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Abstract. Intestinal enteroendocrine cells secrete hormones that are vital for the regulation 

of glucose metabolism but their differentiation from intestinal stem cells is not fully under-

stood. Asymmetric stem cell divisions have been linked to intestinal stem cell homeostasis 

and secretory fate commitment. We monitored cell divisions using 4D live cell imaging of 

cultured intestinal crypts to characterize division modes by means of measurable features 

such as orientation or shape. A statistical analysis of these measurements requires annota-

tion of mitosis events, which is currently a tedious and time-consuming task that has to be 

performed manually. To assist data processing, we developed a learning based method to 

automatically detect mitosis events. The method contains a dual-phase framework for joint 

detection of dividing cells (mothers) and their progeny (daughters). In the first phase we 

detect mother and daughters independently using Hough Forest whilst in the second phase 

we associate mother and daughters by modelling their joint probability as Conditional 

Random Field (CRF). The method has been evaluated on 32 movies and has achieved an 

AUC of 72%, which can be used in conjunction with manual correction and dramatically 

speed up the processing pipeline. 
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1 Introduction 

The intestinal epithelium is the most vigorously renewing adult tissue in mammals. 

The intestinal stem cells (ISCs) located at the bottom of the crypts fuel this process 

[1]. Under normal conditions, ISCs are maintained by symmetric self-renewal and 

undergo neutral competition to contact their supporting niche cells. Upon loss of short 

range niche signals, ISCs can be under differentiation [2]. Nevertheless, asymmetric 

modes of ISC division, contributing to ISC homeostasis and secretory progenitor 

commitment, are under debate [3]. The differentiation of the secretory lineage is of 

particular interest, since it comprises the enteroendocrine cells, which secrete various 

hormones, involved in energy and glucose homeostasis [4]. In recent years, the role of 

enteroendocrine cells in development and treatment of diabetes is increasingly recog-

nized, but the exact mechanism of their differentiation remains unclear. 
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In order to investigate the mechanisms underlying enteroendocrine differentiations, 

we monitor dynamic cell division and differentiation of murine intestinal crypt using 

confocal microscope. Based on these live cell movies, we can correlate cell division 

modes to specific image features. For example, symmetrically divided daughter cells 

have a very similar cell shape and appearance, whilst asymmetrically divided daugh-

ter cells, by contrast, tend to have different sizes, shapes and appearance. Particularly, 

in a typical asymmetric division case, only one daughter cell touches the crypt outer 

membrane (as shown in Fig. 1). 

So far, these live cell movies are inspected manually, which is laborious and time-

consuming. Hence we aim to develop an automatic processing pipeline to accelerate 

the analysis, in which the key component is an automatic detection of cell division 

(mitosis) for these movies.  

 

 

 

 

 

 

 

 

Fig. 1. Exemplary symmetric (left image pair) and asymmetric cell divisions (right 

pair). Cell membranes are visualized in red channel and nuclei are shown in green 

channel. Mothers are outlined with yellow contour, daughters with white and blue. 

The symmetrically divided daughters have similar shape and appearance, whilst the 

asymmetrically divided daughters have different appearance.  

2 Problem definition 

Unlike “mitosis detection” of histology images where mitotic cells are identified 

based on one single static image [5], our goal is to detect “mitosis” as a dynamic pro-

cess, i.e., to identify both mother cell right be-

fore the division and daughter cell pair right 

after the division (Fig. 1).  

The first challenge that we are facing is the 

time resolution in our movie is rather low (15 

minutes between frames; higher time resolution 

often results in cell death). With this temporal 

resolution, one cannot see all the stages of the 

division (e.g. elongation of the cell) but rather an 

instant mother to daughter cell splitting between 

two consecutive frames (also shown in Fig. 1). 

Compared to mother cells which usually have a 

characteristic round shape, daughter cells are 

much less distinguishable from other normal 

Time frame 𝒕 Time frame 𝒕 + 𝟏 Time frame 𝒕 Time frame 𝒕 + 𝟏 

Fig. 2. Daughters may stay on the 

same z-plane as their mother (a) or 

move to other planes (b). 

 



cells and also have larger variability of their shape and appearance, which makes the 

identification of daughter cells difficult. Besides, the time gap also results in a signifi-

cant frame-to-frame cell movement as well as variations in their shape and appear-

ance. 

