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Summary

Overweight and obesity affect ~1.5 billion people worldwide, and are major risk factors for type-2 

diabetes (T2D), cardiovascular disease and related metabolic and inflammatory disturbances.1,2 

Although the mechanisms linking adiposity to its clinical sequelae are poorly understood, recent 

studies suggest that adiposity may influence DNA methylation,3–6 a key regulator of gene 

expression and molecular phenotype.7 Here we use epigenome-wide association to show that body 

mass index (BMI, a key measure of adiposity) is associated with widespread changes in DNA 

methylation (187 genetic loci at P<1x10-7, range P=9.2x10-8 to 6.0x10-46; N=10,261 samples). 

Genetic association analyses demonstrate that the alterations in DNA methylation are 

predominantly the consequence of adiposity, rather than the cause. We find the methylation loci 

are enriched for functional genomic features in multiple tissues (P<0.05), and show that sentinel 

methylation markers identify gene expression signatures at 38 loci (P<9.0x10-6, range P=5.5x10-6 

to 6.1x10-35, N=1,785 samples). The methylation loci identified highlight genes involved in lipid 

and lipoprotein metabolism, substrate transport, and inflammatory pathways. Finally, we show that 

the disturbances in DNA methylation predict future type-2 diabetes (relative risk per 1SD increase 

in Methylation Risk Score: 2.3 [2.07-2.56]; P=1.1x10-54). Our results provide new insights into the 

biologic pathways influenced by adiposity, and may enable development of new strategies for 

prediction and prevention of type-2 diabetes and other adverse clinical consequences of obesity.
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Our study design is summarised in Extended Data Figure 1. We carried out epigenome-wide 

association amongst 5,387 individuals from the EPICOR (N=514), KORA (N=2,193) and 

LOLIPOP (N=2,680) population studies (Supplementary Information Tables 1 and 2, and 

Supplementary Information). We studied individuals of European (EPICOR, KORA) and 

Indian Asian (LOLIPOP) ancestry, both populations known to be at high risk of obesity and 

related metabolic disturbances.2,8 DNA methylation in genomic DNA from blood was 

quantified by Illumina Infinium 450K Human Methylation array. Blood was chosen for the 

analysis as a metabolically active tissue, with a key role in the adverse inflammatory and 

vascular consequences of adiposity, and which is widely used for clinical diagnostic 

purposes.

Epigenome-wide association identified 278 CpG sites associated with BMI at P<1x10-7, 

distributed between 207 genetic loci (Supplementary Information Tables 3 and 4). At each 

locus we identified the sentinel marker (CpG site with lowest P value for association with 

BMI), and carried out replication testing in separate samples of whole blood from European 

and Indian Asian men and women in population-based studies (N=4,874, Supplementary 

Information Table 1). The association of DNA methylation with BMI replicated at 187 of the 

207 markers (associated with BMI at P<0.05 in replication samples with directional 

consistency, and at epigenome-wide significance in combined analysis of discovery and 

replication data, Figure 1, Supplementary Information Table 3). Regional plots for the 187 

identified loci are shown in Supplementary Information Figures 1 and 2. Effect sizes range 

from 6.3±0.9 to 40.2±3.1 kg/m2 change in BMI per unit increase in DNA methylation in 

blood (scale for methylation 0-1, where 1 represents 100% methylation), with little evidence 

for heterogeneity between Europeans and Indian Asians (Supplementary Information Table 

3). At 7 loci the associations between DNA methylation and BMI are stronger amongst 

Indian Asians or Europeans (Heterogeneity P<1.0x10-7) raising the possibility that some 

effects may be population specific.

Sensitivity analyses show that our findings are robust to choice of analytic strategy. The 

associations of DNA methylation in blood with BMI are not explained by population 

stratification caused by DNA sequence variation, or by genetic confounding by SNPs in the 

probe sequence (Supplementary Information Table 5, Supplementary Information Figures 3 

and 4). In addition, to address the possibility of confounding by technical factors, we further 

replicated the associations of DNA methylation in blood with BMI at 4 loci, amongst 990 

Europeans and 1,720 Indian Asians (LOLIPOP study), using pyrosequencing as an 

alternative approach to quantification of methylation (P=1.2x10-7 to 2.1x10-12 for 

association of methylation with BMI, Supplementary Information Table 6).

The 187 identified methylation markers are strongly enriched for CpG sites with 

intermediate levels of methylation, consistent with the presence of mosaicism, ie epigenetic 

heterogeneity, at these loci (P=1.4x10-22 Fisher’s test, Extended Data Figure 2). To better 

understand the underlying cellular events, and exclude changes in cell subset composition as 

the basis for our findings, we carried out replication testing of the sentinel loci in isolated 

white cell subsets (monocytes, neutrophils, CD4+ T cells, and CD8+ T cells, N=60, 

Supplementary Information Table 7). Epigenetic heterogeneity is present at the majority of 
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loci, in each of the cell subsets studied (Extended Data Figure 3 and Supplementary 

Information Table 8). The sentinel markers are enriched for association with adiposity in 

each of the isolated cell subsets (Extended Data Figure 4 and Supplementary Information 

Table 8), and the relationships between methylation and obesity are directionally consistent 

with the discovery epigenome-wide association study at between 130 loci (CD4+, 

P=1.2x10-9, sign test) and 166 loci (neutrophils, P=5.6x10-35, sign test) (Supplementary 

Information Table 9). Furthermore, effect sizes are directionally consistent and of similar 

magnitude between the isolated cell subsets (Extended Data Figure 5). The association of 

DNA methylation with BMI therefore reflects epigenetic heterogeneity at the identified loci, 

is independent of changes in cell subset distribution, and comprises an effect of adiposity on 

methylation that is shared across the cell subsets studied.

To assess the relevance of our observations in blood to other metabolically relevant tissues, 

we first compared methylation levels at the 187 loci in blood, subcutaneous and omental fat, 

liver, muscle, spleen and pancreas.9 Mean methylation levels at the 187 loci correlate 

moderately to strongly between the tissues (R=0.37 to 0.93, P=8.9x10-8 to 1.9x10-82 for the 

21 tissue pairs, Extended Data Figure 6 and Supplementary Information Figure 5), 

supporting the view that methylation levels in blood are related to methylation patterns in 

other tissues at the CpG sites examined.

lnflammatory and hormonal disturbances in the obese adipocyte contribute to the 

development of insulin resistance and other metabolic consequences of adiposity.10 To 

better understand how our findings in blood might reflect processes in adipose tissue, we 

therefore quantified the relationship between DNA methylation and BMI in adipose tissue. 

120 of the CpG sites show directional consistency for association with BMI in both adipose 

tissue and blood (P=1.3x10-4, binomial test), while 91 sites are associated with BMI in 

adipose tissue (P<2.7x10-4, ie P<0.05 after Bonferroni correction for 187 tests, 

Supplementary Information Table 10). The associations of DNA methylation with BMI in 

adipose tissue are also unlikely to be the result of differences in the composition of 

canonical cell-types. First we used Principal Components Analysis (PCA) to assess for 

cryptic structure arising from variation in cell subset composition in the methylation data. 

