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Abstract

Partial differential equation (PDE) models are widely used in engineering and natural sciences to
describe spatio-temporal processes. The parameters of the considered processes are often unknown
and have to be estimated from experimental data. Due to partial observations and measurement
noise, these parameter estimates are subject to uncertainty. This uncertainty can be assessed using
profile likelihoods, a reliable but computationally intensive approach.

In this paper, we present the integration based approach for the profile likelihood calculation
developed by Chen and Jennrich [5] and adapt it to inverse problems with PDE constraints. While
exiting methods for profile likelihood calculation in parameter estimation problems with PDE
constraints rely on repeated optimization, the proposed approach exploits a dynamical system
evolving along the likelihood profile. We derive the dynamical system for the unreduced estimation
problem, prove convergence and study the properties of the integration based approach for the
PDE case. To evaluate the proposed method, we compare it with state-of-the-art algorithms for
a simple reaction-diffusion model for a cellular patterning process. We observe a good accuracy
of the method as well as a significant speed up as compared to established methods. Integration
based profile calculation facilitates rigorous uncertainty analysis for computationally demanding
parameter estimation problems with PDE constraints.

1 Introduction

Engineering, physics, biology and adjacent fields employ PDE models for the mathematical description
of involved processes. These models often contain unknown parameters which have to be inferred from
experimental data. The corresponding parameter estimation problems are potentially ill-posed due
to limited and noise-corrupted experimental data [12]. Due to the ill-posedness a comprehensive
uncertainty analysis is crucial. In particular, we refer to [8] for an overview on inverse problems in
systems biology with an emphasis on regularization aspects. Since we here deal with finite dimensional
parameter spaces, regularization (see, e.g., [7]) is not required. Still we face the difficulty that some
parameters might not be uniquely determined from the given noisy measurements and due to the
strong nonlinearity of the problem, this indeterminacy might not be detectable by just considering the
nullspace of the linearized forward operator. Thus we here rely on the concept of practical identifiability
and profile likelihoods that fully account for nonlinearity. So far, the literature on profile likelihoods
appears to mainly concentrate on (finite dimensional) statistics, as well as applications in systems
biology, geography and econometrics. To the best of our knowledge, their use in inverse problems
involving models in infinite dimensional spaces, especially to parameter identification problems in
PDEs, has not been investigated yet.
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In a statistical framework, parameter and prediction uncertainties can be quantified in terms of confi-
dence and credible intervals. Confidence and credible intervals capture the range of plausible parameter
and model predictions in accordance with a predefined statistical measure, e.g., the likelihood ratio.
For the construction of confidence and credible intervals, local approximations [25, 26], bootstrapping
[19], Bayesian methods [33] and profile likelihoods [26] are employed. Local approximation such as
the Wald approximation [25] and the Fisher Information Matrix (FIM) based approximation [26] are
computationally efficient but merely provide rough estimates of confidence intervals. Bootstrapping
provides non-local estimates but should only be applied to models without practical non-identifiablities
[9]. Bayesian methods and profile likelihoods appear to be most reliable and consistent [17, 18, 28].

Bayesian methods construct representative samples from the posterior distribution, thereby assess-
ing the uncertainty of all parameters and model predictions simultaneously [20]. Profile likelihood
methods explore the uncertainty of individual parameters and model predictions using repeated local
optimizations. The credible intervals computed using Bayesian methods employ marginalization, while
confidence intervals computed using profile likelihoods rely on maximum projections. For well-posed
problems, it follows from asymptotic normality that profile likelihoods and marginals are identical up
to a scaling constant. Even for finite sample sizes, the agreement of profile likelihoods and marginals
is usually rather high (see, e.g.,[18, 28, 17]). Raue et al. [28] demonstrated that profile likelihood
based confidence intervals can be advantageous as the coverage of regions with high likelihood val-
ues is ensured. In addition, the calculation of profile likelihoods tends to be computationally more
tractable than the sampling of the posterior distribution [17, 18, 28]. This also holds if sophisticated
sampling procedures [10, 11, 29] are used. Nevertheless, for computationally demanding problems,
also the application of classical profile likelihood methods is prohibitive [16, 17, 24].

To improve the computational efficiency of profile likelihood calculations, Chen and Jennrich [5] pro-
posed an integration based approach. This approach relies on a differential algebraic equation (DAE)
which evolves along the profile likelihood. The trajectories of this systems provide the parameter
profile without the need for repeated optimization. Mass matrix and vector field of the DAE are
computed from the gradient and hessian of the objective function. Chen and Jennrich [5] obtained
promising results for simple likelihood functions. In the last years also the application to ordinary
differential equation (ODE) models has been discussed [23].

In this paper, we will generalize integration based profile likelihood calculation to PDE constrained
parameter estimation problems. We will introduce a reduced and a full formulation for a statisti-
cally motivated objective function and discuss their properties. As the calculation of the Hessian is
potentially computationally intensive, approximation will be considered and combined with a retrac-
tion term. The different approaches will be illustrated and evaluated using an example from systems
biology.

The remainder of this paper is organized as follows: In Section 2 we will introduce the considered class
of mathematical models and observation operator. The parameter estimation problem and uncertainty
analysis using profile likelihoods will be outlined in Section 3. In Section 4 and 5 the integration based
profile likelihood calculation for the reduced and the full problem are presented. The relation of these
two approaches is discussed in Section 6. The proposed integration based profile likelihood calculation
for PDE models is evaluated in Section 7 for a model of gradient formation in fission yeast. The paper
concludes with a discussion of the results and an outlook in Section 8.

2 Mathematical model

We consider parameter estimation in partial differential equation models

ut + C(θ, u) = f(θ) in ]0, T [

u(0) = u0,
(1)

with state variable u ∈ V , defined over a spatial domain, and parameter vector θ ∈ Θ ⊆ Rn. The
operator C(θ, .) : V → V ∗, mapping from a separable, reflexive Banach space V into its dual V ∗, is
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equipped with appropriate boundary conditions, where V ⊂ H ∼= H∗ ⊂ V ∗ is a Gelfand triple such
that V is imbedded continuously and densely into a Hilbert space H. To guarantee the existence of
a weak solution u ∈ W (0, T ) = L2(0, T ;V ) ∩ H1(0, T ;V ∗) of (1), according to ([34], p. 770 ff.), we
assume that the operator C meets the following assumption:

Assumption 2.1 (Existence of a weak solution).

• u0 ∈ H and f(θ) ∈ L2([0, T ];V ∗) are given.

• C(θ, .) is monotone and hemicontinuous.

• C(θ, .) is coercive, i.e. there exist c0 and c1 such that 〈C(θ, u), u〉V ∗,V ≥ c0‖u‖2V − c1.

• C(θ, .) satisfies the growth condition, i.e. there exists a nonnegative function c2 ∈ L2(0, T ) and
a constant c3 > 0, such that ‖C(θ, u)(t)‖V ∗ ≤ c2(t) + c3‖u(t)‖V for all u ∈ V and t ∈]0, T [.

• The function t 7→ 〈C(θ, u)(t), v〉V ∗,V is measurable on ]0, T [ for all u, v ∈ V .

Assumption 2.1 holds for models from a broad range of applications [32] and ensures the existence of
a parameter-to-state map

S : Rnθ →W (0, T ), with u = S(θ) solving (1). (2)

As the measurement of u can be limited by experimental technologies, we consider potentially partial
observations,

y = Q(θ, u). (3)

The observation operator Q(θ, .) : W (0, T ) → RK maps u onto the observation y ∈ RK . The obser-
vation y is a collection of different scalar observables measured at different time points. The index
k enumerates all the combinations of observables and time points, yk = (Q(θ, u))k = Qk(θ, u) for
k = 1, . . . ,K.

