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ABSTRACT

Objective: To investigate the influence of common and low-frequency genetic variants on the risk
of ischemic stroke (all IS) and etiologic stroke subtypes.

Methods: We meta-analyzed 12 individual genome-wide association studies comprising 10,307
cases and 19,326 controls imputed to the 1000 Genomes (1 KG) phase I reference panel. We
selected variants showing the highest degree of association (p , 1E-5) in the discovery phase
for replication in Caucasian (13,435 cases and 29,269 controls) and South Asian (2,385 cases
and 5,193 controls) samples followed by a transethnic meta-analysis. We further investigated the
p value distribution for different bins of allele frequencies for all IS and stroke subtypes.

Results: We showed genome-wide significance for 4 loci: ABO for all IS, HDAC9 for large vessel
disease (LVD), and both PITX2 and ZFHX3 for cardioembolic stroke (CE). We further refined the
association peaks for ABO and PITX2. Analyzing different allele frequency bins, we showed sig-
nificant enrichment in low-frequency variants (allele frequency ,5%) for both LVD and small
vessel disease, and an enrichment of higher frequency variants (allele frequency 10% and
30%) for CE (all p , 1E-5).

Conclusions: Our findings suggest that the missing heritability in IS subtypes can in part be attrib-
uted to low-frequency and rare variants. Larger sample sizes are needed to identify the variants
associated with all IS and stroke subtypes. Neurology® 2016;86:1217–1226

GLOSSARY
AF 5 atrial fibrillation; CADISP 5 Cervical Artery Dissection and Ischemic Stroke Patients; CE 5 cardioembolic stroke;
FDR 5 false discovery rate; GWAS 5 genome-wide association studies; IS 5 ischemic stroke; LD 5 linkage disequilibrium;
LVD 5 large vessel disease; MAF 5 minor allele frequency; MAGENTA 5 Meta-Analysis Gene-set Enrichment of Variant
Associations; NINDS-SiGN 5 National Institute of Neurological Disorders and Stroke–Stroke Genetics Network; NK 5 nat-
ural killer; NO 5 nitric oxide; RACE 5 Risk Assessment of Cardiovascular Events; SNP 5 single nucleotide polymorphism;
SVD 5 small vessel disease; TOAST 5 Trial of Org 10172 in Acute Stroke Treatment.

Stroke is a leading cause of disability in Western countries and among the most common causes
of premature death worldwide.1,2 Ischemic stroke (IS) accounts for up to 85% of all stroke cases.
Evidence for a substantial genetic contribution to IS risk comes from twin and family history
studies and the discovery of risk loci for IS through genome-wide association studies (GWAS).3–7

Most previously identified associations have been confined to etiologic stroke subtypes, which
include large vessel disease (LVD), cardioembolic stroke (CE), and small vessel disease (SVD).
Despite these discoveries, a significant proportion of heritability remains unexplained.3,6–8

Prior GWAS in IS have been based on genetic data imputed to versions of the HapMap
panel9 with training sets of up to 2.5 million single nucleotide polymorphisms (SNPs) of which
85% are common variants (minor allele frequency [MAF] . 5%). Since then, the 1000
Genomes (1 KG) Project10 has considerably expanded the coverage of human genetic variation
especially for low-frequency (MAF 1%–5%) variants. We thus performed an extended meta-
analysis informed by 1 KG including low-frequency variants in the human genome not assessed
in the previous METASTROKE collaboration to determine whether these variants mediate risk
for ischemic stroke.
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We assembled 10,307 Caucasian cases
and 19,326 Caucasian controls from 12
studies for a GWAS meta-analysis of IS based
on the 1 KG phase I imputation training set.
After quality control, 8.3 million SNPs and
1 million indels were available for analysis.
Promising signals were replicated both in
Caucasian and non-Caucasian populations.