Including principal components as covariates in regression models did not materially 

influence the association of DNA methylation with BMI in adipose tissue (Supplementary 

Information Figure 6). In separate studies, we quantified DNA methylation in isolated 
adipocytes from subcutaneous adipose tissue collected from morbidly obese 

(BMI>40kg/m2, N=24) and normal weight (N=24) individuals, Despite small sample size, 6 

of the 187 sentinel markers were associated with obesity at P<2.7x10-4 (P<0.05 after 

Bonferroni correction, Supplementary Information Table 11), while 108 markers show 

relationships with obesity that are directionally consistent with those observed in the 

discovery epigenome-wide association study (P=0.04). We separately tested the association 

of our sentinel methylation markers with BMI in samples of liver (N=55), as a further 

metabolically relevant tissue. We find that the 114 of the CpG sites show consistent direction 

of association with BMI compared to findings in blood (P=0.001, sign test, Supplementary 

Information Table 10), thus providing further replication of our findings in liver cells. Our 

findings indicate that many of the relationships between methylation and BMI in blood are 

shared by adipose and liver cells, but also identify effects that are tissue specific.
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Next, we used genetic association and the concept of Mendelian randomisation to investigate 

the potential causal relationships between DNA methylation in blood and BMI.11 We first 

identified SNPs influencing DNA methylation in blood in cis (1Mb, N=4,034 people). We 

then tested whether SNPs that influence methylation in blood also influence BMI, and 

whether the predicted effects of SNPs on BMI via methylation are consistent with the 

directly observed association. We identify a single CpG (cg26663590: NFATC2IP) showing 

evidence from genetic association for a causal role of methylation on BMI (P=9.6x10-7 for 

association of SNP rs11150675 near NFATC2IP with BMI, Figure 2A and Supplementary 

Information Table 12). In keeping with a causal role for methylation at NFATC2IP 
underlying adiposity, baseline levels of methylation at cg26663590 predict weight gain in 

longitudinal population studies (P=0.03, Supplementary Information Table 13). The 

NFATC2IP locus contains the gene encoding SH2B1 which is known to be involved in 

energy and glucose homeostasis and has previously been linked with obesity, including 

through genome-wide association studies.12,13

To investigate whether DNA methylation in blood is the consequence of adiposity, we used a 

weighted genetic risk score (GRS) that combines effects across SNPs known to influence 

BMI (Figure 2B and Supplementary Information Table 14). We observe a strong correlation 

between predicted (through BMI) and observed effects of BMI GRS on methylation 

(R2=0.65; P=4.7x10-44) at the CpG sites evaluated. In particular, GRS is associated with 

DNA methylation at the ABCG1, KLHL18, FTH1P20 loci at P<2.7x10-4 (corresponding to 

P<0.05 after Bonferroni correction for 187 tests). An effect of BMI on ABCG1 methylation 

is consistent with observations that weight loss influences both ABCG1 expression in 

adipose tissue and ABCG1 activity,14,15 and by the close relationship between change in 

BMI and change in methylation during longitudinal follow-up of participants in our 

population studies (Supplementary Information Table 13). Although further studies are 

needed to consider mechanisms, our findings suggest that adiposity determines the 

alterations in methylation at the majority of the identified CpG sites.

We separately used genetic association to test the causal relationships between BMI and 

DNA methylation in adipose tissue. Results further confirm that in adipose tissue, as in 

blood, the differences in methylation observed are primarily the consequence of adiposity 

(R=0.73, P=1.6×10-32; Extended Data Figure 7).

We carried out functional genomic analyses to explore the potential mechanisms linking the 

187 sentinel CpGs sites with adiposity. The CpG sites are strongly enriched in active 

chromatin sites, including at DNase hypersensitivity sites and the activating histone marks 

H3K4me1 and H3K27ac in a wide range of cell lines (P<0.05, Supplementary Information 

Figure 7) suggesting that the adiposity-related methylation changes we identify occur at 

constitutive cis-regulatory regions that operate across tissues. In keeping with a regulatory 

role, DNA methylation at the 187 identified CpG sites is enriched for association with 

expression of cis-genes (500kb) in blood (Supplementary Information Tables 15 and 16, 

Extended Data Figure 8). We find 44 transcripts of 38 annotated genes that are associated 

with DNA methylation at P<9.0x10-6 (ie P<0.05 after Bonferroni correction, Supplementary 

Information Table 16); a ~3-fold enrichment compared to expectations under the null 

hypothesis (P=3.0x10-4, Extended Data Figure 8). In sensitivity analyses, limiting 
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assessment of the relationship between methylation and gene expression to nearest gene, or 

to Illumina annotated gene, identifies five additional loci potentially associated with gene 

expression (Supplementary Information Table 17). The strongest cis-signals observed are for 

cg09315878 with TNFRSF4 transcription (P=7.2x10-86), cg14476101 with PHGDH 
transcription (P=1.0x10-64) and cg09152259 with MAP3K2 transcription (P=1.6x10-67). On 

average a 5% absolute change in methylation was associated with a 7% change in gene 

expression across the 44 transcripts identified (range 1.8% for AKAP to 19% for SPNS3, 
Supplementary Information Table 16). Amongst the 38 methylation-gene expression 

associations observed in blood, 3 replicated in adipose tissue (HOXA5, BBS2, SELM) and 3 

in liver (ANXA1, LGALS3BP, PHGDH) at P<1.3x10-3 (ie P<0.05 after Bonferroni 

correction for 38 tests), all with consistent direction of effect (Supplementary Information 

Table 18), suggesting that the relationships between methylation and gene expression are in 

part shared between blood, adipose and liver tissue.

We prioritised genes as potential candidate genes involved in the association between BMI 

and DNA methylation at the 187 loci based on two criteria: i. Proximity: gene nearest to the 

sentinel methylation marker, and ii. Functional genomics: genes within 500kb of the sentinel 

methylation marker showing association of gene expression with methylation 

(Supplementary Information Table 19). These criteria identified 210 unique genes, many 

with established roles in adipose tissue biology and insulin resistance (eg ABGG1, LPIN1, 
HOXA5, LMNA, CPT1A, SOCS3, SREBF1, PHGDH, Supplementary Information Tables 

19 and 20). Gene-set enrichment analyses show that the 210 candidate genes are enriched 

for genes involved in lipid and lipoprotein metabolism, amino acid and small molecule 

transport, and inflammatory pathways involving NFKB, MAPK, TAK1, IRAK2 and TRAF6 
(Supplementary Information Table 21).

To investigate the potential clinical significance of the DNA methylation changes, we first 

tested the cross-sectional relationship of DNA methylation in blood with fasting glucose, 

insulin, HDL cholesterol, triglycerides, HbA1c and other clinical traits. We find that 879 

methylation-clinical trait pairs tested are significant at P<2.1x10-5 (ie P<0.05 after 

Bonferroni correction for the 2,431 tests performed, Supplementary Information Figure 8, 

Supplementary Information Table 22), consistent with recent studies reporting close 

relationships of DNA methylation with blood lipids and glucose traits.16,17 We again used 

genetic association to investigate the potential causal relationships between DNA 

methylation and the identified clinical traits. SNPs influencing methylation markers in blood 

showed little evidence for association with the respective clinical traits (Extended Data 

Figure 9). In contrast, the predicted effect of GRS on DNA methylation via clinical trait is 

correlated with the directly observed effect of GRS on methylation for HbA1c, HDL 

cholesterol, triglycerides and insulin (P=1x10-3 to P=2x10-14, Extended Data Figure 9). Our 

findings suggest that the methylation changes in blood may in part be a consequence of the 

changes in lipid and glucose metabolism associated with BMI.

Finally we tested whether DNA methylation levels in blood at the 187 sentinel CpG sites 

predict new onset, incident T2D, a major clinical consequence associated with obesity, 

amongst participants of the LOLIPOP study (N=2,664). In single marker tests, 62 of the 187 

methylation markers are associated with incident T2D at P<2.7x10-4 (ie P<0.05 after 
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Bonferroni correction, Supplementary Information Table 23). The strongest association was 

observed for the ABCG1 locus, a gene known to be involved in insulin secretion and 

pancreatic β-cell function.14,15 To integrate information across CpG sites, we calculated a 

weighted Methylation Risk Score (MRS) as the sum of methylation values at each of the 

markers associated with T2D, weighted by marker-specific effect size. MRS is strongly 

predictive of incident T2D (relative risk 2.29 [95% CI 2.06-2.55] per 1SD change in MRS; 

P=4.2x10-52). The association of MRS with incident T2D replicates in Europeans from the 

KORA study (relative risk 2.51 [95% CI 1.49-4.23] per 1SD change in MRS; P=5.7x10-4), 

with no evidence for heterogeneity of effect (P=0.74). MRS predicts T2D beyond traditional 

risk factors including BMI and waist-hip ratio (Supplementary Information Table 24), and in 

particular identifies obese and overweight individuals at high risk of future T2D (relative 

risk for T2D in obese subjects: 7.3 [4.1-12.9], P=8.2x10-12 in the top vs the lowest quartile, 

Figure 4). This risk of T2D associated with DNA methylation markers as we have estimated 

in our study is numerically similar to, or greater than, the estimated risk conferred by 

traditional risk factors including overweight, obesity, central obesity, impaired fasting 

glucose and hyperinsulinaemia (Extended Data Figure 10). Furthermore, DNA methylation 

remains strongly and independently associated with risk of future T2D even after adjustment 

for adiposity and glycaemic measures. In contrast, emergent risk factors such as CRP and 

amino acid concentrations have little evidence for an independent association with T2D. Our 

findings therefore raise the possibility that DNA methylation markers may help identify 

individuals with metabolically unfavourable adiposity who are at increased risk of future 

T2D.