In practice the observations are corrupted by measurement noise. The noise corrupted measurement
of the observable yk is denoted by yk. For additive, normally distributed measurement noise it holds
that

yk = yk + εk with εk ∼ N (0, σ2
k(θ)). (4)

The parameters of the noise model, here the variance σ2
k(θ), are potentially unknown and can depend

on the parameter.

3 Parameter estimation problem and uncertainty analysis

We estimate the parameters using a likelihood-based approach. The likelihood is the conditional
probability of observing the measured data yk, k = 1, . . . ,K, given the parameter vector θ. The
likelihood of observing the measured data depends implicitly on the noise model and is e.g. for
additive, normally distributed measurement noise given by

L(θ) =

K∏
k=1

1√
2πσk(θ)

exp

(
−1

2

(
yk −Qk(θ, S(θ))

σk(θ)

)2
)
.

Remark 3.1. The methods and results we will present do not assume a particular noise model or
likelihood function. We merely assume that the likelihood function is twice continuously differentiable.

The parameter vector θ̂ which maximizes L(θ) is the maximum likelihood estimate. To improve
the numerical evaluation and the optimizer convergence, the maximum likelihood estimate is usually
determined by minimizing the negative log-likelihood function,

j(θ) = − log L(θ) =
1

2

K∑
k=1

(
log
(
2πσ2

k(θ)
)

+

(
ȳk −Qk(θ, S(θ))

σk(θ)

)2
)
, (5)
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with its non-reduced counterpart

J(θ, u) =
1

2

K∑
k=1

(
log
(
2πσ2

k(θ)
)

+

(
ȳk −Qk(θ, u)

σk(θ)

)2
)
.

This yields the PDE constrained optimization problem

min
θ∈Θ,u∈W (0,T )

J(θ, u)

s.t. ut + C(θ, u) = f(θ) in ]0, T [

u(0) = u0. (6)

The maximum likelihood estimate θ̂, i.e. the optimum of (6), is potentially non-unique and might
strongly depend on the measurement noise. To assess the parameters and prediction uncertainties we
consider confidence regions and confidence intervals.

Definition 1 (Confidence region).
For the parameter vector θ ∈ Θ we define the confidence region to the confidence level α as

CRα =

{
θ ∈ Θ

∣∣∣∣∣L(θ)

L(θ̂)
≥ exp

(
−∆α

2

)}
,

=
{
θ ∈ Θ

∣∣∣2(j(θ)− j(θ̂)
)
≤ ∆α

}
,

(7)

with ∆α denoting the αth-percentile of the χ2 distribution with one degree of freedom.

From the confidence regions, the confidence intervals for individual model properties G(θ, u), with
G : Θ × V 7→ R, can be derived. The reduced form of G(θ, u) is denoted by g(θ) = G(θ, S(θ)),
with g : Θ 7→ R. Model properties are for instance individual parameters, functions of parameters or
properties of the solution of the model.

Definition 2 (Confidence interval).
The confidence interval for a model property is the projection of CRα onto the range g(Θ) of g.

CIα,g = Pg(Θ)CRα = {c |∃θ ∈ CRα : g(θ) = c} (8)

The evaluation of the confidence region requires the calculation of level sets of likelihood functions.
For problems with nθ � 1 this is non-trivial. To determine confidence intervals without calculating
confidence regions, profile likelihoods [26] can be used. The profile likelihood for a scalar function g,
PLg(c), is the maximal likelihood value for g(θ) = c [4].

Definition 3 (Profile likelihood).
For the scalar function g we define the profile likelihood as

PLg(c) = max
θ∈Θ

L(θ) subject to g(θ) = c. (9)

For values c outside the range of g, we set PLg(c) = 0.

In other words the profile likelihood provides the maximum projection of the likelihood along g(Θ).
Accordingly, the confidence interval for g follows from (8) as

CIα,g =

{
c

∣∣∣∣∣PLg(c)

L(θ̂)
≥ exp

(
−∆α

2

)}
.

The relation among likelihood function, confidence region/intervals and profile likelihoods is illustrated
in Figure 1. Note that the confidence intervals for the individual parameters are obtained by the
projection of the confidence region as well as by thresholding the profile likelihood. For g(θ) = θj this
provides the confidence interval of parameter θj , while for other choices of g more involved parameter
dependent model properties can be assessed, e.g. the product of two parameters.

The confidence intervals to a confidence level α can be bounded or unbounded:
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Figure 1: Illustration of confidence region, confidence intervals, profile likelihoods and
their relation. (big panel) Likelihood function landscape (shading), confidence region ( ) and profile
likelihood path θc (θ1: ;θ2: ). (small panels) Profile likelihood ratio ( ) and confidence interval ( )
for θ1 and θ2. The relation of different quantities is indicated using dotted lines. The significance
threshold is indicated in all three figures as solid black line.

Definition 4 (Practical identifiability).
A model property g is called practically identifiable if its confidence interval CIα,g is bounded; otherwise
it is called practically non-identifiable.

For a detailed introduction to profile likelihoods and confidence intervals we refer to the statistical
literature (e.g., [25, 26]) and the applications (e.g. [16, 27]).

4 Profile likelihood calculation for the reduced problem

In this section, we introduce optimization and integration based profile likelihood calculation for
the reduced form of PDE constrained optimization problems. The formulation of the integration
based profile likelihood calculation method is adapted from the results of Chen and Jennrich [5]. In
particular we establish its validity for function spaces. To keep the exposition focused on the profile
likelihood computations, we consider the case without constraints on the parameters, i.e. θ ∈ Θ =
Rn. Constraints on the parameters would lead to additional Lagrange multipliers in the first order
optimality conditions and require regularity assumptions (constraint qualifications) to justify existence
of these multipliers.

Since our analysis will rely on differentiation of the first order necessary optimality conditions, we will
make the following assumptions on smoothness of the involved functions

Assumption 4.1. C : Rnϕ×V → V ∗, f : Rnϕ → V ∗ and J : Rnθ×W (0, T )→ R are twice continuously
differentiable.
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Figure 2: Illustration of optimization based profile likelihood calculation (upper panels)
and integration based profile likelihood calculation (lower panels). (upper panel in A)
Optimization based profile likelihood calculation for likelihood function (shading) using update and re-
optimization step (arrows). (upper panel in B) Evaluation points (•) and approximation of the profile
likelihood ( ). (lower panel in A) Integration based profile likelihood calculation for likelihood function
(shading) using continuous system with derivative (arrow) tangential to the parameter trajectory ( ).
(lower panel in B) Profile likelihood ( ) obtained using integration based method.
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4.1 Optimization based profile likelihood calculation

Optimization based methods approximate the profile likelihood PLg(c) by evaluating it on a grid {cl}l
(Figure 2 upper panels). For each point c the reduced negative log-likelihood function is minimized,

min
θ∈Θ

j(θ)

s.t. g(θ) = c.
(10)

This minimization yields the optimal parameter vector, θc := θ̂(c), and the corresponding value of the
negative log-likelihood function, j(θc). It holds that PLg(c) = exp(−j(θc)).

State-of-the-art methods construct the grid {cl}l iteratively, starting at the optimal parameter vector
θ̂ of (6) with ĉ = g(θ̂) [27]. An iteration consists of two steps: (i) the update of the constraint cl using
an adaptive approach; and (ii) the local optimization of the parameters. The adaptation controls the
change in the objective function, j(θcl−1

) to j(θcl), and the number of iterations. The starting point

θ
(0)
cl of the local optimization for cl is constructed from previous points. Most implementations use as

starting point

1. 0th order proposal: the optimal point for cl−1, θ
(0)
cl = θcl−1

, or

2. 1st order proposal: the linear extrapolation based on the optimal points for cl−1 and cl−2,

θ(0)
cl

= θcl−1
+

cl − cl−1

cl−1 − cl−2
(θcl−1

− θcl−2
).