METHODS Overall study design. The discovery stage

consisted of a meta-analysis of 12 case-control studies of IS

with previously genotyped data (table e-1 on the Neurology®

Web site at Neurology.org). For each set of cases, population-

matched controls were recruited from studies with existing

genotyping data (details of study cohorts and controls are

given in the supplementary material). For both sample sets,

raw autosomal data were imputed to approximately 9 million

SNPs using 1 KG phase I data as a reference panel. Genome-

wide logistic regression analysis was performed independently

in all samples, summary statistics were shared, and meta-

analysis was performed centrally for all datasets. Covariates

were not considered as they were not equally available over all

study sets. Subsequently, the top SNPs (p , 1E-5) from the

discovery meta-analysis were tested for replication in 3

independent samples (figure 1 and table e-2): (1) 5,137 de

novo genotyped stroke samples from Europe and the United

States and 2,040 controls; (2) genome-wide data from 8,298

Caucasian stroke patients and 27,229 controls recruited

through the Cervical Artery Dissection and Ischemic Stroke

Patients (CADISP) and National Institute of Neurological

Disorders and Stroke–Stroke Genetics Network (NINDS-

SiGN) networks11,12; and (3) genome-wide data from South

Asian patients recruited through the Risk Assessment of

Cardiovascular Events (RACE) study phase 1 and 2.13

Standard protocol approvals, registrations, and patient
consents. Written or oral informed consent was obtained from

all participants, and the study was approved by the respective

research ethics committees.

Discovery-stage genotyping. Genotyping was performed

individually for all sites and quality control was performed as

described previously.14

Replication-stage genotyping. The first part of de novo gen-
otyping was done at the Helmholtz Center Munich using iPlex

Gold (Sequenom, San Diego, CA) methodology. Amplification

reactions and parameters were based on the manufacturer’s

instructions. Spectrocaller software supplied by the manufac-

turer was used for automatic genotype calling. Clusters were

checked manually, and all doubtful calls were evaluated. Sex

was checked to remove any sample misidentifications.

The second part of de novo genotyping was performed at

the Psychiatric & Neurodevelopmental Genetics Unit, Boston,

Massachusetts, using the Sequenom iPLEX Gold chemistry and

the MassARRAY system. Genotypes were called using Spectro-

CHIP array and matrix-assisted laser desorption/ionization–

time of flight mass spectrometry. Genotype clusters were

checked manually, and all doubtful calls were evaluated.

Imputation. We performed imputation separately for each

study (table e-1) using the algorithms IMPUTEv215 and

MACH16 with standard parameters. We removed SNPs with

an imputation quality (info) score ,0.3, leaving approximately

8 million variants per individual study.

GWAS and meta-analysis. We performed GWAS on the com-

bined phenotype (all ischemic stroke), as well as for etiologic stroke

subtypes classified according to Trial of Org 10172 in Acute Stroke

Treatment (TOAST) criteria.17 TOAST subtyping was available for

all but 2 studies (Heart Protection Studyand Vitamin Intervention

for Stroke Prevention; see table e-1). To ensure high quality of the

resulting GWAS data, we calculated l for the overall discovery

sample (figure e-1) and for each study individually (figure e-2).

We further calculated lambda on sets of SNPs stratified by fre-

quency and imputation quality to determine whether particular

bins of SNPs were susceptible to genomic inflation (figure 2). SNPs

with frequency,1%, introduced during imputation, showed high

levels of genomic inflation and were thus excluded from the trans-

ethnic meta-analysis. 1 KG phase I samples were used to calculate

reference frequencies for European samples. SNPs with a frequency

difference .30% from 1 KG in controls or a difference .30%

with any other study in the meta-analysis were removed from the

data, as were SNPs with missing p values and SNPs that only

produced p values in ,50% of the studies.

Finally, l was calculated across the cleaned set of association

results, and the results were combined to perform fixed-effects

inverse variance weighted meta-analysis using METAL.18 During

meta-analysis, SNPs were analyzed across cohorts to ensure that

effect alleles were consistent and that alleles matched those re-

ported in the 1 KG phase I. Outliers in these analyses were

excluded from further processing. We used genomic control to

correct for incidental inflation of test statistics. Upon completion

of the meta-analyses, we again confirmed that the genomic infla-

tion was well behaved (all l ,1.03).