Another significant challenge is the poor z-axis resolution (≈25 times smaller than 

in x and y) of our dataset which makes 3D cell detection almost impossible as daugh-

ter cells can be viewed well mostly at one z-plane. Cell divisions, however, do happen 

in 3D, so the daughters may stay on the same z-plane with their mother, and may 

migrate to other z-planes (Fig. 2). In the latter case it is difficult to confidently track 

daughter cells even for a human expert. Hence, we don’t consider this case in our 

detection, and focus only on the case when the mother and both daughters are visible 

in the same z-plane, which makes our detection essentially 2D. Since our ultimate 

goal is to quantify the ratio of symmetric and asymmetric cell divisions in crypt, ig-

noring out-of-plane cell division is not a problem, as the ratio should stay the same 

when large amount of movies are analysed. 

Rapid frame-to-frame cell movement and low z-resolution create a situation where 

roughly in half of the cases a mother cell is identified but at least one of its two 

daughters cannot be confidently traced. Such a case is not considered as a complete 

“mitosis event” for us (as we need both mother and daughter pair).  

3 Methods 

In this paper, we propose a dual-phase scheme for mitosis detection (shown in Fig. 3). 

The input to the algorithm is two consecutive time frames belonging to the same z-

plane. The goal of the first phase is to obtain two probability maps: the probability of 

location of a mother on the first frame and a daughter pair on the following one. The 

method to obtain these maps is described in section 3.1. In the second phase we use a 

joint probability distribution modelled by Conditional Random Field (CRF) in order 

to detect mitosis events by matching candidate mother and daughter pair. This is ex-

plained in details in section 3.2. 

 
Fig. 3. The dual-phase mitosis detection scheme. 



3.1 Cell detection with Hough forest 

Cell detection is an important and classic research topic in automatic bioimage pro-

cessing. Among proposed learning-based methods, one approach treats cell detection 

as a classification problem and trains a classifier to identify cell centroids (e.g. [6]). 

The classifiers are applied either densely on images or on candidate regions found by 

e.g. blob detectors or other classifiers [7]. This approach could be problematic in case 

of a small dataset, i.e. number of positive samples would be also small and hence lead 

to a high overfitting risk. Another approach is to formulate the problem as regression 

problem and learn a distance map to a closest cell’s centre [8]. Regression solves the 

problem of having several detections per cell which classic classification might have 

and hence achieves better performance. A similar method that has this advantage is 

Hough forest [9], which also learn displacement vectors to object’s centre. Compared 

to classic classification forest, Hough forest does not only split based on information 

gain, but also splits to increase the uniformity of the displacement vectors of the posi-

tive points (negative points do not participate in the voting). Therefore, Hough forest 

implicitly enforces shape constraints on objects and conveniently provides both seg-

mentation of an object and its centre. Furthermore, unlike regression forest, Hough 

forest is easily extended to multiclass (which is the case of our problem as we need to 

detect two kinds of cells: mother and daughter). Although being previously used for 

many computer vision problems, Hough forest, to our best knowledge, hasn’t been 

used for cell detection so far. 

The class distribution of our learning problem is highly imbalanced as the fore-

ground points (positive) constitute less than 0.5% of all points. Instead of creating a 

balanced training dataset which the variability of negative class is under-represented, 

we weight the class frequencies 𝒏𝒍 by calculating a probability of assigning a sample 

in leaf 𝑙 to class 𝑐 with inverse prior class probabilities 𝒑𝒑𝒓𝒊𝒐𝒓: 
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In classification splits, a splitting function minimizing Shannon entropy is chosen: 

ℍ(𝒑𝒍) = ∑ 𝑝𝑐
𝑙 log 𝑝𝑐

𝑙

𝑐∈𝒞

 

In vote uniformity splits, a sum of Euclidean distances of the votes 𝒱(𝑙) from the 

mean vote 𝜇𝒱(𝑙) is minimized: 

𝑉𝑆(𝑙) = ∑ ‖𝑣𝑖 − 𝜇𝒱(𝑙)‖

𝑣𝑖∈𝒱(𝑙)

 

3.2 Joint detection of mother and daughters using CRF 

Conditional Random Fields (CRF) were successfully used for joint object detection 

problems such as human pose estimation [10] or anatomical landmarks detection [11]. 

This is because that individual object detection might produce many false positives or 

generate impossible object configuration, enforcement of constraints on geometrical 

relationships between objects by CRF usually improves the performance. In our prob-



lem, daughter cell detection is inherently challenging, as they are not easy to be dis-

tinguished from normal cells and have large shape variability. Hence we use the geo-

metrical constraints on daughter cells (our observation is that daughters are usually 

not too far away from their mother) to reduce their false detection rate.  