Our large-scale epigenome-wide association study identifies and replicates changes in DNA 

methylation associated with BMI in blood and adipose tissue. The associations of 

methylation with BMI are independent of variation in cell subset composition and replicate 

in both isolated white blood cells and isolated adipocytes. Genetic association in both blood 

and adipose tissue supports the view that the changes in DNA methylation are a 

consequence and not the cause of adiposity, at the majority of the identified CpG sites. The 

presence of epigenetic heterogeneity at the identified loci, even within isolated canonical cell 

subsets, together with a graded relationship between methylation and BMI, suggest 

epigenetic reprogramming within committed cell subsets in response to adiposity, as 

recently described in other tissues.18 In keeping with this the methylation loci are enriched 

for sites of open chromatin in multiple tissues, consistent with the presence of constitutive 

cis-enhancers.

The candidate genes at these loci include genes with annotated roles in lipid metabolism, 

amino acid and small molecule transport, inflammation, as well as metabolic, 

cardiovascular, respiratory and neoplastic disease. For example, TNFRSF4 and MAP3K2 
encode proteins involved in activation of NF-KB,19 while IL5RA is involved in 

development and activation of eosinophil and other immune cells, and is causally linked to 

asthma, eczema and cardiovascular disease.20 ABCG1 is involved in cholesterol and 

phospholipid transport, and regulates insulin secretion.17,21 Our observations thus provide 

insight into the regulatory pathways that may link adiposity to metabolic and cardiovascular 

disease, asthma and a wide range of cancers, although our study is limited in the tissues 

examined, and further studies are needed to include additional biologically relevant tissues. 
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Our prospective population studies show that DNA methylation identifies people at high risk 

of incident T2D, independent of conventional risk factors. Further studies are needed to 

examine whether DNA methylation markers may be useful in distinguishing metabolically 

unhealthy obesity. This may prove useful in risk stratification and personalized medicine, to 

help tackle the current global epidemic of obesity and its associated cardiovascular and 

metabolic disturbances.

Online Methods

Population samples

Details of the population samples for discovery and replication are provided in the 

Supplementary Information.

Quantification of DNA methylation

Quantification of DNA methylation—DNA methylation was quantified in bisulfite 

converted genomic DNA from whole blood, using the Illumina Infinium 

HumanMethylation450 array in all samples. Cohort specific methods are summarised in 

Supplementary Information Table 2. DNA methylation was quantified on a scale of 0-1, 

where 1 represents 100% methylation. Preprocessing and quality control criteria are 

summarised in Supplementary Information Table 2.

The association of DNA methylation with body mass index (BMI, a measure of adiposity) 

was tested in each cohort separately by linear regression using an established analytic 

strategy to reduce batch and other technical confounding effects in quantification of DNA 

methylation, and to take account of the potential confounding effects arising from cryptic 

alterations in the white cell composition of blood. Briefly, in the LOLIPOP and KORA 

studies, raw signal intensities were retrieved using the function readIDAT of the R package 

minfi, version 1.6.0, from the Bioconductor open source software (http://

www.bioconductor.org/), followed by background correction with the function 

bgcorrect.illumina from the same R package. Detection P values were derived using the 

function detectionP as the probability of the total signal (methylation + unmethylated) being 

detected above the background signal level, as estimated from negative control probes. 

Signals with detection P values ≥ 0.01 were removed. Similarly, signals summarized from 

less than three functional beads on the chip were removed. Observations with less than 95% 

CpG sites providing a signal were subsequently excluded from the data set. To reduce non-

biological variability between observations, data were quantile normalized with the function 

normalizeQuantiles of the R package limma, version 2.12.0, from Bioconductor, separately 

in six probe categories based on probe type and colour channel. If not stated otherwise, this 

preprocessing pipeline was used for all data used in downstream analyses.

In order to account for technical effects during the experiment, we performed principal 

component analysis (PCA) on the signal intensities for the 235 positive control probes on the 

450k array, which assess multiple steps in the laboratory processing. The resulting principal 

components (PCs) are thought to capture technical variability in the experiment and the first 

20 control probe PCs were included as covariates in the model to remove technical biases.
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To estimate proportions of white blood cell types, we used the method by Houseman et al.22 

They provide 500 CpG sites showing the most pronounced cell type specific methylation 

levels in an experiment based on purified cells. Of these, 473 CpGs were available on the 

450k array. Following the proposed procedure and using the R code provided with the 

manuscript (R function projectWBC), we used these 473 CpG sites to infer white blood cell 

proportions (i.e., proportion of granulocytes, monocytes, B cells, CD4+ T cells, CD8+ T 

cells and natural killer cells) in our samples. These proportions were subsequently used as 

covariates in the model to avoid cell type confounding.

Epigenome-wide association—We performed single marker tests separately in each 

cohort using linear regression to examine the association of each autosomal CpG site with 

BMI; association results are presented, as the change in BMI per unit change in methylation 

(0-1 scale, corresponding to 0-100% change in methylation). We adjusted for age, gender, 

smoking status, physical activity index and alcohol consumption, as well as for the first 20 

control probe PCs and for the estimated white blood cell proportions; this set of covariates is 

henceforth referred to as “discovery covariates”. We corrected the association results for the 

genomic control inflation factor (GCin), in order to account for population stratification and 

other forms of cryptic structure in the data, which can for instance arise from unobserved 

confounding. Markers on the sex chromosomes were tested similarly for association with 

BMI, but separately in men and women. Results were combined across cohorts by inverse 

variance meta-analysis using METAL version 2011-03-25 (http://www.sph.umich.edu/csg/

abecasis/Metal/). The resulting P values where then corrected for in a second round of 

genomic control (GCout). There were 466,186 autosomal markers for analysis after quality 

control. We set the threshold for epigenome-wide significance as P<1x10-7, to provide a 

conservative Bonferroni correction for the number of markers tested.23 As additional 

analyses we also investigated the relationship between BMI and DNA methylation amongst 

the 11,233 X-chromosomal and 417 Y-chromosomal CpG sites assayed. Our sample size 

(N=5,387 individuals) provides 80% power to identify a change of 8.4kg/m2 in BMI per unit 

increase in methylation (ie 0-1, where 1 is 100% methylation) at P<1.0x10-7.

To assess the stability of discovery results towards the analytic choices made, we performed 

sensitivity analyses to determine the impact of control probe PCs, methylation PCs, and 

genetic PCs as covariates. Specifically, we compared results from the discovery meta-

analysis when the first 10, 20, 30 and 40 control probe PCs were included as covariates, 10 

or 20 PCs derived from a PCA on the matrix of methylation β-values, 10 or 20 PCs derived 

from a PCA on the matrix of methylation values adjusted for the discovery covariates and 

BMI, or 5 PCs derived from a PCA on SNP data were included as covariates. PCA of the 

methylation data was performed separately for each cohort based on quantile normalised 

beta-values of autosomal probes without missing data. Genetic PCs (SNP PCs) were 

generated separately for each cohort and genotyping platform (Supplementary Information 

Table 25). The correlation between SNP PCs and methylation PCs was assessed using linear 

regression (Supplementary Information Figure 9). Discovery results are very stable towards 

the considered variations in covariates, with correlations of effect sizes between the models 

varying between 0.99 and 1.0 (Supplementary Information Figures 3 and 10). In addition, 
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SNPs in the probe sequences did not materially affect the observed associations 

(Supplementary Figure 4, Supplementary Information Table 5).