All SNPs with p , 1E-5 in any of the performed GWAS (all

IS and subtypes) and a median imputation quality .0.7 were

selected for downstream replication. This resulted in sets of SNPs

analyzed for the following traits: all IS, LVD, SVD, and CE. The

replication strategy consisted of 3 parts (figure 1). We first per-

formed replication in the de novo genotyped wet-laboratory stud-

ies using Sequenom technology.

Summary statistics for each replication sample were produced

using logistic regression with the phenotype of interest as outcome.

Model 1 was calculated without covariates; model 2 included sex as

a covariate. Since the results did not differ between the 2 models

and to ensure consistency between the discovery and replication

phase, results are reported only for model 1. Cases from Leuven

were folded into the German sample using the German controls.

Results were summarized using fixed-effects inverse-variance

meta-analysis. We next performed in silico replication in the

CADISP11 and NINDS-SiGN12 sample. Overlapping cases and

controls between the NINDS-SiGN sample and METASTROKE

were identified and removed and summary statistics from NINDS-

SiGN were recalculated for the replication SNPs.

For both meta-analyses, fixed-effects inverse variance models

were used. The first and second replication steps were combined

to form the Caucasian replication set. Third, multiethnic meta-

analysis was performed by integrating in silico lookup data from

RACE1 and RACE2 (forming the South Asian replication set)

using METASOFT. We used Han and Eskin’s19 random effects

model to maximize power under heterogeneity. Combination of

the discovery, the Caucasian replication set, and the South Asian

replication set using multiethnic analysis formed the final results

(figure 1). Any SNPs with p , 5E-8 were considered to be

genome-wide significant. Any SNPs with 5E-8, p, 1E-5 were

considered to have suggestive evidence for association.

Pathway analysis. Pathway analysis was performed using

Meta-Analysis Gene-set Enrichment of Variant Associations

(MAGENTA).20 We used all available databases and 10,000
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permutations to select statistically significant pathways and

processes. We deemed a false discovery rate (FDR) q value of

q , 0.05 or a Bonferroni corrected p value of p , 0.05 as

significant. Bonferroni correction was performed on the

number of gene sets in a pathway.

RESULTS A total of 10,307 cases and 19,326 con-
trols from 12 studies were investigated in the discov-
ery analysis. Data on etiologic stroke subtypes were
available for 10 of the 12 studies (table e-1). A set
of 15,820 IS cases (3,808 LVD, 3,697 CE, and
2,206 SVD) and 34,462 controls was available for
replication (see Methods and table e-2). The overall
genomic inflation factors (l) for the meta-analyses
of IS, LVD, CE, and SVD were 1.015, 1.028,
1.029, and 1.029, respectively, indicating minimal
inflation due to population stratification or due to
cases and controls who had undergone separate
genotyping (figure 2). Manhattan plots for the
discovery sample are shown in figures e3-e6. QQ
plots for all IS and subtypes are depicted in figure
e-1 and for individual studies in figure e-2.

Established risk loci for ischemic stroke. We first exam-
ined the lead SNPs of established risk loci for IS and
subtypes derived from GWAS in our discovery meta-
analysis (table 1). The previously identified lead signal
forHDAC9 (LVD)5 was associated on a genome-wide
level in the discovery analysis. We also observed
p values , 1E-3 for association at chr12q2421 (all
IS, p 5 1.13E-5), ABO22 (all IS, p 5 5.40E-4),
chr6p216 (LVD, p 5 5.83E-5), chr9p2123 (LVD,
p 5 1.09E-4), PITX224 (CE, p 5 2.51E-6), and
ZFHX325 (CE, p 5 6.73E-5). In contrast, we found
no association of NINJ226 (all IS, p 5 0.4196). For
full results, see table 1 and figure e-7.

