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Single-cell	 gene	 expression	 profiles	 of	 differentiating	 cells	 encode	 their	 intrinsic	 latent	
temporal	order.	We	describe	an	efficient	way	to	robustly	estimate	this	order	according	to	
a	diffusion	pseudotime,	which	measures	transitions	on	all	length	scales	between	cells	using	
diffusion-like	 random	 walks.	 	 This	 allows	 us	 to	 identify	 cells	 that	 undergo	 branching	
decisions	or	are	 in	metastable	states,	and	thereby	genes	differentially	regulated	at	these	
states.	
	 	
Cellular	 programs	 are	 driven	 by	 gene-regulatory	 interactions,	 which	 due	 to	 inherent	
stochasticity	 as	 well	 as	 external	 influences	 often	 exhibit	 strong	 heterogeneity	 and	
asynchrony	in	the	timing	of	program	execution.	Time-resolved	bulk	transcriptomics	averages	
over	these	effects	and	obscures	the	underlying	gene	dynamics.	 Instead,	single-cell	profiling	
techniques	allow	a	systematic	observation	of	a	single	cell's	regulatory	state1,	capturing	cells	
at	 various	 stages	 in	 their	 respective	 process2,3.	 To	 infer	 gene	 dynamics	 and	 hence	 the	
sequence	of	cellular	programs,	 the	collective	 (‘universal’)	process	dynamics	 (Box	1)	can	be	
reconstructed	by	 reordering	cells	according	 to	some	measure	of	expression	similarity.	This	
so-called	pseudotemporal	ordering	was	initially	proposed	for	bulk	expression4,	and	was	later	
extended	to	single-cell	RNA-seq	5	and	protein	profiles	from	mass	cytometry6.		
	
Box	1:	Universal	time	
In	contrast	to	continuous	time	observations	of	a	single	cell	e.g.	from	time-lapse	microscopy,	
high-throughput	snapshot	experiments	such	as	single	cell	RNA-seq	or	FACS	only	encode	the	
collective	(‘universal’)	time	dependence	of	cells,	not	the	stochastic	trajectories	of	single	cells.	
We	define	universal	 time	as	 the	geodesic	distance	on	 the	manifold	 that	 is	associated	with	
the	 deterministic	 program	 underlying	 the	 stochastic	 cellular	 process.	 For	 time-lapse	 data,	
universal	time	can	be	constructed	by	estimating	the	velocity	𝒗(𝑡)	tangential	to	this	manifold	
C	from	local	averages	of	single-cell	trajectories.	The	geodesic	distance	
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then	quantifies	the	arc	length	i.e.	the	universal	time	along	the	manifold,	where	𝜌 𝑡 	denotes	
the	local	density	of	samples	on	a	single	cell	trajectory	(see	Supplementary	Sec.	1).		
Pseudotimes	 are	 proxies	 for	 universal	 time	 (Supplementary	 Figs.	 1-3).	 Our	 proposed	 DPT	
approximates	universal	 time	better	 than	other	pseudotime	schemes	as	 it	does	not	 involve	
dimension	reduction,	and	better	than	diffusion	distance11	as	it	accounts	for	random	walks	on	
all	length	scales.	
	
Ultimately	 these	 approaches	 aim	 to	 fully	 understand	differentiation	dynamics	 as	 paths	 on	
Waddington’s	‘epigenetic	 landscape’7,8.	However	so	far	 it	 is	unclear	how	to	identify	cells	at	
critical	 branching	 decisions	 as	well	 as	 quiescent	 or	metastable	 cells,	 for	which	 there	 is	 no	
notion	of	 temporal	 ordering.	Moreover,	 as	novel	 experimental	 techniques	 such	as	droplet	
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sequencing9,10	 allow	 to	 profile	 tens	 of	 thousands	 of	 cells,	 there	 is	 an	 urgent	 need	 for	
computationally	efficient,	scalable	and	robust	algorithms.	
	
To	 overcome	 these	 problems,	 we	 introduce	 ‘diffusion	 pseudotime’	 (DPT).	 It	 measures	
progression	 through	 branching	 lineages	 using	 a	 random-walk-based	 distance	 in	 diffusion	
map	space11	and	allows	for	branching	and	pseudotime	analysis	on	large-scale	RNA-seq	data	
sets.	Even	in	the	absence	of	branching,	DPT	is	significantly	more	robust	with	respect	to	noise	
in	low-density	regions	and	cell	outliers	than	existing	methods,	which	rely	on	the	estimation	
of	minimum	spanning	trees5	or	sampling-based	distances6,12.		
	