Replication testing—Markers associated with BMI at P<1x10-7 in the discovery 

experiment as within ±500 kb of each other were considered as a single genetic region. At 

each locus we identified the CpG sites with lowest P value for association with BMI 

(sentinel marker). Our choice of 1Mb to define a genetic locus was made to take account of 

long-range enhancers.

At each locus we identified the sentinel marker (CpG site with lowest P value for association 

with BMI), and carried out replication testing in separate samples of whole blood from 

European and Indian Asian men and women in population-based studies (N=4,874, 

Supplementary Table 1). The 207 sentinel CpG sites were assayed using the Illumina 40K 

methylation array; cohort-specific details of analysis pipelines are described in 

Supplementary Information Table 2. Results were combined across discovery and replication 

by weighted z meta-analysis. Epigenome-wide significance was set at P<1x10-7 providing 

Bonferroni correction for the 466,186 autosomal markers tested. Our choice of threshold is 

supported by the results of permutation testing.23. Twenty of the 207 markers did not reach 

P<0.05 in replication testing. However, all 20 showed consistent direction of effect between 

discovery and replication stages (P=1.9x10-6, binomial test, Supplementary Table 3), 

suggesting that the majority are unlikely to be false positive associations.

To assess whether the 187 identified sentinel CpGs were enriched for intermediately 

methylated CpGs (sites with 20-80% average methylation), we randomly generated 100,000 

sets of 187 CpGs and determined the number of intermediately methylated CpGs for each of 

them in order to derive an expected distribution under the null hypothesis of no enrichment. 

We then compared the observed number of intermediately methylated CpGs for the 187 

sentinel CpGs against the null distribution to calculate an empirical P value.

An exact binomial test (R function binom.test) was used to test whether consist direction of 

effect between discovery and replication was observed more often than expected by chance 

amongst the 20 non-replicating CpG sites.

Replication by pyrosequencing—As a technical validation we used pyrosequencing to 

carry out replication testing of the relationship between DNA methylation and BMI at 4 loci, 

using samples of whole blood from 990 Europeans and 1,720 Indian Asians participating in 

the LOLIPOP study. Pyrosequencing was carried out using biotinylated primers to amplify 

bisulfite-treated DNA (Supplementary Information Table 26). The biotinylated PCR 

products were then immobilized on streptavidin-coated Sepharose beads (GE Healthcare, 

Orsay, France). Pyrosequencing was performed with the PyroMark Q96 MGMT kit (Qiagen, 

Courtaboeuf, France) on a PSQTM96 MA system (Biotage, Uppsala, Sweden).

Isolated white blood cell studies

Samples—30 obese (BMI>35kg/m2) and 30 normal weight (BMI<25kg/m2) individuals 

were recruited at random from the outpatient departments at Ealing and University College 

Hospitals London. All participants gave written informed consent for inclusion in the study 
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(Research ethics committee references: 07/H0712/150, 13/LO/0477, and ID#09/H0715/65). 

Obese cases and normal weight controls were matched by age (within 5 yrs), sex, and 

ethnicity.

Fluorescence activated cell sorting (FACS)—For each participant, we collected 

12mls whole blood (EDTA). Samples were processed immediately to isolate white blood 

cell subsets (monocytes, neutrophils, CD4 and CD8 lymphocytes) through: i. red blood cell 

lysis (manufacture instructions, BioLegend); ii. staining of unlysed white blood cell subsets 

(>20mins in 50mcl Ca++ free PBS with 5mM EDTA and 1% Human Albumin; 1mcl anti-

CD14 PE-Cy7 (Clone-M5E2, BD), anti-CD16 BV510 (Clone-3G8, BioLegend), anti-CD45 

BV605 (Clone-HI30, BioLegend), anti-CD8 APC (Clone-SK1, BioLegend); 2mcl anti-CD3 

PE (Clone-Leu-4, BD), anti-CD4 FITC (Clone-RPA-T4, BioLegend); iii. filtering of stained 

samples to remove clumped cells (30micron mesh, Miltenyi Biotec); and iv. staining of dead 

cells (1mcl Sytox Blue, Life Technologies).24,25

Lysed, stained samples were sorted on a FACSAria II SORP cell sorter at flow rate 6,000–

9,000 events/second. Data was collected with FACSDiva 8 and analysed with FlowJo V10. 

Fluorescence minus one negative controls were used to determine positive/negative 

boundaries for each gate in the experimental set up.{Perfetto, 2004 #248} Daily Cytometer 

Set-up and Tracking quality control beads were run to ensure alignment and 

parameterisation of the FACS (Anti-Mouse Ig κ/Negative Control, BSA; Compensation Plus 

Particles, BD). Sytox Blue (450/50V nm) negative events were considered to be live cells. 

FCS-A and SSC-A were then used to separate granulocytes from monocyte and lymphocyte 

populations. Neutrophils (CD14-, CD16+) were separated from other granulocytes. 

Monocytes were then separated from lymphocytes in a two stage process as CD14+, CD45+ 

and CD16- cells. Finally, CD4+ and CD8+ cells were separated from other lymphocytes 

based on the following staining patterns: i. CD4+ cells: CD3+, CD4+, CD8-, CD14- and 

CD45+; ii. CD8+ cells: CD3+, CD4-, CD8+, CD14- and CD45+. Sorted cell subsets were 

assessed for purity, then pelleted and snap frozen for storage at -80C. Average purities were: 

neutrophils 98.3% (SD 1.2); monocytes 99.2% (SD 0.7); CD4+ lymphocytes 99.6% (SD 

0.4); CD8+ lymphocytes 97.9% (SD 2.0).

Genomic DNA was isolated (Qiagen QIAshredder; Allprep DNA/RNA Micro) according to 

manufacture instructions. Isolated genomic DNA was quantified (Qubit double-stranded 

DNA broad range assay) then stored at -80C for genome-wide DNA methylation assays.

Quantification of DNA methylation and data processing—Genomic DNA 

(0.2-1.0mcg) underwent bisulphite conversion using EZ DNA Methylation-Direct Kit 

(Zymo Research, Irvine, CA). In brief, DNA samples underwent bisulphite conversion by 

incubation with the CT Conversion Reagent for 8 mins at 98°C, 3.5 h at 64°C, followed by 

18 h at 4°C in a thermocycler. The treated DNA was added to a Zymo-Spin IC Column, 

desulfonated using M-Desulphonation Buffer, and then eluted from the column in 12µl of 

M-Elution Buffer.

Methylation analysis of the bisulphite-treated DNA was performed using Illumina Infinium 

MethylationEPIC Beadchip (Illumina, San Diego, CA) according to standard protocol. In 
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brief, 4µl of bisulfite-treated DNA was denatured, neutralized and subjected to an overnight 

whole-genome amplification reaction. The amplified DNA was then enzymatically 

fragmented, precipitated and resuspended in hybridization buffer before being dispensed 

onto the MethylationEPIC beadchips for hybridization. After hybridization, the beadchips 

were processed through a primer-extension protocol and subsequently stained. Finally, the 

beadchips were coated and imaged using the HiScan System (Illumina).

All samples passed Quality Control and PCA showed clear separation of cell-types. 

Methylation-values for 179 (of 187) sentinel CpGs were retrieved, as described above for 

epigenome-wide association in blood, and the difference in DNA methylation between obese 

cases and normal weight controls tested using linear regression, adjusted for age, gender and 

ethnicity.

Genetic association studies

We used genetic association and the concept of Mendelian randomisation to investigate for 

potential causal relationships between DNA methylation and adiposity.{Relton, 2012 #24} 

Briefly, Mendelian Randomisation goes back to the more general instrumental variable 
concept. As an instrumental variable, it uses a genetic variant (or a combination of genetic 

variants) Z associated with a variable X in order to show causal relation between X and 

another variable Y. It relies on the fact that the alleles of a genetic variant are inherited 

randomly from parents to offspring, so that the relation of a genetic variant with a phenotype 

should not be confounded (with exceptions including population stratification). Thus, if the 

effect of X on Y is causal and the study has enough power, Z should also associate with Y. 