The 0th order proposal is illustrated in Figure 2 A (upper panel). In practice the 1st order proposal,
which uses additional topological information, yields starting points which are closer to the optimum
θc. Accordingly, this approach tends to be computationally more efficient.

Optimization-based profile likelihood calculation is computationally efficient compared to other un-
certainty analysis methods [28, 18, 17]. It, however, becomes computationally demanding if the
number of necessary iterations increases or an individual local optimization is computationally ex-
pensive. The number of iterations is influenced by the structure of the objective function landscape,
e.g., non-identifiabilities. The computational complexity of the local optimization is determined by
the computation time of the forward problems (and its derivatives). Both are issues for a range of
practical applications including PDE constrained problems [16].

4.2 Integration based profile likelihood calculation

Integration based profile likelihood calculation addresses the drawbacks of optimization based methods
by exploiting the differential geometry of the reduced optimization problem [5]. This is achieved by
considering the Lagrange function for (10),

`(θ, λ) = j(θ) + λ(g(θ)− c),

in which λ ∈ R denotes the Lagrange multiplier. From the Lagrange function the first order optimality
conditions,

∇θj(θ) + λ∇θg(θ) = 0

g(θ) = c,
(11)

can be derived. This system of equations describes the dependence of the minimizing parameter vector
θ and the Lagrange multiplier λ on c. Therefore we use the notation θc := θ(c) and λc := λ(c). The
differentiation of (11) with respect to c yields an evolution equation for the pair (θc, λc),(

∇2
θj(θc) + λc∇2

θg(θc) ∇θg(θc)
∇θg(θc)

T 0

)
︸ ︷︷ ︸

:=Mred(θc)

(
θ̇c
λ̇c

)
=

(
0
1

)
, (12)
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where θ̇c and λ̇c are derivatives with respect to c. The solution of the differential algebraic equation
(DAE) (12) for a starting point which solves (10) for c = c0 yields the profile θc for c ∈ [c0, cend].

Proposition 4.2. Let j : Rn → R and g : Rn → R be twice continuously differentiable and let
(θc, λc)c∈[c0,c1] be a solution of (12) with initial data (θc0 , λc0) solving (11) for c = c0.

Then for all c ∈ [c0, c1], (θc, λc) solves the optimality conditions (11).

Proof. For any fixed c1 > c0 we define Ψ : [c0, c1]→ Rn+1 by Ψ(c) = (θc, λc) and Φ : Rn+1 → Rn+1 by
Φ(θ, λ) = (∇θj(θ) + λ∇θg(θ),g(θ))T , so that we can rewrite (11) for c ∈ [c0, c1] as

Φ(Ψ(c))−
(

0
c

)
= 0 ∀c ∈ [c0, c1] .

Under the differentiability assumptions made here this is equivalent to

Φ(Ψ(c0))−
(

0
c0

)
= 0 and

dΦ

d(θ, λ)
(Ψ(c)) Ψ̇(c)−

(
0
1

)
= 0 ∀c ∈ [c0, c1] ,

i.e., (12).

The trajectory θc of (12) is the path in parameter space along which the minimum of the constrained
optimization problem (10) is attained. The evaluation of the objective function j(θc) along this tra-
jectory yields the profile likelihood PLg(c) = exp(−j(θc)). Accordingly, the profile likelihood can be
computed without optimization. Instead, the update directions are determined by the derivatives of
g and j.

The numerical integration of (12) relies on the evaluation of the matrix-vector productMred(θc)(θ̇c, λ̇c)
T .

This matrix-vector product contains the terms (∇2
θj(θc) + λc∇2

θg(θc))θ̇c, ∇θg(θc)λ̇c and ∇θgT (θc)θ̇c.
As g and j are functions of the PDE solution, their derivatives depend on the parameter-to-state
mapping S(θ). The sensitivities of the parameter-to-state map S(θ) can be calculated using forward
sensitivity equations derived by differentiating (1) for u = S(θc). This differentiation yields the first
and second order derivatives, e = Sθi(θ) and z = Sθiθj (θ), for i, j = 1, . . . , n, as solutions to,{

et + Cu(θ, S(θ))e = fθi(θ)− Cθi(θ, S(θ)) =: −hθi
e(0) = 0

and 
zt + Cu(θ, S(θ))z = fθiθj (θ)− Cθiθj (θ, S(θ))− Cθiu(θ, S(θ))Sθj (θ)

−Cuθj (θ, S(θ))Sθi(θ)− Cuu(θ, S(θ))Sθi(θ)Sθj (θ) =: −hθij
z(0) = 0.

(13)

In addition to solving the nonlinear PDE (1), this requires the solutions of nθ linear PDEs for the first
order sensitivities and nθ(nθ + 1)/2 linear PDEs for the second order sensitivities. An alternative to
forward sensitivities is the evaluation of the aforementioned Hessian and gradient vector product by
adjoint methods. These enable the computation of the objective function gradient by solving just one
linearized PDE and computation of the Hessian of the objective function by solving two additional
linearized PDEs. Namely, defining p as the solution of the adjoint equation{

pt − Cu(θ, S(θ))∗p = Ju(θ, S(θ))
p(T ) = 0

(14)

(see also (23) below) and using the fact that u = S(θ) solves the PDE (1) followed by integration by
parts, we obtain

∂j

∂θi
(θ) =

∂

∂θi

(
J(θ, S(θ)) +

∫ T

0
〈S(θ)t + C(θ, S(θ))− f(θ), p〉V ∗,V dt

)
= Jθi(θ, S(θ)) + Ju(θ, S(θ))Sθi(θ) +

∫ T

0

(
〈Sθi(θ)t + Cθi(θ, S(θ)) + Cu(θ, S(θ))Sθi(θ)− fθi(θ), p〉V ∗,V

)
dt

= Jθi(θ, S(θ)) +

∫ T

0
〈Cθi(θ, S(θ))− fθi(θ), p〉V ∗,V dt .

(15)
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To calculate the Hessian-vector product ∇2j(θ)ζ for some ζ ∈ Rnθ , we apply the same procedure to
the auxiliary minimization problem minθ∈Θ∇j(θ)T ζ, which is then equivalent to

min
θ∈Θ,(u,p)∈W (0,T )2

J̃(θ, (u, p))

s.t. ut + C(θ, u) = f(θ) u(0) = u0

pt − Cu(θ, u)∗p = Ju(θ, u) p(T ) = 0

(16)

with

J̃(θ, (u, p)) = ζT∇θJ(θ, u) +

∫ T

0
〈ζT∇θC(θ, u)− ζT∇θf(θ), p〉V ∗,V dt .