Novel risk loci for ischemic stroke. Our discovery anal-
ysis yielded 4 new and independent loci that exceeded
the threshold for genome-wide significance of 5E-8
(table 2) as well as 25 additional loci with
association p values , 1E-5 (table e-3). This list
included 7 loci (13 variants) for all IS, 8 loci (13
variants) for LVD, 7 loci (11 variants) for CE, and
7 loci (13 variants) for SVD, all of which were
selected for replication (figure 1). In the Caucasian
replication, 3 SNPs for 3 loci (ABO, PITX2, and
ZFHX3) were nominally associated after Bonferroni
correction (p , 6.3E-3, table 2). The results of a
transethnic meta-analysis yielded 4 loci genome-
wide significant, all of which have been reported
previously. The lead SNPs for these loci were
rs532436 for ABO (all IS, overall p 5 4.28E-8),
rs2107595 for HDAC9 (LVD, p 5 2.99E-11),
rs2723334 for PITX2 (CE, p 5 8.37E-24), and
rs12932445 for ZFHX3 (CE, p 5 1.20E-8).
Association signals for the indels did not achieve
genome-wide or near genome-wide significance.

Fine mapping of risk loci for ischemic stroke. In order to
refine the association signals at confirmed, previously
published loci, we took advantage of the denser impu-
tation panel provided by the 1 KG consortium to
produce association signals for an enlarged set of
low-frequency variants (figure e-7). We discovered a
new peak association for PITX2 (rs2723334), which
is only in moderate linkage disequilibrium (LD) with
the previously published lead signal for CE
(rs2200733, r2 5 0.45, figure e-7C) and with the
previously published lead signal for atrial fibrillation
(AF)27 (rs6817105, r2 5 0.46). Furthermore, our
novel lead SNP (rs532436) for ABO is only in

Figure 1 Study profile

Study profile summarizing the study samples and analytical strategy.
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moderate LD with the previously published variant
(rs505922, r2 5 0.53, figure e-7A). In contrast, we
found the lead SNPs for HDAC9 and ZHFX to be
identical or in high LD (r2 . 0.9) with the lead SNPs
reported by prior studies (rs2107595 for HDAC9,
and rs879324 for ZFHX3, figure e-7, B and D;
table 1). Functional annotation of all lead SNPs is
presented in table e-4.

Role of allele frequency bins. To study the contribution
of low-frequency alleles and common alleles to
individual stroke subtypes, we further investigated
the p value distribution across bins of variants
categorized according to their minor allele
frequencies (.30%; 10–30%; 5–10%; ,5%) for
all IS and stroke subtypes (figure 2). There was no
enrichment of specific bins of allele frequencies for all
IS. However, we found an enrichment in low-
frequency variants (,5%) for both LVD and SVD.
In contrast, CE showed an enrichment of variants
between 10% and 30%. The enrichment of these
specific variant bins was significant when compared
to all SNPs or any other frequency bin using a 2-
sample Kolmogorov-Smirnov test (all p , 1E-5).28

Of note, the distribution of observed vs expected
p values was well-behaved in all analyses (figure 2)
and we did not observe a systematic bias towards
low-frequency variants that could have been
introduced through imputation artifacts.

Pathway analysis. Applying a Bonferroni corrected
threshold of p , 0.05 we found several pathways
for all IS and IS subtypes (table e-5). In total, there
were 136 nominally associated pathways for CE, 84
for all IS, 86 for LVD, and 55 for SVD. The follow-
ing terms showed the highest degree of association:
germ cell development (CE), microtubule (IS), mito-
chondrial envelope (LVD), and SH3 domain binding
(SVD). When using a predefined FDR cutoff of q ,

0.05, we observed a single association of natural killer
(NK) cell signaling with all IS.

DISCUSSION Adopting a classical GWAS approach
based on 1 KG imputed data with replication in both
de novo and in silico genotype data, we found no
novel locus reaching genome-wide significance for
ischemic stroke or its subtypes. However, for the
first time, we report genome-wide significance for
association of the ABO locus with all IS and were
able to fine-map 2 known stroke loci (PITX2 and
ABO) by making use of the expanded 1 KG panel.
We further found enrichment of association of

Figure 2 Quantile-quantile plots for different allele frequency bins

Shown is the distribution of p values for different allele frequency bins: (A) large vessel disease, (B)
cardioembolic stroke, (C) small vessel disease. The red line displays the expected (null) distribution
of the statistic. The black line shows the observed distribution of all variants studied. Frequency
bins are depicted in different colors: green (.30% minor allele frequency [MAF]), orange (10%–

30%MAF), blue (5%–10%MAF), and gray (1%–5%MAF). The number in parentheses shows the

number of SNPs that were included in the respective bins.
Statistical significance was tested using a 2-sample Kolmo-
gorov-Smirnov test.28
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low-frequency alleles with both LVD and SVD, and
of higher frequency variants (10%–30%) with CE.
This finding has important implications for future
studies, as design and analysis strategies may differ
for low-frequency and common variants.