Specifically, the predicted association of Z with Y can be calculated as follows, assuming 

linear relationships and assuming that Z is unrelated to Y given X and unrelated to any 

unobserved confounders U:

(1) X = α1 + β1Z + γ1U, where γ1U plays the role of the error term that is per 

assumption unrelated to Z

(2) Y = α2 + β2X + γ2U = α2 + β2(α1 + β1Z + γ1U) + γ2U = α2 + β2α1 + β2β1Z + 

(β2γ1 + γ2)U = α3 + β3Z + γ3U

➔ Predicted effect of Z on Y: β3 = β2β1

Unbiased estimation and formal inference on the causal effect β1 of X on Y (where X and Y 

represent a CpG-phenotype-pair) heavily relies on strong genetic effects and typically 

requires tens of thousands of samples for adequate power.26 Since these sample sizes are 

currently not available for epigenomic datasets we instead explored consistency of the 

predicted effect of Z on Y versus the actually observed effect, thereby obtaining some 

indication on the plausibility of a causal effect of X on Y. This was done in two directions, 

studying causality of the effect of DNA methylation (X) on BMI (Y) and of BMI (X) on 

DNA methylation (Y).

DNA methylation as determinant of BMI (causal analysis)

To address the question of DNA methylation being a determinant of BMI (whereby X=DNA 

methylation, Y=BMI) we used data on genetic variants from 4,034 participants of the KORA 
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and LOLIPOP studies (Supplementary Information Table 25) to identify cis (1Mb) SNPs (Z) 

influencing methylation in blood at the 187 sentinel CpG sites. The associations between 

SNPs and methylation were tested in each data set separately using linear models with 

methylation as response and SNP as independent variable, adjusting for the discovery 

covariates, and then combined by inverse variance meta-analysis using METAL, version 

2011-03-25. Our sample size (Nmax=4,034 individuals) provides 80% power to identify a 

change in methylation of 0.5% (in absolute terms) per allele copy at P<5.0x10-8. (ie 

genome-wide significance). Results for all 173,367 pairs reaching P<5x10-8 (conventional 

genome-wide significance) are provided in Supplementary Information Table 27. We 

excluded three CpGs that shared no cis-SNPs across all data sets, and a further 9 CpGs 

because they had SNPs within their probe-binding sequence. For the remaining 175 CpG 

sites, the single SNP with the lowest P value for association with methylation was chosen as 

an instrumental variable (Supplementary Information Table 28). As mentioned above, to be 

an appropriate instrument, a SNP must not be directly associated with BMI (Y) but only 

through the respective CpG (X). For this purpose we removed six CpG-SNP pairs from the 

analysis because the corresponding SNPs remained associated with BMI after adjustment for 

the sentinel CpG (cg07136133, cg08548559, cg09152259, cg12484113, cg18120259, 

cg26403843). Statistical significance was inferred at P<2.9x10-4 (corresponding to P<0.05 

after Bonferroni correction for 175 tests).

To enable comparison with the observed effect of SNPs on BMI obtained from published 

data, we eassessed the relationship between DNA methylation and adiposity in linear 

models, using an inverse-normal transformation of BMI as the outcome variable to be 

consistent with the GIANT GWAS.12 The associations between DNA methylation and 

inverse-normal transformed BMI were quantified in LOLIPOP and KORA cohorts 

separately, followed by inverse variance meta-analysis using METAL, version 2011-03-25. 

We then calculated the predicted effect sizes and standard errors (βpred and SEpred) as 

follows:

The predicted effect sizes were compared against the observed effects of SNPs on BMI, 

whereby the latter were obtained from large published GWAS to increase power.12 

Statistical significance for individual SNPs was again inferred at P<2.9x10-4. We used 

correlation analysis to examine the global relationship between predicted and observed 

effect on BMI for the SNPs influencing DNA methylation across the sentinel CpG sites.

DNA methylation as consequence of BMI (consequential analysis)

To test the hypothesis of DNA methylation being a consequence of BMI (whereby X=BMI, 

Y=DNA methylation), we followed a similar procedure as described above for the opposite 

direction with minor differences.

Wahl et al. Page 12

Nature. Author manuscript; available in PMC 2017 August 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



First, instead of using a single SNP as instrumental variable, we calculated a weighted 

genetic risk score (GRS) comprising SNPs reported to influence BMI.12 Again, for the GRS 

to provide a valid instrument, the included SNPs must not show direct association with the 

CpG (Y) but only through BMI (X). For this purpose we removed three SNPs (rs12444979, 

rs10968576, rs7359397) which remained significantly associated at P<8.4x10-6 

(corresponding to P<0.05 after Bonferroni correction for the 187 x 32 tests performed) with 

at least one of the sentinel CpGs after adjusting for BMI. The final GRS was calculated as 

the sum of risk allele dosage of the remaining 29 SNPs previously reported to associate with 

BMI, weighted by the reported effect sizes.12

Second, the observed effects of GRS on DNA methylation were quantified using linear 

models as described above adjusted for the discovery covariates amongst participants of the 

KORA and LOLIPOP studies. Regression analysis was carried out in the KORA and 

LOLIPOP cohorts separately and results combined by inverse variance meta-analysis using 

METAL, version 2011-03-25.

DNA methylation in blood and adiposity in prospective population studies

We used data from the KORA (N=1,435 Europeans) and LOLIPOP (N=1513 Indian Asians) 

to examine the prospective, longitudinal association between DNA methylation at baseline 

and subsequent change in BMI during follow-up. We carried out linear regression with 

change in BMI during follow-up as response variable, and technically adjusted baseline 

methylation as the predictor variable, with age, sex, physical activity, smoking, alcohol 

intake, estimated white blood cell proportions and BMI at baseline, as well as follow-up 

time as additional covariates. Data were analysed in KORA and LOLIPOP separately, 

followed by inverse variance meta-analysis using METAL, version 2011-03-25.

We studied the longitudinal relationship between change in BMI and change in DNA 

methylation amongst 1,435 participants of the KORA S4/F4 cohort with methylation data 

available both at baseline and at the 7-year follow-up timepoint. To ensure comparability of 

methylation measurements from the two time points measured in two batches, methylation 

β-values were jointly adjusted for the first 20 PCs obtained from a PCA on the positive 

control probes, and residuals were subsequently used as adjusted methylation values. Linear 

models were used with change in BMI during follow-up as response variable, and change in 

technically adjusted methylation as independent variable, including age, sex, physical 

activity, smoking, alcohol intake and estimated white blood cell proportions both at baseline 

and followup.

Adiposity and DNA methylation in other tissues

DNA methylation in adipose tissue—We investigated whether the observed 

methylation markers in blood are representative of BMI-associated methylation changes in 

adipose tissue. We used a data set of 542 adipose tissue samples from the TwinsUK study to 

test association of the 187 identified methylation markers with BMI. The association of BMI 

with methylation was quantified using a linear mixed-effects model adjusting for chip, for 

bisulfite conversion level and bisulfite conversion efficiency, smoking state (3 categories: 
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current, former and never smokers), alcohol intake (in g/d) and age, with zygosity and 

family as random effects.

We carried out sensitivity analyses to assess the potential contribution of cryptic structure 

arising from differences in cell composition of the adipose tissue samples. In the absence of 

validated approaches for imputation and adjustment for adipose tissue cell subset 

composition, and the potential limitations of published reference-free approaches for 

separation of true and confounded signal,23 we used PCA to quantify latent structure in the 

adipose tissue methylation data, and included the top 5 components as covariates in the 

regression model.

We separately compared DNA methylation between paired samples of blood and 

subcutaneous adipose tissue (available for the same N=201 individuals, TwinsUK). Blood 

methylation values were first adjusted for age, chip and chip position, smoking state, alcohol 

intake, and estimated white blood cell subsets by taking the residuals from a linear model 

with these as covariates. Similarly, adipose tissue methylation values were adjusted for age, 

chip, bisulfite conversion level, bisulfite conversion efficiency, smoking state, alcohol intake, 

and the top 5 PCs from the adipose methylation data. Pearson’s correlation was then 

determined between the adjusted methylation values.