Defining v, w as the solutions of

vt + Cu(θ, S(θ))v = −ζT∇θC(θ, S(θ)) + ζT∇θf(θ) v(0) = 0

wt − Cu(θ, S(θ))∗w = (B(θ, S(θ), P (θ))∗v + (ζT∇θCu(θ, S(θ)))∗P (θ)

+ ζT∇θJu(θ, S(θ)) + Juu(θ, S(θ))∗v w(T ) = 0

(17)

where we define B by

〈B(θ, a, b)c, d〉V ∗,V = 〈Cuu(θ, a)(c, d), b〉V ∗,V for all θ ∈ Θ , a, b, c, d ∈ V

and P (θ) = p as the solution to (14), we arrive at

(∇2
θj(θ)ζ)i =

∂

∂θi
j̃(θ) =

∂

∂θi
J̃(θ, (S(θ), P (θ)))

=
∂

∂θi

(
ζT∇θJ(θ, S(θ)) +

∫ T

0

〈
ζT∇θC(θ, S(θ))− ζT∇θf(θ), P (θ)

〉
V ∗,V

dt

+

∫ T

0
〈S(θ)t + C(θ, S(θ))− f(θ), w〉V ∗,V dt

+

∫ T

0
〈−P (θ)t + Cu(θ, S(θ))∗P (θ) + Ju(θ, S(θ)), v〉V ∗,V dt

)
= (∇2

θJ(θ, S(θ))ζ)i + Jθiu(θ, S(θ))v +

∫ T

0

(
〈Cθi(θ, S(θ))− fθi(θ), w〉V ∗,V

+ 〈((∇2
θC(θ, S(θ))−∇2

θf(θ))ζ)i + Cθiu(θ, S(θ))v, P (θ)〉V ∗,V
)
dt .

(18)

The numerical simulation of (12) with explicit or implicit time stepping can introduce numerical errors,
which results in a divergence of the trajectory from the profile path and leads to an underestimation
of the profile likelihood. This effect can be counterbalanced by the incorporation of a retraction term,
which results in a minimization of j(θ) for the given constraint,(

∇2
θj(θc) + λc∇2

θg(θc) ∇θg(θc)
∇θg(θc)

T 0

)(
θ̇c
λ̇c

)
=

(
−γ∇θj(θc)

1

)
(19)

with retraction factor γ > 0. This approach has been introduced by Chen and Jennrich [5]. Further-
more, to circumvent the potentially time-consuming calculation of the term ∇2

θj(θc) +λc∇2
θg(θc) they

replace it with a positive definite matrix w(θc), which depends at most on the first order derivatives
of the parameter-to-state map. A possible choice for w(θc) is the Fisher Information Matrix (FIM),
which is for the objective function (5) given as

wi,j(θc) = Jθiθj (θc, S(θc)) + Jθiu(θc, S(θc))Sθj (θc) + Juθj (θc, S(θc))Sθi(θc)

+ Juu(θc, S(θc))Sθi(θc)Sθj (θc).

The replacement introduces an approximation error which also results in an underestimation of the
profile likelihood. Chen and Jennrich [5] proved that as the retraction factor γ > 0 increases, the
trajectory of (19) approaches the trajectory of (12). For γ → ∞, we obtain the singular perturbed
system which evolves along the profile [22]. In this reduced setting, the result from [5] applies directly.
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5 Profile likelihood calculation for the full problem

In the previous section, the reduced problem was considered using the parameter-to-state map S(θ).
The evaluation of S(θ) requires the accurate numerical simulation of the dynamical system. As this
might be computationally inefficient, we introduce optimization and integration based profile likelihood
calculation for the non-reduced form of the PDE constrained optimization problem.

5.1 Optimization based profile likelihood calculation

The optimization based profile likelihood calculation introduced in Section 4.1 relies on the solution
of the reduced optimization problem (10) for every grid point cl. The reduced optimization problem,
however, can be replaced by the solution of the PDE constrained optimization problem,

min
θ∈Θ,u∈W (0,T )

J(θ, u)

s.t. ut + C(θ, u) = f(θ)

u(0) = u0

G(θ, u) = c.

(20)

We denote the optimal solution by (θc, uc) :=
(
θ̂(c), û(c)

)
. This problem can be solved using local

optimization, starting at initial points constructed from the previous grid points. For θc and uc, similar
extrapolation schemes can be used as for the reduced form.

5.2 Integration based profile likelihood calculation

For the derivation of the integration based profile likelihood calculation, we consider the Lagrange
function of the PDE constrained optimization problem (20),

L̃(θ, u, p, λ) = L(θ, u, p) + λ(G(θ, u)− c) (21)

with

L(θ, u, p) = J(θ, u) +

∫ T

0
(−〈u, pt〉V,V ∗ + 〈C(θ, u)− f(θ), p〉V ∗,V )dt.

and Lagrange multipliers λ and p. The first order optimality conditions for (20) at a minimizer (θc, uc)
are

∇θL(θc, uc, pc) + λc∇θG(θc, uc) = 0

∇uL(θc, uc, pc) + λc∇uG(θc, uc) = 0

∇pL(θc, uc, pc) = 0

G(θc, uc) = c.

(22)

The second line is the adjoint equation{
pt − Cu(θ, u)∗p = Ju(θ, u)
p(T ) = 0

(23)

and the third line is the state equation (1) for p = pc, u = uc and θ = θc. Differentiating (22) with
respect to c yields the following system for the evolution of (θc, uc, pc, λc):

∇2
θL+ λc∇2

θG ∇u∇θL+ λc∇u∇θG ∇p∇θL ∇θG
∇θ∇uL+ λc∇θ∇uG ∇2

uL+ λc∇2
uG ∇p∇uL ∇uG

∇θ∇pL ∇u∇pL 0 0
∇θGT ∇uGT 0 0


︸ ︷︷ ︸

Mfull(θc,uc,pc,λc)


θ̇c
u̇c
ṗc
λ̇c

 =


0
0
0
1

 . (24)
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where we skipped the arguments (θc, uc, pc) of the derivatives of L and G. The derivatives of L are

Lθiθj (θc, uc, pc) = Jθiθj (θc, uc) +

∫ T

0

〈
Cθiθj (θc, uc)− fθiθj (θc), pc

〉
V ∗,V

dt

∇uLθi(θc, uc, pc) = Jθiu(θc, uc) + Cθiu(θc, uc)
∗pc

∇pLθi(θc, uc, pc) = Cθi(θc, uc)− fθi(θc)
∇2
uL(θc, uc, pc) = Juu(θc, uc) + Cuu(θc, uc)

∗pc

∇u∇pL(θc, uc, pc) = ∂t + Cu(θc, uc)

(25)

The other mixed partial derivatives of the Langrange function follow by symmetry if all involved
functions are twice continuously differentiable.

The trajectories of (24) provide the profile likelihood for the non-reduced problem, namely θc and uc.
For the numerical integration an explicit or implicit time stepping scheme can be used. Similarly to
the reduced problem, the approximation errors can be reduced by introduction of a retraction term,

Wuu c Wuθ c Wpθ c ∇θG
Wθu c Wuu c Wpu c ∇uG
Wθp c Wup c Wpp c 0
∇θGT ∇uGT 0 0




˙̂
θc
˙̂uc
˙̂pc
˙̂
λc

 =


−γ∇θL
−γ∇uL
−γ∇pL

1

 , (26)

with retraction factor γ > 0. The retraction damps the accumulation of numerical errors and ensures a
more accurate profile likelihood approximation. Furthermore, the retraction allows for the replacement
of the matrix Mfull(θc, uc, pc, λc) with a positive definite matrix to circumvent the need for second order
information. The resulting approximation error can be controlled using γ. A large retraction factor
results, however, in an increased stiffness of the dynamical system. Extending the proof in [5] from
finite dimensions and ODEs to the PDE setting in function spaces we can show that the difference
between solutions to the original system and the approximated one with retraction can be made
arbitrarily small by an appropriate choice of the retraction factor λc, see Proposition 5.1 below. For
this purpose we abbreviate ξc = (θc, uc, pc), ξ̂c = (θ̂c, ûc, p̂c), G(ξ) = G(θ, u), X = Rnθ ×W (0, T )2, so
that we can rewrite (24) and (26) more compactly as(