ABO has previously been shown to be genome-
wide associated with circulating levels of von Wille-
brand factor and factor VIII.22 An assessment of these
signals in IS cohorts showed a nominal replication for
the lead SNP rs505922 in LVD and CE, but not for
SVD.22 Our findings extend this observation by dem-
onstrating that a different variant in the ABO gene
(rs532436, p 5 4.30E-8) is genome-wide associated
with all IS and that the association with ABO is
strictly confined to LVD (p 5 0.0029) and CE
(p 5 0.0011) with no signal with SVD (p 5 0.53).
Together, these findings emphasize a role of ABO in
thrombosis and associated stroke phenotypes.

Although not reaching genome-wide significance,
there are 3 novel loci that deserve attention.
GUCY1A3, which showed suggestive association with
LVD (p5 8.25E-6) in the current study, has recently
been reported as a risk gene for early-onset myocardial
infarction in a family-based study.29 The allele fre-
quency of the lead SNP in our study was 1.5%. Thus,
the low-frequency nature of this variant together with
the lower power for association detection in LVD
might have hindered our ability to detect a genetic
association.

The second locus is TNFSF11 (RANKL), which
showed suggestive evidence for association with CE
(p 5 1.03E-7). The allele frequency of the lead SNP
in our study was 24%. TNFSF11, a major player in
bone remodeling and part of the RANK/RANKL/
OPG pathway, has repeatedly been reported in the

pathogenesis of AF and as a predictor of IS in patients
with nonvalvular AF.30–32 Of note, however, variants
in or near this gene have not emerged from prior
GWAS of AF, thus highlighting the need for sample
expansion in future GWAS.

The third locus is GCH1, which showed a p value
of 3.31E-5 for association with SVD. The allele fre-
quency of the lead SNP in our study was 1.5%.
GCH1 encodes for GTP cyclohydrolase 1, a rate-
limiting factor in the tetrahydrobiopterin (BH4) bio-
synthesis.33 BH4 is an essential cofactor for nitric
oxide (NO) synthases in endothelial cells and has
been shown to enhance NO bioavailability.34 Supple-
mentation with a synthetic BH4 analog has previ-
ously been tested in a trial in monogenic SVD.35

Aside from GUCY1A3 and GCH1, we found
other low-frequency variants with p values , 1E-4
for association and consistent effect directions across
all samples. These include NACC2 as well as an inter-
genic locus near KCNN2 (both LVD), TMEM108
(SVD), and CBFA2T3 (CE). More work is needed
to determine the potential role of these low-frequency
variants in stroke subtypes. Our findings on low-
frequency variants together with the observed enrich-
ment of association of low-frequency alleles with both
LVD and SVD supports the notion that parts of the
missing heritability in IS are explained by rare and
low-frequency variation. Next-generation sequencing
studies and targeted resequencing efforts of known
risk loci together with larger sample sizes for stroke
subtypes are needed to capture this missing heritabil-
ity and to depict the heritability of ischemic stroke
more precisely.

Previous GWAS have revealed that associations
with ischemic stroke are largely confined to etiologic

Table 1 Results for previously established risk loci for IS

Lead SNP Locus Phenotype Discovery p value
Discovery odds ratio
(95% CI)

rs1769673621 12q24 IS 1.13E-5 1.09 (1.05–1.13)

rs124257926 NINJ2 IS 0.4196 0.98 (0.93–1.03)

rs210759514 HDAC9 LVD 2.99E-11 1.39 (1.26–1.53)

rs5566216 6p21 LVD 5.83E-5 1.18 (1.09–1.27)

rs238320723 9p21 LVD 1.09E-4 0.87 (0.80–0.93)

rs220073324 PITX2 CE 2.51E-6 1.30 (1.17–1.46)

rs87932425 ZFHX3 CE 1.96E-7 1.29 (1.17–1.42)

rs50592222 ABO IS 5.4E-4 1.08 (1.03–1.12)