Finally, we used genetic association to carry out causality analyses on the association 

between BMI and DNA methylation in adipose tissue, as described above for blood. We 

studied a subset of 325 adipose tissue samples from the Twins UK cohort with genotype data 

available. Regression analyses in adipose tissue between BMI, SNPs/GRS and CpGs were 

carried out using the R package lme4, and with smoking, alcohol intake, age, zygosity 

(random effect), family (random-effect), beadchip, bisulphite conversion batch and 

bisulphite conversion efficiency as covariates.

DNA methylation in isolated adipocytes—Subcutaneous adipose tissue samples were 

obtained intraoperatively in 24 morbidly obese individuals (BMI >40kg/m2) undergoing 

laparoscopic bariatric surgery and 24 healthy controls (BMI <30kg/m2) undergoing non-

bariatric laparoscopic abdominal surgery. Participants were unrelated, between 18-60 years 

of age, from a multi-ethnic background, and free from type-2 diabetes. Controls were 

matched to cases by age, sex, and ethnicity. All participants gave informed consent (Ethics 

committee reference 13/LO/0477).

Adipose samples were processed immediately to isolate populations of primary human 

adipocyte cells using established protocols.27 Polypropylene plastic ware was used to 

minimise adipocyte cell lysis. Adipose tissue samples were minced into 1-2mm3 pieces and 

washed in Hank’s buffered salt solution (HBSS), before digestion using type 1 collagenase 

(1mg/ml, Worthington) in a water bath at 37C shaking at 100rpm for ~45min. Digested 

samples were filtered through a 300 micron nylon mesh to remove debris, and the filtered 

solution centrifuged at low speed (500-g; 5min; 4 degrees), to leave four layers: top to 

bottom – (1) oil, (2) mature adipocytes, (3) supernatant, and (4) stromovascular pellet. After 

removal of the oil layer, the mature adipocyte layer was collected by pipette, washed in ~5x 
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volume of HBSS and recentrifuged. After 3 washes the adipocyte cell suspension was 

collected for snap freezing and storage at -80C.

Genomic DNA and RNA were extracted from the isolated adipocytes using the Qiagen 

AllPrep DNA/RNA/miRNA Universal Kit according to manufacturer’s protocol for lipid-

rich samples. Methylation of genomic DNA was quantified using the Illumina 

HumanMethylation450 array in a single batch according to manufacturer’s specifications. 

Raw methylation data were preprocessed using R, version 2.15. Bead intensity was retrieved 

using the R package minfi, version 1.6.0. Marker intensities were quantile normalised for 

analysis. PCA of control probe intensities was performed to quantify cryptic structure in the 

data arising from technical factors. Logistic regression was used to examine the association 

of each CpG site with morbid obesity compared to normal weight, adjusting for age, sex and 

ethnicity, and the first 5 control probe PCs.

DNA methylation in liver tissue—Liver samples were obtained percutaneously for 

patients undergoing liver biopsy for suspected NAFLD or intraoperatively for assessment of 

liver histology. Normal control samples were recruited from samples obtained for exclusion 

of liver malignancy during major oncological surgery. None of the normal control 

individuals underwent pre-operative chemotherapy and liver histology demonstrated absence 

of both cirrhosis and malignancy Study design, sampling method and data collection have 

been described in detail elsewhere.30 For methylation analysis, bisulfite conversion was 

performed using the Zymo EZ DNA Methylation Kit (Zymo Research, Orange, CA, USA), 

and hybridization of the Illumina HumanMethylation450 array (Illumina, SanDiego, CA). 

mRNA expression analysis was performed using the HuGene 1.1 ST gene (Affymetrix, 

Santa Clara, Ca, USA) according to the manufacturers protocols. Hybridization signals were 

analyzed using GenomeStudio software (default settings; GenomeStudio ver. 2011.1, 

Methylation Analysis Module ver. 1.9.0; Illumina Inc) and internal controls for 

normalization.

Cross-tissue methylation—For extended cross-tissue correlation analyses, publicly 

available data (GSE48472) were downloaded from the Gene Expression Omnibus (GEO) 

database.9 Briefly, the dataset consists of 41 samples from six individuals of blood, liver, 

muscle, pancreas, subcutaneous fat, omentum and spleen analysed on the 450K methylation 

array. Data from the 187 CpG sites of interest were extracted and plotted using the heatmap.
2 function in the R package gplots (version 2.17.0). Mean methylation levels for each CpG 

site across all samples within each tissue type were used to test for pairwise correlation 

between tissue types.

Functional genomics

Genomic annotation analyses—To test for functional enrichment of the 187 CpG sites 

associated with BMI, we used annotations of genomic context provided by Illumina, and of 

histone modification ChIP peaks (H3K4me1, H3K4me3 and H3K27Ac, marks of open 

chromatin) and DNaseI Hypersensitivity Sites in 127 different cell types in the Roadmap and 

ENCODE (Release 9, UCSC) datasets. We mapped each probe on the Illumina 450k array 

background to the annotation categories and recorded overlap at each probe as a binary 
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variable. To determine whether enrichment occurred more often than expected by chance, 

we generated 10,000 sets of 187 CpGs, each matched with the BMI sentinel CpGs for 

methylation mean (±2%) and standard deviation (±0.2%), but otherwise selected at random. 

For each epigenetic mark, we then calculated the number of overlapping sites amongst the 

187 replicating markers (observed) and 10,000 permuted sets of 187 markers (expected). We 

calculated the fold enrichment as observed/mean(expected) and obtained an empirical P 

value from the distribution of expected.

Gene expression studies—Transcriptome-wide measurements of gene expression in 

blood along with measurements of DNA methylation from the same blood sample were 

available for participants of both the KORA F4 (N=703) and LOLIPOP (N=1,082, 907 

Indian Asians, 175 Europeans) studies (Supplementary Information Table 15). KORA 

samples were analysed with the Illumina HumanHT-12 v3 BeadChip array. Blood sample 

collection and RNA isolation and preparation have been described in detail.28,29 Gene 

expression data were quantile normalized and log2 transformed using the R package lumi, 
version 2.8.0, from Bioconductor in R, version 2.14.2. In LOLIPOP, gene expression 

analysis was performed with the Illumina HumanHT-12 v4 BeadChip array according to 

manufacturer's protocol. Background correction (using negative controls), quantile 

normalisation and log2 transformation was performed using the R-package limma (function 

neqc).

To examine associations of DNA methylation with gene expression we carried out linear 

regression with log2 transformed gene expression as the response variable and methylation 

βvalues as independent variable. In KORA, the model was adjusted for the discovery 

covariates and technical covariates related to the expression measurement (RNA integrity 

number, RNA amplification plate, sample storage time). In LOLIPOP, the model was 

adjusted for age, sex, methylation control probe PCs and technical covariates related to the 

expression measurement (RNA integrity number, RNA extraction batch, RNA conversion 

batch, scanning batch, array and array position). Results were analysed in KORA, LOLIPOP 

Indian Asians and LOLIPOP Europeans separately, then combined by inverse-variance 

meta-analysis using METAL (version 2011-03.25). Statistical significance was inferred at 

P<9.0x10-6 (i.e. P<0.05 after Bonferroni correction for 5,551 CpG-expression pairs).

To assess whether the 187 sentinel CpGs were enriched for association with gene 

expression, we used the same testing concept as described above based on constructing a 

null distribution from 10,000 randomly selected matched sets of 187 CpGs. For each 

permuted set we determined the number of significantly associated expression probes in cis 
(P<9.0x10-6) as described above and compare the resulting distribution with the observed 

number of gene expression associations for the 187 sentinel CpG sites to calculate an 

empirical P value.

Finally, we examined the association between DNA methylation and gene expression in 

TwinsUK adipose tissue samples (N=499) for the 44 methylation-expression pairs that were 

significant in blood. Expression values were adjusted for age and chip using a linear model. 