Our CRF has two random variables: one denoting a position of the mother cell centre 

(M) and the other denoting a position of the daughter pair centre (D) (see Fig. 3). A 

feature vector X denotes our Hough maps from individual cell detection. Hence, the 

joint probability of a location of a mother at a candidate point 𝑚 and a daughter pair 

at 𝑑 follows Gibbs distribution: 

𝑝(𝐷 = 𝑑, 𝑀 = 𝑚|𝑋 = 𝑥) =
1

𝑍
𝜓𝑚(𝑚|𝑥)𝜓𝑑(𝑑|𝑥)𝜓𝑚𝑑(𝑚, 𝑑|𝑥)               (1) 

The unary potentials depend on Hough maps from mother and daughter detection: 

𝜓𝑚(𝑚|𝑥) = exp(𝑤𝑚ℎ𝑚(𝑚)) , 𝜓𝑑(𝑑|𝑥) = exp(𝑤𝑑ℎ𝑑(𝑑))                 (2) 

The binary potential depends on the Euclidean distance between 𝑚 and 𝑑: 

𝜓𝑚𝑑(𝑚, 𝑑|𝑥) = exp(𝑤𝑑𝒩(‖𝑚 − 𝑑‖|𝜇, 𝜎))                            (3) 

The distance is converted to a probability by modeling distance as a normal distribu-

tion. Mean and standard deviation of mother-daughter distances are calculated from 

the training set. 

We use the mitosis score 𝑆 to select good mitosis candidates. It is based on loga-

rithm of the CRF probability distribution: 

𝑙𝑜𝑔(𝑝(𝑚, 𝑑|𝑥)) = −𝑙𝑜𝑔𝑍 + 𝑤𝑚ℎ𝑚(𝑚|𝑥) + 𝑤𝑑ℎ𝑑(𝑑|𝑥) + 𝑤𝑚𝑑𝑝𝑑𝑖𝑠𝑡(𝑚,  𝑑|𝑥) 

𝑆 =  𝑤𝑚ℎ𝑚(𝑚|𝑥) + 𝑤𝑑ℎ𝑑(𝑑|𝑥) + 𝑤𝑚𝑑𝑝𝑑𝑖𝑠𝑡                                   (4)       
The normalizing constant 𝑍 is omitted due to the fact that it is the same over a neigh-

borhood in the images. Hence the mitosis score turns out to be a simple weighted sum 

of Hough scores and the probability of distance. In some works in joint object detec-

tion the weights of potentials are empirically chosen [12]. However, weighting can 

greatly affect the results and tuning it manually is usually difficult. A better approach 

is to learn the weights [11]. In our work, the weights of the CRF potentials are learned 

using logistic regression. 

In order to obtain the maximum a posterior (MAP) estimation of the cell positions 

in a neighbourhood of an image, we try all possible combinations of mother centre 

position candidates and daughters centre position candidates by thresholding respec-

tive Hough maps, and take one with a highest score. Note that the positions with the 

highest score are also the ones with the highest probability. 

4 Results 

4.1 Experiment and dataset description  

Crypts, isolated from the small intestine of Foxa2-Venus fusion; mT/mG mice, were 

cultured in matrigel for 4 days prior to live cell imaging. Crypts were then imaged 

using a HC PL APO 20x/0.75 IMM CORR CS2 objective (Leica) on a confocal laser 

scanning microscope (Sp5, Leica) in bidirectional mode (400 Hz), with 2x line aver-

aging per channel at a resolution of 1024x1024 pixels in x-y direction and a z-step 



size of 3.99 µm. The resulting voxel size is 0.15 µm x 0.15 µm x 3.99 µm and the 

time resolution is approximately 15 min. Venus and tdTomato fluorescence were 

detected simultaneously. We annotated 505 images from 32 different movies, which 

consists of 424 mother and 233 pairs of daughter cells (233 mitosis events). 

4.2 Evaluation of cell detection  

Firstly, we would like to evaluate our Hough forest based cell detection method, by 

comparing our Hough forest detection (splitting based on both information gain and 

voting uniformity, denoted as HF), classification forest detection (splitting based on 

information gain only) with a subsequent centroid Hough voting (CF+HV), and clas-

sification forest detection without any centroid voting (CF). A detected cell centre is 

considered a true positive (TP) if it is located inside a contour of a segmented cell. In 

case if there are multiple detections within one contour, one is considered as a TP and 

all the others are counted as false positives (FPs). Any detection that does not fall into 

a contour of a cell of a given class (mother or daughter) is considered to be a FP. Con-

tours without any matching detections are false negatives (FNs). 