∇2
ξL(ξc) + λc∇2

ξG(ξc) ∇ξG(ξc)

∇ξG(ξc)
T 0

)(
ξ̇c
λ̇c

)
=

(
0
1

)
, (27)

and (
Wc ∇ξG(ξ̂c)

∇ξG(ξ̂c)
T 0

)( ˙̂
ξc
˙̂
λc

)
=

(
−γ∇ξL(ξ̂c)

1

)
. (28)

We assume that the family of linear operators Wc : X → X∗ satisfies the following properties:

∀c ∈ [c0, c1] ∀ξ, ζ ∈ X : 〈Wcξ, ζ〉X∗,X = 〈Wcζ, ξ〉X∗,X (symmetry) (29)

∀c ∈ [c0, c1] ∀ξ ∈ X : 〈Wcξ, ξ〉X∗,X ≥ γW ‖ξ‖2X (positivity) (30)

∃M̄ > 0 ∀c ∈ [c0, c1] : ‖Wc‖ = sup
ξ,ζ∈X, ‖ξ‖X≤1, ‖ζ‖X≤1

〈Wcξ, ζ〉X∗,X ≤ M̄W (boundedness) (31)

as well as the following sufficient second order condition at the minimizers (ξc, λc)

∃γL > 0 ∀c ∈ [c0, c1]∀ζ ∈ ∇ξG(ξc)⊥ : 〈(∇2
ξL(ξc) + λc∇2

ξG(ξc))ζ, ζ〉X∗,X ≥ γL‖ζ‖2X (32)

where ∇ξG(ξc)⊥ = {ζ ∈ X : 〈∇ξG(ξc), ζ〉X∗,X = 0} is the tangential cone corresponding to the
equality constraint G(ξ) = 0.

11



Proposition 5.1. Let G, L be twice continuously differentiable, let (29)–(32) be satisfied and let ξc,
ξ̂c, c ∈ [c0, c1] be solutions to (27) and (28), respectively.
Then for any κ > 0, and for any ε̃ > 0 sufficiently small, there exists ρ > 0 sufficiently small and
λ > 0 sufficiently large, such that if ec0 < ρ then

∀c ∈ [c0, c1] ‖ξ̂c − ξc‖X ≤ ρ and ec ≤
ε̃

κ
+ ec0 exp(−κ(c− c0)) (33)

holds, where ec = 〈Wcξ̂c − ξc, ξ̂c − ξc〉X∗,X ≥ γW ‖ξ̂c − ξc‖2X .
Moreover, for any ε > 0 and any c̃ ∈ (c0, c1] there exists λ > 0 such that

∀c ∈ [c̃, c1] ‖ξ̂c − ξc‖X ≤ ε . (34)

The proof (see the Appendix) shows that λ = λc can be chosen adaptively, depending on the artificial
time parameter c.

6 Comparison of full and reduced formulation of integration based
profile likelihood calculation

The full and reduced formulations of integration based profile calculation provide different view points
on the problem. In the following, we will establish equivalence under the assumption of the identity
uc = S(θc). In addition, the computational implementation will be discussed.

6.1 Equivalence of calculated profile likelihoods

The reduced formulation (12) and the full formulation (24),

Mred(θc, λc)

(
θ̇c
λ̇c

)
=

(
0
1

)
and Mfull(θc, uc, pc, λc)


θ̇c
u̇c
ṗc
λ̇c

 =


0
0
0
1

 ,

provide two alternative approaches to calculate the profile likelihood path θc. The validity of the state
equation for uc, which is ensured by the initial condition satisfying (22) gives the identity uc = S(θc).
With this identity as well as the evolution (24), we can show the equivalence of both approaches.

Proposition 6.1. Under Assumptions 2.1 and 4.1 solving the full system (24) and the reduced sys-
tem (12) yields the same profile likelihood path θc.

The proof of equivalence of (12) and (24) is provided in the Appendix. From the equivalence, we
conclude that also the stabilized versions (19) and (26) yield the same results in the absence of
numerical integration errors.

6.2 Implementation and computational properties

In the previous section we established equivalence of θc for (12) and (24). This equivalence is however
not ensured for the result of the trajectories of (12) and (24) (or their stabilized versions (19) and (26))
obtained by numerical simulation. The implementation and computational requirements of full and
reduced systems are considerably different.

For the numerical simulation of the reduced system, the matrix-vector product Mred(θc)(θ̇c, λ̇c)
T has

to be evaluated. This requires the numerical simulation of the model (2.1) for every point (θc, λc)
T

and either nθ(nθ + 3)/2 linear forward PDE solves or three (one forward, two backward) linear PDE

12



solves (see Section 4.2). This implicit numerical simulation can exploit sophisticated numerical solvers,
requires minimal storage but can be computationally demanding. In contrast, the full system provides
an explicit form. When applying an iterative solver, e.g. a CG method, only matrix vector products
are needed. Applying Mfull(θc, uc, pc, λc) to a vector (θ̇c, u̇c, ṗc, λ̇c)

T only requires the evaluation of
the linearization of the differential operator ∂t + C(θc, .) and its adjoint, so no PDE solution. In the
discretized setting, this amounts to evaluating some difference quotient with respect to time and to
multiplying with the stiffness matrix in case of a parabolic PDE. The discretization of uc and pc in
space and time can however require significant storage.

The mass matrices Mred(θc, λc) and Mfull(θc, λc) can be singular. This happens, among others, in
the presence of structural non-identifiabilities. For singular mass matrices, (12) and (24) (or their
stabilized versions (19) and (26)) are differential algebraic equations and partial differential alge-
braic equations, respectively. The differentiation indexes are potentially unknown and might even be
non-constant. Accordingly, sophisticated numerical methods are required (see, [3, 6] and references
therein). Alternatively, pseudo-inverses of Mred(θc, λc) and Mfull(θc, λc) [2] might be employed to
derive approximating ODE and PDE systems.

In this paper the stabilized reduced system (19) is implemented. For the numerical simulation different
adaptive solvers are employed.

7 Numerical evaluation of integration based profile likelihood cal-
culation

In the following, we will illustrate the properties of the proposed integration based profile likelihood
calculation method. For this purpose, we study a biological application, i.e. a PDE model for gradient
formation. We consider a realistic measurement set-up but use artificial experimental data. This
enables the comparison of the methods with the ground-truth available.

7.1 Mathematical model for gradient formation in fission yeast

To assess the properties of the proposed approach, we consider a model for gradient formation in
fission yeast. Fission yeast cells are rod-shaped and their division is controlled by a gradient of the
protein Pom1p in the cell membrane. Hersch et al. [14] modelled the dynamics of the concentration
of Pom1p at a position x, u(t, x) with units #/µm, by

ut = Duxx − αu2 +
β√
2πρ

e−x
2/2ρ2 for ]0, T [×]− L,L[

∂u

∂ν
= 0 for ]0, T [×{−L,L}

u = 0 for {t = 0}×]− L,L[

(35)

with diffusion coefficient D, dimerisation rate α, influx rate β and source width ρ. The length along
the membrane from the tip of the cell to the center is denoted by L. Model (35) meets Assumption 2.1.

We implemented the method of lines for model (35) in MATLAB. The system of ODEs was imple-
mented in AMICI (https://github.com/ICB-DCM/AMICI ) [21]. AMICI generates the first and second
order sensitivity equations, enabling the evaluation of the Hessian and the Fisher Information Matrix.
For the simulation, AMICI exploits the SUNDIALS solver suite [15].