The association of methylation and expression was then determined in linear mixed-effects 

models with adjusted expression as response and methylation as the independent variable, 
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adjusting for age, chip, bisulfite conversion level and bisulfite conversion efficiency, with 

zygosity and family as random effects. After QC filtering of methylation and expression 

data, results were available for 36 methylation-expression pairs.

Candidate genes and gene-set enrichment analyses—The standard Illumina 

annotation does not identify a gene for all CpG sites on the 450K microarray. We therefore 

identified candidate genes based on the following criteria: i. Proximity: gene nearest to the 

CpG site (N=187 genes) and ii. Gene expression: all local genes (up to ±500 kb) with 

expression associated with the marker at P<0.05 after Bonferroni correction for 5,551 tests 

(N=38 genes). This resulted in a list of 210 unique genes (Supplementary Information Table 

19).

Gene annotations were downloaded from ensembl (grch37.ensembl.org) using R package 

biomaRt, version 2.18.0, from Bioconductor, and overlapped with the cg positions as 

annotated in the Illumina annotation using the R package GenomicRanges, version 1.14.4, 

from Bioconductor. We downloaded curated pathway information (c2.all.v5.0.symbols.gmt) 

from the GSEA MSigDB platform (http://www.broadinstitute.org/gsea/msigdb), resulting in 

1,135 pathways, to investigate enrichment of the set of candidate genes against curated 

pathway sets (BIOCARTA, KEGG, REACTOME). An enrichment P value was calculated 

empirically based on permutation testing, using the Benjamini-Hochberg (false-discovery-

rate) procedure. As a sensitivity analysis the gene-set enrichment analysis was repeated 

using the genes annotated by Illumina, and using more permissive proximity criteria 

(Supplementary Information Table 29). Results become less statistically significant when 

candidate gene selection based on proximity alone was extended to include all genes over 

distances up to 500kb.

Clinical implications

DNA methylation and metabolic traits—We investigated the association between the 

187 sentinel methylation markers and metabolic disturbances associated with adiposity 

amongst participants of the KORA (N=1,697) and LOLIPOP (N=2,462) studies with 

available measurements of the following BMI-related clinical traits: LDL cholesterol, HDL 

cholesterol, total cholesterol, fasting triglycerides, fasting glucose, fasting insulin, HbA1c, 

systolic and diastolic blood pressure, C-reactive protein, weight, height and waist-hip ratio. 

Linear models were used with trait as response and methylation as independent variable, 

adjusting for the discovery covariates. Results from KORA and LOLIPOP studies were 

analysed separately, then combined by inverse variance meta-analysis using METAL, 

version 2011-03-25. Associations were considered significant at P<2.1x10-5 (corresponding 

to P<0.05 after Bonferroni correction for 187 x 13 tests).

To investigate potential causal relationships between the methylation markers and BMI-

related clinical traits, we performed causality analyses as described above for the primary 

phenotype (BMI). For each clinical trait, GWAS datasets of the most comprehensive meta-

analyses published to date with access to genome-wide association results were retrieved 

(Supplementary Information Table 30), to provide SNPs influencing trait. SNPs associated 

with multiple traits were assigned to the most strongly associated trait (lowest P value). 
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Clinical traits were transformed as described in the respective GWAS. Genetic risk scores 

were calculated as described above for BMI, after removal of SNPs with direct genomic 

effects (SNPs that remain associated with the sentinel CpG after adjustment for the trait). 

Regression analyses were carried out in the KORA F4 and LOLIPOP cohorts separately and 

results were combined by inverse variance meta-analysis using METAL, version 

2011-03-25.

Association with incident T2D—We tested the association of DNA methylation at the 

187 identified CpG sites with incident T2D amongst participants of the LOLIPOP study. All 

participants (N=2,664) were free from T2D at the time of measurement of DNA 

methylation; incident T2D (N=1,074) was defined as either new physician diagnosis, or 

HbA1c≥6.5%. Associations with T2D were evaluated by logistic regression adjusted for the 

discovery covariates. We initially tested the association in single marker tests, then in a fully 

saturated model comprising all 187 markers to identify independent effects.

To combine information across loci, we calculated a weighted methylation risk score (MRS) 

as the sum of the standardised methylation values at each marker that reached nominal 

significance (P<0.05) in the fully saturated multivariate model, weighted by marker-specific 

effect size. We then tested the association of the MRS with incident T2D using logistic 

regression, before and after adjustment for traditional T2D risk factors (BMI, WHR, 

glucose, HbA1c).

Replication testing of the association of MRS with T2D was carried out in a nested case-

control study within the KORA S3/S4 comprising 200 subjects with newly diagnosed T2D 

and 200 control matched for age (±2 years), sex, cohort and observation time until diagnosis 

of diabetes. Data were analysed using conditional logistic regression using the function 

clogit of the R package survival, version 2.37.4.

Software

Unless stated otherwise, all calculations were performed using R, version 3.0.1. For all 

meta-analyses, METAL, version 2011-03-25, was used. Custom R code for the respective 

analyses is available at: http://metabolomics.helmholtz-muenchen.de/bmi_methylation/.

Availability of data

Summary statistics from the epigenome-wide association study can be accessed from the 

European Genome-Phenome Archive (accession number: EGAS00001001922). KORA 

methylation data are available upon request through the application tool KORA.PASST 

(http:/epi.helmholtz-muenchen.de); LOLIPOP data are available from the Gene Expression 

Omnibus (Ref: GSE55763); EPICOR data are deposited in the HuGeF repository (http://

www.hugef-torino.org) and are available on request.
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Extended Data

Extended Data Figure 1. Study design.
Epigenome-wide association and replication testing was performed in order to identify 

methylation sites associated with adiposity. In the discovery step, four large cohorts were 

included with Illumina 450k DNA methylation data available, which were preprocessed and 

quality controlled according to a harmonized protocol. Epigenome-wide association was 

performed in every single study with BMI as response variable and methylation β-value as 
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independent variable, adjusting for covariates as described in the Online Methods. At a 

genome-wide significance level of P<1x10-7, 278 methylation sites from 207 regions were 

identified. In the replication step, 187 of these replicated in independent samples. Genetic 
association and causality analyses were used in order to investigate whether the identified 

methylation signals underlie the development of adiposity or are the consequence of 

adiposity. The findings were supported with the help of longitudinal analyses. The cross-
tissue analyses represent a first step towards extending our observations in blood to 

metabolically relevant tissues. The functional genomics and gene expression analyses help 

to link the observed methylation associations to transcriptional outcomes, while the gene-set 
enrichment analysis provides a way to summarize the potentially affected metabolic 

pathways. Finally, we study the relationships of methylation to adiposity related metabolic 
traits and type 2 diabetes to address the clinical relevance of our findings.

Extended Data Figure 2. 
Distribution of methylation values at the 187 sentinel CpG sites compared to the ~473K 

CpG sites assayed by the Illumina Infinium 450K Human Methylation array. The 187 

identified methylation-BMI associations are strongly enriched for CpG sites with 

intermediate levels of methylation, consistent with the presence of epigenetic heterogeneity 
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at these loci in blood (157/187 sites with 20-80% methylation, a 3.0-fold enrichment 

compared to microarray background, P=1.4x10-22 Fisher’s test).

Extended Data Figure 3. 
DNA methylation at the sentinel CpG sites in whole blood and in 4 isolated cell subsets 

(Monocytes, Neutrophils, CD4+, CD8+) from 60 individuals (30 obese cases, and 30 normal 

weight controls) by Illumina MethylationEPIC array, which quantifies 179 of the 187 

sentinel markers. Results are shown as a heatmap, coded by methylation value 
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(hypomethylation <0.2; intermediate methylation 0.2-0.8, hypermethylation >0.8). Results 

show the presence of intermediate methylation (and hence epigenetic heterogeneity) at the 

majority of loci, and in the majority of cell types, in both cases and controls.