Both the first and the second methods generate a Hough voting map of the objec-

tive centres, i.e. the centre of a mother cell and the centre of a daughter cell pair (alt-

hough in the second experiment we do not attempt to increase the voting uniformity 

in the leaves, but we still store the displacement vectors associated with positive sam-

pling points and hence create Hough maps). Cell detections are obtained by non-

maximum suppression of the Hough maps followed by thresholding. The purpose of 

the comparison of these two approaches is to understand how much the explicit vote 

uniformity optimization is contributing to the performance. In the third experiment we 

obtained detections by applying connected components algorithm on segmentations 

produced by the classification forest and extracting components’ centres. This exper-

iment is done to evaluate the effectiveness of shape enforcement by Hough voting to 

filter out the false positive points (the predicted positive points that do not accumulate 

high amount of votes are very likely to be FPs). All three compared methods are 

computed with 8 trees with maximum height of 19. At each split we evaluate 500 

features and 50 thresholds for each feature, minimum number of samples per leaf is 

set to 10. We use Haar-like features that are computed on the fly with integral images. 

All three methods are evaluated by the Precision-Recall curve and the area under 

the curve (AUC) for both mother detection (Fig. 4, left) and daughter detection (Fig. 

4, right). Each point on the curve is the average of 5-fold cross-validation. The train-

ing and testing images are sampled on different movies. The curves were obtained by 

varying threshold on Hough maps (first and second experiments) and on connected 

components (third experiment). 

As shown in Fig. 4, the performance of daughter detection is not as good as that of 

mother. This is expected as daughter detection is much more challenging due to a 

number of factors, such as less distinguishing appearance, larger shape variability as 

well as a much smaller training set (only half of mothers). 

As for the comparison of different methods, classic classification forest approach 

gives substantially worse results (mother AUC: 32.5%, daughter AUC: 11.4%) as 



compared to the other two methods. It is also expected, as classification alone is not 

robust against touching cells and can also result in fragmented foreground where ei-

ther only parts of a cell are presented or they are not in a corrected spatial ordering. 

Hough forest resolves these issues by implicitly controlling cell shapes using centroid 

voting. Particularly, optimisation of vote uniformity in Hough forest leads to a further 

improvement compared to only casting non-optimised votes of training samples in 

classification forest plus Hough voting (mother AUC: 84.6% vs. 82.1%, daughter 

AUC: 53.9% vs. 38.4%).  

 

Fig. 4. Precision-Recall curves of mother cell detection (left) and daughter pair detec-

tion (right) with three compared methods. 

4.3 Evaluation of mitosis detection 

The performance of the mitosis detector is also evaluated using Precision-Recall 

curve. Based on a similar principle as the cell detector, a TP mitosis event is counted 

only when the detected mother and daughter pair positions are both inside their corre-

sponding ground truth segmented contours. In case of multiple detections per mitosis 

event, one is considered as a TP and the rest are FPs. Other detection cases are FPs, 

and unmatched contours are FNs. 

As explained in section 3.2, our joint detection takes into an account three compo-

nents: mother and daughter pair detection, both in the form of Hough voting map 

values at candidate positions, as well as a Euclidean distance between these positions 

converted into a probability by assuming Gaussian distribution. We evaluate the con-

tribution of each component using weights learned from the training data (Eq. 4). Fig. 

5 plots the Precision-Recall curve of the 

mitosis detection obtained by 32-fold 

cross-validation (leave one movie out). 

It illustrates that the full model with all 

three components achieves the best 

accuracy (AUC: 72.4%). By contrast, 

performance of reduced models where 

only two components are considered is 

lower (mother+daughter: 66.5%, daugh-

ter+distance: 61.3%, mother+distance: 

30.8%). Fig. 5. Mitosis detection with CRF. 



5 Discussion 

At present, our proposed dual-phase detection framework achieves a mitosis detection 

accuracy of 72.4% (AUC), which is very exciting for this challenging problem. The 

detection accuracy is expected be further improved by providing more annotations, 

particularly in terms of daughter cells, which have a larger variability in appearance. 

With current performance, we can already use our automatic mitosis detection algo-

rithm as a pre-processing step and false detections can be manually corrected. Com-

pared to pure manual annotation in which every frame has to be inspected, this pre-

processing can dramatically accelerate the analysis process by narrowing manual 

assessment down to a very small subset of images. For example, if we take 80% recall 

(detects 80% true mitosis events, we would detect 230 events with 70% precision, that 

is, around 460 frames (2 frames per event) need to be manually inspected, which is 

less than 5% of original workload (32 movies, each contains three central z-planes 

where mitosis events are concentrated and 60-140 frames per plane). 

Our present detection algorithm provides us only with the centre of a daughter pair 

and the corresponding segmentation from Hough forest is not very accurate, as daugh-

ters are not separated. This is not sufficient to automatically extract features from 

daughter cells (such as their size, shape and orientations). So the next step is to devel-

op new processing algorithms to recover more accurate daughter cell segmentation. 
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