7.2 Artificial experimental data

For a realistic evaluation of different profile likelihood calculation methods, we generated artificial
experimental data similar to previously published datasets for the considered process (see [30]). Our
artificial dataset consists of three individual datasets:
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Table 1: Parameter values and confidence intervals. The parameter estimates are obtained using
multi-start local optimization. The confidence intervals to a confidence level of 95% are computed
with the integration based profile likelihood calculation in ODE formulation with the Hessian. For
confidence intervals which extend beyond the considered parameter region we write > or < bound,
indicating practical non-identifiability. All quantities are provided in seconds s, micrometer µm,
number of molecules # and unit of fluorescence intensity ui.

parameter true estimated 95% confidence interval units

names value θ value θ̂ lower bound upper bound

D 0.10 0.15 0 > 12 µm2/s
α 4.00× 10−4 6.07× 10−4 4.60× 10−5 > 1 µm3/(# · s)
β 8.00× 103 1.21× 104 9.99× 102 > 5× 108 #µm/s
ρ 0.60 0.60 0.38 0.77 µm
s1 2.87× 10−4 2.95× 10−4 2.45× 10−4 3.47× 10−4 ui/#
s2 2.70× 10−5 2.72× 10−5 2.26× 10−5 3.34× 10−5 ui/#

• Concentration profile: The concentration profile provides the relative abundance of the signalling
molecule along the membrane at time t = 100 s. The interval ] − L,L[ is divided in 60 equally
sized regions Ωk, yielding the observation operators

Qk(θ, u) = s1

∫
Ωk

u(t = 100, x)dx for k = 1, . . . , 60,

with scaling factor s1 and region Ωk =
[
−7 + 7

30(k − 1),−7 + 7
30k
]
, k = 1, . . . , 60.

• Time course: The time course data provide the scaled overall protein abundance at 10 equally
spaced time points tk ∈ [0, 60] s. The observation operators are

Q60+k(θ, u) = s2

∫ L

−L
u(tk, x)dx for k = 1, . . . , 10,

with scaling factor s2.

• Quantification: The quantification provides the absolute abundance of the signalling molecule
at time point t = 100 s,

Q71(θ, u) =

∫ L

−L
u(t = 100, x)dx.

The artificial data sets were obtained by simulating model (35) for the parameters provided in Table 1,
and subsequently adding normally distributed measurement noise. The final data set is the mean
ȳk and standard deviation σk, k = 1, . . . , 71, as depicted in Figure 3. In biological applications the
acquisition of measurement data is often challenging. Instead of a single highly-informative experiment,
merely a series of measurements with low information content can be performed. This commonly
results in observation operators Q(θ, u) with a non-standard structure.

7.3 Parameter optimization

For the estimation of the unknown parameter vector θ = (D,α, β, ρ, s1, s2)T we use maximum likeli-
hood estimation. The measurement noise is assumed to be normally distributed with the measured
standard deviation σk (see error bars in Figure 3). This yields the reduced optimization problem

min
θ∈Rn

j(θ) =
1

2

71∑
k=1

(
log
(
2πσ2

k

)
+

(
ȳk −Qk(θ, S(θ))

σk

)2
)

(36)
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Figure 3: Artificial experimental data and model fit. The measurement data (•) and its standard
deviation (error bar) are depicted along with the best model fit ( ) for (left) the concentration profile,
(middle) the time course and (right) the protein abundance.

in which S(θ) denotes the parameter-to-state map of (35), which is evaluated using numerical in-
tegration. The optimum of (36) is determined using multi-start local optimization. Therefore, the
MATLAB optimizer fmincon is initialised at 100 different starting points chosen with a space filling
design, i.e. latin hyper cube sampling. More than 90% of these optimizations converged to the same
optimal likelihood value, which we assume to be global. The estimation results are shown in Table 1
and Figure 3.

7.4 Profile likelihood calculation

To assess the uncertainty of the parameter estimate, we compute the profile likelihoods PLθi(c),
i = 1, . . . , 6. Therefore we employ existing

• optimization based profile likelihood calculation with 0th and 1st order proposal,

as well as the proposed

• integration based profile likelihood calculation with Hessian and

• integration based profile likelihood calculation with FIM.

For the integration based methods we compare the numerical implementation as DAE system (19)
and as ODE system, (

θ̇c
λ̇c

)
= Mred(θc, λc)

+

(
∇θj(θc)

1

)
,

with Mred(θc, λc)
+ denoting the Moore-Penrose pseudo-inverse of Mred(θc, λc). The use of the Moore-

Penrose pseudo-inverse is necessary as Mred(θc, λc) is singular in some of the considered situations.

All methods were implemented in the open-source Parameter EStimation TOolbox (PESTO) for
MATLAB (https://github.com/ICB-DCM/PESTO). The optimization based calculation exploits the
MATLAB function fmincon with a user supplied gradient of the objective function. The integration
based calculation is implemented using the MATLAB function ode15s, which is suited for ODEs and
DAEs.

The profile likelihood calculation using the aforementioned methods provided consistent results. Op-
timization based profile likelihood calculation, integration based profile likelihood calculation using
the Hessian and integration based profile likelihood calculation using the FIM (with retraction factor
γ > 2) indicate that for the given data set ρ, s1 and s2 are practically identifiable for a confidence
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level of 95% while D, α and β are practically non-identifiable (see Table 3 and Figure 4A). For γ < 6,
integration based profile likelihood calculation using the FIM yielded an underestimation of the profile
likelihood. This effect is worse for practically non-identifiable parameters than for practically identi-
fiable parameters. However, for increasing values of γ the profile likelihood converged to the profile
likelihood obtained with the optimization based method (Figure 4A (right)). Integration based profile
likelihood calculation using the Hessian provided accurate results independent of γ. Differences in the
path θc resulting from the implementation of DAE or ODE were negligible.

The comparison of the computation time for the different methods revealed that the optimization
based profile calculation with 1st order proposal is substantially faster than optimization based profile
calculation with 0th order proposal. The use of the 1st order proposal reduces the number of grid

points, i.e the cardinality of {cl}l. In addition, the starting points θ
(0)
cl are on average slightly closer

to the constraint optimal values θcl , reducing the computation time required for local optimization.
Despite the efficiency of optimization based methods with 1st order proposal, these methods are out-
performed by integration based profile likelihood calculation using the Hessian. For the practically
identifiable parameter ρ the implementation of integration based profile likelihood calculation using
the Hessian as ODE results in a speed-up by a factor of five compared to optimization based profile
calculation with 0th order proposal (Figure 4A (left)). For the practically non-identifiable parameter
α the efficiency improvement was a factor 144 compared to the optimization based methods with 0th
order proposal and a factor five compared to optimization based methods with 1st order proposal. One
reason for the improved computational efficiency was the adaptive choice of the evaluation points per-
formed by the ODE solver, which allowed for larger steps in regions with smaller curvature. This effect
was reduced for the FIM, as the retraction increases the stiffness of the DAE or ODE. The decrease
in the step sizes due to the stiffness yielded more function evaluations and an increased computation
time. Surprisingly, this increase also outweighed the higher computation cost of computing second
order sensitivities. Furthermore our analysis of the computation times demonstrated that for this
problem the ODE implementation was computationally more efficient than the DAE implementation.

Integration based profile calculation methods allow for the analysis of individual parameters g(θ) = θi
but also for more complex expressions. We considered the parameter ratio g(θ, u) = α

β . While the
individual parameters possess an unbounded confidence interval and are practically non-identifiable,
the ratio is practically identifiable and possesses a finite confidence interval (Figure 5A). This indicates
that influx (related to β) and outflow (related to α) are balanced. In addition, the analysis of the
quotient of the molecule abundance at the tip compared to the abundance at x = 2 for the time point
t = 100, G(θ, u) = u(t = 100, x = 2)/u(t = 100, x = 0), revealed that the steepness of the gradient is
well determined (Figure 5B).