Extended Data Figure 4. 
Association of DNA methylation with obesity in the 4 cell subsets studied, based on 

quantification of methylation at 179 of the sentinel methylation markers amongst 30 obese 

cases and 30 normal weight controls. Results are presented as QQ plots of the observed 

association test statistics in each of the isolated cell subsets.
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Extended Data Figure 5. 
Comparison of effect sizes between isolated white cell subsets. Results are presented as the 

difference in methylation between obese cases and normal weight controls (Methylation in 

cases – methylation in controls, in absolute terms on % scale) in the respective isolated 

white cell subset (y axis) compared to the average case-control difference across all 4 cell 

subsets studied (x axis).
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Extended Data Figure 6. 
Mean methylation levels at the 187 sentinel methylation markers associated with BMI, 

across 7 tissue types (blood: N=6; liver: N=5, muscle: N=6, omentum: N=6, pancreas: N=4, 

subcutaneous (SC) fat: N=6, spleen: N=3). The lower panel displays pairwise scatterplots 

(trendline in red), while the upper panel shows the Pearson correlation coefficient and P 

values.

Wahl et al. Page 24

Nature. Author manuscript; available in PMC 2017 August 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Figure 7. 
Causality analysis in adipose tissue to investigate the potential relationships between BMI 

and DNA methylation. Left panel: Causality analysis in adipose tissue investigating whether 

DNA methylation at sentinel CpG sites influences BMI. Units are change in BMI per copy 

of effect allele. For each sentinel CpG site we determined i. the effect of a previously 

identified cis-SNP on BMI predicted via methylation (x-axis), ii. the directly observed effect 

of SNP on BMI (y-axis). No CpG passed multiple testing correction for all three 

comparisons. Overall there was little relationship between the effects of SNPs on BMI 

predicted via methylation and the directly observed effect (R=-0.04 P=0.58). Right panel: 

Causality analysis in adipose tissue investigating whether DNA methylation at sentinel CpG 

sites is the consequence of BMI. Units are change in methylation per unit change in 

weighted genetic risk score (GRS). We identified SNPs reported to influence BMI in GWAS 

meta-analysis, and calculated a weighted GRS. For each sentinel CpG site we then 

determined i. the effect of GRS on methylation predicted via BMI (x-axis) and ii. the 

directly observed effect of GRS on methylation (y-axis). No CpG passed multiple testing 

correction for all three comparisons. The overall correlation between observed and predicted 

effects (R=0.73; P=1.6 x 10-32) replicates our findings in blood that methylation at the 

majority of CpG-sites is consequential to BMI.
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Extended Data Figure 8. 
The 187 sentinel CpGs are enriched for association with gene-expression in cis in blood. To 

derive an expectation under the null-hypothesis we generated 10,000 sets of matched CpGs 

(matched for mean methylation and for SD of methylation, see Online Methods), and tested 

their association with expression of A) the nearest gene, B) the gene allocated to the CpG by 

the Illumina annotation, C) all genes within a 500 kb distance and D) all genes within a 500 

kb distance excluding the nearest gene. We observe significantly more expression-probes 
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associated with the sentinel markers (red arrow) in blood compared to the 10,000 permuted 

sets (green bars).

Extended Data Figure 9. Summary statistics for the causality analyses investigating the 
relationship between DNA methylation in blood and metabolic disturbances.
Panel A. DNA methylation in blood as a potential determinant of the metabolic disturbances 

associated with adiposity (causal analysis). For each of the sentinel CpG sites we identified 

the cis-SNP (1Mb) most closely associated with DNA methylation levels. For each of the 

SNPs we then determined i. the effect of SNP on phenotype predicted via methylation, ii. the 

directly observed effect of SNP on phenotype. Results are presented as the R2 between 

phenotype specific observed and predicted effects across the 187 CpG sites, calculated using 

linear regression.

Panel B. DNA methylation in blood as a potential consequence of the metabolic 

disturbances associated with adiposity (consequential analysis). We identified the SNPs 

reported to influence each phenotypic trait (using the most recent GWAS meta-analysis, 

Supplementary Table 24), and calculated phenotype specific weighted genetic risk scores 

(GRS). For each of the CpG sites, and each of the phenotypes, we then determined i. the 

effect of GRS on methylation predicted via phenotype, with ii. the directly observed effect 

of GRS on methylation. Results are presented as the R2 between phenotype specific 
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observed and predicted effects across the 187 CpG sites, calculated using linear regression. P 

values are shown for correlations between observed and predicted effects that reach P<0.05.

Extended Data Figure 10. 
Association of established and emergent biomarkers with T2D. Results are presented as risk 

of T2D associated with the specified biomarkers in three models: i. Model 1 – adjusted for 

age and sex; ii. Model 2 – as for Model 1, but additionally for body mass index and impaired 

fasting glucose; iii. Model 3 – as for Model 2, but additionally for central obesity and insulin 
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concentrations. CRP: C-reactive protein; MRS: methylation risk score. Results for 

quantitative traits (amino acids, CRP, insulin, MRS) are presented as risk of T2D in Q4 

compared to Q1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Circos plot of the epigenome-wide association of DNA methylation in blood with BMI. 

Results are presented as CpG specific association test results [-log10(P)] ordered by 

genomic position. Green and blue symbols: CpG sites at loci reaching epigenome wide 

significance (P<1x10-7); grey symbols: CpG sites at loci not reaching epigenome-wide 

significance. Chromosome numbers are shown on the inner ring. Tick marks on the outer 

ring identify the genomic loci reaching epigenome-wide significance. The genes nearest to 

the sentinel methylation markers at each of the 187 loci are listed around the circos plot.
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Figure 2. 
Genetic association studies to investigate the potential relationships between BMI and DNA 

methylation in blood. 2A. Causal analysis shows results for a causality analysis 

investigating whether DNA methylation in blood at the sentinel CpG sites influences BMI. 

Units are change in BMI per copy of effect allele. For each sentinel CpG site we identified 

the cis-SNP (1Mb) most closely associated with DNA methylation levels. For each SNP we 

then determined i. the effect of SNP on BMI predicted via methylation (x-axis), ii. the 

directly observed effect of SNP on BMI (y-axis). Grey points represent CpGs not 

significantly associated with a SNP; blue points represent CpGs significantly associated with 

a SNP. For a single CpG (NFATC2IP) the associated SNP is also associated with BMI and 

95% confidence interval error bars are shown. At the other loci there was little relationship 

between the effects of the SNPs on BMI predicted via methylation and that directly observed 

(R2=0.00, P=0.86). 2B. Consequential analysis shows results for a causality analysis 

investigating whether DNA methylation in blood at the sentinel CpG sites is the 

consequence of BMI. Units are change in methylation per unit change in weighted genetic 

risk score (GRS). We identified the SNPs reported to influence BMI in GWAS meta-

analysis,12 and calculated a weighted GRS (see Online Methods). For each sentinel CpG 

site we then determined i. the effect of GRS on methylation predicted via BMI (x-axis) and 

ii. the directly observed effect of GRS on CpG (y-axis). Three CpGs (ABCG1, KLHL18, 
FTH1P20) are associated with the GRS at P<2.7x10-4 (P<0.05 after Bonferroni correction 

for 187 tests; 95% confidence interval error-bars shown). The overall correlation between 

observed and predicted effects (R2=0.81; P=4.7 x 10-44) suggests that methylation in blood 

at the majority of CpG-sites is consequential to BMI.
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Figure 3. 
Relationship between DNA methylation in blood and BMI amongst 1,435 participants of the 

KORA S4/F4 population cohort. Cross-sectional results (x-axis) are for the relationship 

between methylation in blood and BMI at each of the 187 sentinel CpG sites in the baseline 

samples; longitudinal results are for the relationship between change in methylation (in 

blood) and change in BMI after 7 year follow-up. Units for both axes are kg/m2 change in 

BMI per unit increase in methylation (scale 0-1, where 1 represents 100% methylation).
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Figure 4. 
Relative risk of incident T2D by quartile of Methylation Risk Score amongst 

normoglycaemic Indian Asians (HbA1c<6% and fasting glucose<6mmol/l) with normal 

weight (BMI 18.5-24.9kg/m2), overweight (BMI 25.0-29.9kg/m2) and obese (BMI 

≥30.0kg/m2). The P value is for the interaction between adiposity and DNA methylation on 

risk of T2D.
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