LVD 0.0011 1.14 (1.05–1.23)

CE 0.0013 1.13 (1.05–1.22)

Abbreviations: CE 5 cardioembolic stroke; CI 5 confidence interval; IS 5 ischemic stroke; LVD 5 large vessel disease;
SNP 5 single nucleotide polymorphism.
Results for the METASTROKE discovery meta-analysis are shown for the lead SNPs reported by previous studies. The
effect direction of the odds ratio is given in the direction of the minor allele.
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stroke subtypes. We found the ABO locus to be asso-
ciated with all IS on a genome-wide level, which is
primarily due to its association with LVD and CE.
Another major locus that has been reported to be
associated with multiple stroke subtypes is the
chr12q24 region, which has recently been shown to
be implicated in LVD, CE, and SVD.21 New results,
however, show association restricted to SVD without
evidence for association in any other subtype.12 Con-
ceivably, shared associations in conjunction with
subtype-specific signals may provide insights into
stroke mechanisms.

Our pathway analysis revealed several novel path-
ways for all IS and etiologic stroke subtypes. The
strongest association was seen for all IS and NK cell
signaling. It was recently shown that NK cells pro-
mote neuronal death in experimental stroke.36 How-
ever, additional work is needed to fully explore the
role of this and other candidate pathways in IS. Com-
bining pathway analysis with more detailed pheno-
typing may provide further insight into specific stroke
subtypes. It is well-known that genes do not act in
isolation, but rather in complex molecular networks
that are often involved in disease susceptibility and
progression. Pathway analysis has promise in other dis-
eases like coronary artery disease37 where canonical
pathways like inflammation and lipid metabolism had
been identified as key players in disease development.
This information is highly valuable in a context of
mechanistic and functional studies to elucidate the bio-
logical processes in disease development. Further, it also
provides potential mechanisms in gene–environment
interactions, which are mostly unexplored in the
cardiovascular disease context. An additional point
to consider is the potential use of such pathways in
the discovery of biomarkers. Finally, it may provide
researchers with therapeutic targets that could ulti-
mately prove to be of high relevance.

A methodologic strength of our approach is the
replication of signals in a wet laboratory environment
with de novo genotyping in addition to in silico rep-
lication. Prior results have shown that signals con-
firmed in an in silico setting may not necessarily
replicate in a de novo genotyping environment.38,39

Hence, we have minimized the risk of false-positive
reporting by our study design. By integrating
genome-wide data from non-Caucasian populations
and performing a transethnic meta-analysis, we max-
imized the chance of detecting association signals
across different ethnicities while preserving the power
in our dataset. Thus for example, we saw nominally
significant replication p values for GUCY1A3 in LVD
in the South Asian samples (p 5 0.012), pointing
towards shared risk in Caucasian and South Asian
populations. Discoveries of both shared and
ethnicity-specific genetic risk factors will be further
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facilitated by recently completed GWAS studies in
non-Caucasian populations.40 In the pathway analy-
sis, we made use of the MAGENTA software, which
is tailored towards elucidating pathways in a GWAS
setting. MAGENTA has been shown to be superior
to other pathway analysis tools; for one, MAGENTA
accounts for inherent difficulties in the assignment of
SNP data to gene/gene products. It ensures that the
results are comparable and that there is no inherent
bias in the final outcome. Second, it accounts for
important confounders on the association scores of
genes and gene sets, which cannot be performed by
other pathway analysis tools. Our study was limited
by the relatively low power for detecting associations
in stroke subtypes, especially for low-frequency
variants and the heterogeneity of the imputation
accuracy, particularly for lower frequency variants,
which may have been introduced by decentralized
imputation.

Aside from providing new insights into the genetic
architecture of IS, this large meta-analysis of 1 KG
imputed data provides a valuable resource for even
larger meta-analyses with recently published GWAS12

and provides additional insight into the genetic
architecture of ischemic stroke. The complete sum-
mary statistics of this analysis are available upon
request through the METASTROKE Web site
(www.strokegenetics.org).
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