In summary, the numerical evaluation for Pom1p signalling revealed the accuracy and efficiency of the
integration based profile likelihood calculation methods. Beyond individual parameters, integration
based methods facilitated uncertainty analysis for a range of scalar model properties.

8 Conclusion

In this paper we considered profile likelihood methods for uncertainty analysis in PDE constrained
inverse problems. Profile likelihoods provide statistically interpretable confidence bounds for parame-
ters and model predictions using maximum projections of the likelihood. We formulated optimization
based profile likelihood calculation methods for the reduced and the full problem. As optimization
based approaches can become computationally demanding for PDE constrained problems, we extended
the results for the reduced problem by Chen and Jennrich [5] to PDEs. In addition, we formulated an
integration based profile likelihood calculation method for the full problem and established equivalence
with the reduced formulation.

The integration based methods provide the exact profile likelihood, if second order information, i.e.
Hessian-vector products, are available. We introduced an approximation of the integration based ap-
proach for the full problem to circumvent the second order information. A bound for the approximation
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error was provided and convergence with respect to the retraction factor was established.

Optimization and integration based profile likelihood calculation methods for the reduced problem
were assessed for a semi-linear PDE model of gradient formation in fission yeast. For both, practically
identifiable and practically non-identifiable parameters, integration based methods were 4- to 5-fold
faster than state-of-the-art optimization based approaches. The precise speed-up depended on the
specific implementation, using exact second order information improved accuracy as well as computa-
tional efficiency. We note that for the practically non-identifiable parameters of the model, uncertainty
analysis methods based on local approximations fail to provide realistic confidence bounds [26].

The implementation used for the comparison exploited forward methods for the calculation of gradient
and Hessian of the objective function. We expect a further improvement of the computational efficiency
by using adjoint methods. In addition, the implementation of integration based profile likelihood
calculation for the full formulation promises an improved computational efficiency. The solution of
the PDE model – currently performed in each solver step – would be circumvented and instead the
nested ODE-PDE system (24) would be considered, which is an abstract ODE with respect to the
artificial time c, where the operators are partial differential operators with respect to physical space
and time. Matrix-vector products with Mfull(θc, uc, pc, λc) from (24) will involve this application of
partial differential operators, which makes clear that, e.g., CG type solution methods for such systems
require proper preconditioning (see, e.g., [1, 31]). In addition, the implementation could be extended
to the profile likelihood analysis of time-dependent properties (see [13]).

In summary, this study presented optimization and integration based profile likelihood calculation
methods for PDE constrained problems. Besides exact methods, we present approximation and corre-
sponding error bounds. The methods for the reduced formulation are implemented in the open-source
MATLAB toolbox PESTO, which will facilitate the application of the method and simplify the de-
velopment of extensions. This is particularly interesting as the methods we developed can be easily
transferred to a broad class of PDE models. Accordingly, this study can help to improve uncertainty
analysis in a number of scientific fields.

Appendix

Proof of Proposition 5.1

Assumptions (29) and (30) imply that (ξ, ζ)Wc = 〈Wcξ, ζ〉X∗,X defines an inner product on the space
X.

For any c ∈ [c0, c1], we abbreviate g̃c = W−1
c ∇ξG(ξ̂c) ∈ X and l̃c = W−1

c ∇ξL(ξ̂c) ∈ X, and define the
mapping Pc : X → X by

Pcζ =
〈∇ξG(ξ̂c), ζ〉X∗,X
〈∇ξG(ξ̂c), g̃c〉X∗,X

g̃c

Note that Pc is linear and idempotent, i.e., a projection onto the one-dimensional linear space span(g̃c),
actually the orthogonal projection with respect to the inner product (·, ·)Wc . The second line in (28)
yields

P
˙̂
ξc =

1

〈∇ξG(ξ̂c), g̃c〉X∗,X
g̃c

and the first line in (28) (after application of W−1
c ) together with the fact that (I − Pc)g̃c = 0 yields

(I − P )
˙̂
ξc = −γ(I − Pc)l̃c

hence altogether we have eliminated λ̂c and end up with the identity

˙̂
ξc =

1

〈∇ξG(ξ̂c), g̃c〉X∗,X
g̃c − γ(I − Pc)l̃c .
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i.e., the following evolution equation for the error:

˙̂
ξc − ξ̇c =

1

〈∇ξG(ξ̂c), g̃c〉X∗,X
g̃c − ξ̇c − γ(I − Pc)l̃c . (37)

Here, the last term is responsible for retraction. Indeed, using symmetry (29) and the definition of
Pc, which yields, for any ξ, ζ ∈ X

〈Wcξ, (I − Pc)ζ〉X∗,X = 〈Wcζ, (I − Pc)ξ〉X∗,X

as well as
〈Wcg̃c, (I − Pc)ξ〉X∗,X = 〈Wcξ, (I − Pc)g̃c〉X∗,X = 〈Wcξ, 0〉X∗,X = 0 (38)

we get
〈Wc(ξ̂c − ξc), (I − Pc)l̃c〉X∗,X = 〈Wc l̃c, (I − Pc)(ξ̂c − ξc)〉X∗,X

= 〈Wc(l̃c + λcg̃c), (I − Pc)(ξ̂c − ξc)〉X∗,X
= 〈∇ξL(ξ̂c) + λc∇ξG(ξ̂c), (I − Pc)(ξ̂c − ξc)〉X∗,X

Since ∇ξL(ξc) + λc∇ξG(ξc) = 0, we have

〈∇ξL(ξ̂c) + λc∇ξG(ξ̂c), (I − Pc)(ξ̂c − ξc)〉X∗,X
= 〈(∇2

ξL(ξc) + λc∇2
ξG(ξc))(ξ̂c − ξc), (I − Pc)(ξ̂c − ξc)〉X∗,X + 〈tay, (I − Pc)(ξ̂c − ξc)〉X∗,X

for
tay = ∇ξΦ(ξ̂c)−∇ξΦ(ξc)−∇2

ξΦ(ξc)(ξ̂c − ξc) = o(‖ξ̂c − ξc‖X)

where Φ(ξ) = L(ξ)+λcG(ξ). Moreover, (I−Pc)(ξ̂c−ξc) ∈ ∇ξG(ξc)⊥ (cf. (38)), and by 〈∇ξG(ξ̂c), ξ̂c−
ξc〉X∗,X = G(ξ̂c)−G(ξc) + 1

2∇
2
ξG(ξ̂c + τ(ξc − ξ̂c))(ξc − ξ̂c)2 = c− c+ 1

2∇
2
ξG(ξ̂c + τ(ξc − ξ̂c))(ξc − ξ̂c)2

we have

‖Pc(ξ̂c − ξc)‖X =
|〈∇ξG(ξ̂c), ξ̂c − ξc〉X∗,X |
|〈∇ξG(ξ̂c), g̃c〉X∗,X |

‖g̃c‖X ≤ M̄c ‖ξ̂c − ξc‖2X

for M̄c =
supξ∈[ξc,ξ̂c] ‖∇

2
ξG(ξ)‖

2γW ‖g̃c‖X . Thus by (32) we can further estimate

〈Wc(ξ̂c − ξc), (I − Pc)l̃c〉X∗,X
≥ γL‖(I − Pc)(ξ̂c − ξc)‖2X − γLM̄2

c ‖ξ̂c − ξc‖4X + 〈tay, (I − Pc)(ξ̂c − ξc)〉X∗,X
− ‖∇2

ξL(ξc) + λc∇2
ξG(ξc)‖ M̄c ‖ξ̂c − ξc‖2X‖(I − Pc)(ξ̂c − ξc)‖X

≥ γL
2
‖ξ̂c − ξc‖2X + 〈tay, (I − Pc)(ξ̂c − ξc)〉X∗,X

− ‖∇2
ξL(ξc) + λc∇2

ξG(ξc)‖ M̄c ‖ξ̂c − ξc‖2X‖(I − Pc)(ξ̂c − ξc)‖X

Thus applying Wc(ξ̂c − ξc) to
˙̂
ξc − ξ̇c and using the identity

〈Wc(ξ̂c − ξc), ˙̂
ξc − ξ̇c〉X∗,X =

1

2

d

dc
〈Wc(ξ̂c − ξc), ξ̂c − ξc〉X∗,X −

1

2
〈Ẇc(ξ̂c − ξc), ξ̂c − ξc〉X∗,X

that follows from symmetry (29), we get from (37)

