficulty with 

the reuse of published model. In the future, massive use (and to certain extent also reuse) of 

(Q)SAR-s in web applications could truly benefit from the open, well organized, and 

standardized descriptor calculators. 

Importantly, the aforementioned problems do not exist for models developed with integrated 

modeling environments, such as Chembench or OCHEM, and repositories, like QsarDB. Models 

published within integrated modeling environments are applied using exactly the same protocols 

as those the models were developed with therefore allowing the exact reproducibility of the 

results. Models and the associated data used for model development published within 

repositories are well documented and detail of model representation allows recalculation and 

reproduction of models independent of the original modeling setup and environment. 

Due to the explosion of the experimental information, the data pre-treatment for modeling 

and model deployment is gaining importance and most likely we will see new web solutions in 

the future. Data pre-treatment includes at least three components, data and structure curation, 

structure standardization and data filtering for making dataset fit for the modeling purposes.[10] 

Integrated web modeling environments described herein already include rigorous protocols for 

data curation and standardization,[11, 14, 90] where they are applied both to chemicals used for 



 27 

model development and also in deployment in prediction services. Despite of the available 

software solutions for data pre-treatment, all steps in these protocols must be well documented, 

because of reproducibility issues and because they expose constraints to the use of model and 

very often also to the models domain of applicability.  

Publishing of QSAR models on the web is changing the way we disseminate and use the 

published results.[91] Indeed, instead of looking at the model statistics we can now interactively 

explore models, apply them to new compounds and use in our next study within minutes. There 

is no doubt in our minds that public availability of models should become a requirement for 

publishing of (Q)SAR results in the future, which will promote a better use of computational 

chemistry and chemoinformatics methods in chemistry and Life Sciences in general.  
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Figure 1. Structure normalization: five types of nitro group representations retrieved in the 

nitroaromatics toxicity dataset.[13] 
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Figure 2. The applet interface to introduce parameters for Polynomial Neural Networks (PNN) 
used in the first published distributed QSAR calculation application on the web[37] as currently 
available on the VCCLAB (http://www.vcclab.org). The interface was slightly updated in 2003 
following publication of an improved version of the PNN.[39]  
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Figure 3. Profile of a Melting Point http://ochem.eu/model/214 at the OCHEM web site which is 
part of the larger consensus model from ref [49]. The calculated statistical parameters allow 
estimation of a quality of the model.  A short summary of the model parameters is provided in 
the right corner. The “Export configuration XML” link downloads configuration, which can be 
uploaded to exactly reproduce all modeling steps and redevelop the model. Download model 
statistics link exports data and predicted values. The model can be applied to predict new 
compounds with one click. 
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Figure 4. QDB archive Item View that shows an example of the information delivered to user 
together with links to ‘QDB Explorer’ and ‘QDB Predictor’ modules that allow further exploring 
of model content and to download the original archive file. 
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