1

2

d

dc
〈Wc(ξ̂c − ξc), ξ̂c − ξc〉X∗,X

≤ −γ γL
2
‖ξ̂c − ξc‖2X + γγLM̄

2
c ‖ξ̂c − ξc‖4X − γ〈tay, (I − Pc)(ξ̂c − ξc)〉X∗,X

+ γ‖∇2
ξL(ξc) + λc∇2

ξG(ξc)‖ M̄c ‖ξ̂c − ξc‖2X‖(I − Pc)(ξ̂c − ξc)‖X

+
1

2
‖Ẇc‖ ‖ξ̂c − ξc‖2X +

(
1

‖g̃c‖X
+

√
〈Wcξ̇c, ξ̇c〉X∗,X

)√
〈Wc(ξ̂c − ξc), ξ̂c − ξc〉X∗,X ,
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where by Young’s inequality, the last term can be bounded by

ε̃

2
+

1

2ε̃

(
1

‖g̃c‖X
+

√
〈Wcξ̇c, ξ̇c〉X∗,X

)2

〈Wc(ξ̂c − ξc), ξ̂c − ξc〉X∗,X ,

where ε̃ > 0 can still be chosen. Thus using (30), we end up with an estimate of the form

ėc ≤ ε̃−
(
γm− γf(ec)−M ε̃

c

)
ec (39)

for ec = 〈Wc(ξ̂c − ξc), ξ̂c − ξc〉X∗,X , where m = γL
M̄W

, M ε̃
c = ‖Ẇc‖

γW
+ 1

ε̃

(
1

‖g̃c‖X +
√
〈Wcξ̇c, ξ̇c〉X∗,X

)2

, and

f(t) = o(t) as t→ 0 and without loss of generality f is monotonically decreasing.
So there exists ρ > 0 such that f(ρ) < m

2 . We impose the initial smallness ec0 < ρ and, for any

ε̃ ∈]0,
ρ−ec0
c1−c0 [, choose γ ≥ 2

mM
ε̃
c . With this choice we have, first of all, that ec ≤ ρ for all c ∈ [c0, c1],

which can be seen as follows: Assume, on the contrary, that for some c ∈ [c0, c1], ec > ρ holds and
define c2 to be the smallest such c, c2 = inf{c ∈ [c0, c1] : ec > ρ}. Then by the initial smallness
condition, c2 must be strictly larger than c0, by minimality of c2 we have ec ≤ ρ for all c ∈ [c0, c2],
and finally, by the sequential definition of the infimum we get ec2 ≥ ρ. Integration of (39) therefore
by the choice of ρ and γ as well as the initial smallness condition yields

ec2 ≤ ec0 + ε̃(c2 − c0)−
∫ c2

c0

(
γm− γf(ec)−M ε̃

c

)
ec dc

≤ ec0 + ε̃(c2 − c0)−
∫ c2

c0

(
γ
m

2
−M ε̃

c

)
ec dc

≤ ec0 + ε̃(c2 − c0) < ρ ,

which contradicts ec2 ≥ ρ. Thus we have shown the boundedness estimate in (33), which additionally
implies that f(ec) ≤ m

2 for all c ∈ [c0, c2] and hence

ėc ≤ ε̃−
(
γ
m

2
−M ε̃

c

)
ec (40)

To prove the exponential decay estimate in (33) for given κ > 0, ε̃ ∈]0,
ρ−ec0
c1−c0 [, we choose λ possibly

larger, namely λ ≥ 2
m(κ+M ε̃

c ) to obtain from (40)

ėc ≤ ε̃− κec (41)

and Gronwall’s inequality, applied to ec − ε̃
κ , that

ec −
ε̃

κ
≤
(
ec0 −

ε̃

κ

)
exp(−κ(c− c0)) .

Finally, (34) follows by choosing ε̃ ≤ ε
2 , κ ≥ max

{
1,

ln(2ec0 )−ln(ε)
c−c0

}
, λ ≥ 2

m(κ+M ε̃
c ).

Proof of Proposition 6.1

The operators ∇u∇pL(θc, uc, pc, λc) and ∇p∇uL(θc, uc, pc, λc) represent the linearised state and the
adjoint equation, respectively and are thus invertible under Assumptions 2.1 and 4.1. Therefore we
can formally eliminate the variables (u̇c, ṗc) by means of the second and third line in the system (24),
which yields

u̇c = −(∇u∇pL)−1∇θ∇pL θ̇c

ṗc = (∇p∇uL)−1
(
∇2
uL(∇u∇pL)−1∇θ∇pL −∇θ∇uL

)
θ̇c ,

(42)
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where we have skipped the arguments (θc, uc, pc) of the Lagrangian for better readability. Inserting
this into (24) yields (

M̃ + λc∇2
θg(θc) ∇θg(θc)

∇θg(θc)
T 0

)(
θ̇c
λ̇c

)
=

(
0
1

)
with

M̃ = ∇2
θL+∇u∇θL(−∇u∇pL)−1∇θ∇pL −∇p∇θL(∇p∇uL)−1∇θ∇uL

−∇p∇θL(∇p∇uL)−1∇2
uL(−∇u∇pL)−1∇θ∇pL .

Thus to show equivalence with (12) it only remains to verify that M̃ = ∇2
θj(θc). With the second

derivatives according to (25) and (−∇pLθi)(∇p∇uL)−1 = Sθi(θc) we get

M̃i,j = Jθiθj (θc, S(θc)) +

∫ T

0

〈
Cθiθj (θc, S(θc))− fθiθj (θc), pc

〉
V ∗,V

dt+ Jθiu(θc, S(θc))Sθj (θc)

+

∫ T

0

〈
Cθiu(θc, S(θc))Sθj (θc), pc

〉
V ∗,V

dt+

∫ T

0

〈
Cuu(θc, S(θc))Sθi(θc)Sθj (θc), pc

〉
V ∗,V

dt

+ Juu(θc, S(θc))Sθi(θc)Sθj (θc) + Juθj (θc, S(θc))Sθi(θc) +

∫ T

0

〈
Cuθj (θc, S(θc))Sθi(θc), pc

〉
V ∗,V

dt .

Using the definition of hθcij and the identity∫ T

0

〈
hθcij , pc

〉
V ∗,V

dt = Ju(θc, S(θc))Sθiθj (θc)

we obtain

M̃i,j = Jθiθj (θc, S(θc)) + Jθiu(θc, S(θc))Sθj (θc) + Juu(θc, S(θc))Sθi(θc)Sθj (θc)

+ Juθj (θc, S(θc))Sθi(θc) + Ju(θc, S(θc))Sθiθj (θc) = jθiθj (θc)

which establishes equivalence.
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