Diffusion	 pseudotime	 is	 computed	 in	 three	 steps	 (Fig.	 1a	 and	 Online	 Methods).	 First,	 a	
transition	matrix	T	that	approximates	the	dynamic	transitions	of	cells	through	stages	of	the	
differentiation	 process	 is	 determined.	 The	 right	 eigenvectors	 of	 T	 are	 known	 as	 diffusion	
components	 and	 have	 been	 used	 in	 diffusion	 maps	 for	 visualizing	 single	 cell	 RNA-seq	
data13,14.	 While	 using	 only	 few	 diffusion	 components	 yields	 interpretable	 visualizations,	
important	 information	may	be	lost	by	removing	the	others.	Consequently,	DPT	is	based	on	
the	full	rank	T	rather	than	a	low	rank	approximation.	
	
In	the	second	step,	the	distance	dpt(x,y)	between	two	cells	with	index	x	and	y	is	computed	as		

dpt(𝑥,𝑦) =  𝑴 𝑥, . −𝑴 𝑦, . !/!! ,    𝑴 = 𝑻! .          (1)
!
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Here,	 … !/!! 	denotes	 the	𝐿
! 	norm	 weighted	 by	 the	 first	 left	 eigenvector	𝜑! 	of	 T,	 the	

steady	state	(Online	Methods,	Supplementary	Sec.	1.3).	Instead	of	the	probability	(𝑻!)!"	for	
a	 random	 walk	 of	 fixed	 length11	 t	 from	 x	 to	 y,	 in	 Eq.	 (1),	 we	 compute	 the	 accumulated	
transition	 probability	(𝑴)!" 	of	 visiting	 y	 when	 starting	 from	 x	 over	 random	 walks	 of	 all	
lengths.	This	is	done	using	the	modified	transition	matrix	𝑻,	which	is	defined	as	T	without	the	
eigenspace	 associated	 with	 the	 steady	 state	𝜑!,	and	 therefore	 describes	 how	 the	 steady	
state	is	approached.	Fixing	a	known	root	cell	r	as	start	of	the	dynamical	process	of	interest,	
we	define	the	pseudotime	of	cell	x	as	dpt(x,r).	
	
In	the	third	step,	branching	points	are	identified	by	comparing	two	random	walks	over	cells,	
one	 starting	 at	 the	 root	 cell	 r	 and	 the	 other	 at	 its	 maximally	 distant	 cell	 y,	 measuring	
pseudotimes	with	respect	to	r	and	y,	 respectively.	 	The	two	sequences	of	pseudotimes	are	
anticorrelated	until	 the	 two	walks	merge	 in	a	new	branch,	where	 they	become	correlated	
(Online	 methods).	 This	 criterion	 robustly	 identifies	 branching	 points	 as	 we	 illustrate	 for	
simulation	data	for	which	the	ground	truth	is	known	(Supplementary	Fig.	4).	
	
To	illustrate	the	ability	of	DPT	to	identify	branches	on	real	data,	we	reanalyzed	a	single-cell	
qPCR	data	set	focusing	on	early	blood	development15,	for	which	we	have	shown	previously	
that	 diffusion	 maps	 allow	 to	 visually	 identify	 a	 precursor	 branch	 splitting	 up	 into	 two	
separate	 lineages	 (cf.	 	Fig.	1b).	DPT	ordered	cells	along	their	developmental	 trajectory	and	
identified	 cells	 at	 the	branching	point.	 The	 three	 identified	branches	qualitatively	 coincide	
with	a	precursor	branch	and	the	reported	blood	(branch	1)	and	endothelial	branches	(branch	
2)15.	In	particular	we	identified	characteristic	patterns	in	the	developmental	stages	in	blood	
progenitors	 (Fig.	1d),	namely	the	hemangioblast-like	sequence16	 (subsequent	up-regulation	
of	 Cdh1	 to	 Tal1	 and	 Cdh5)	 at	 the	 precursor	 branch15	 and	 the	 endothelial	 differentiation	
route15	on	branch	2	(elevated	levels	of	Pecam1,	Erg	and	Sox17	amongst	others).	Further,	we	
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find	the	erythroid-like	sequence	of	Etv2,	Tal1,	Runx1	and	Gata117	at	branch	1.	The	temporal	
resolution	 obtained	 by	 DPT	 indicates	 immediate	 (directly	 after	 branching,	 cf.	 Ikaros	
expression	 in	 Fig.	 1c)	 and	 late	 transitions	 (cf.	 Erg	 in	 Fig.	 1c)	 as	 well	 as	 a	 number	 of	
intermediate	 regulatory	 events15	 until	 the	 onset	 of	Hbb-bH1	 expression	 (cf.	 Fig.	 1d,	 black	
triangles),	hinting	at	potential	novel	regulatory	interactions.		
	

	
	
Figure	1:		
Diffusion	 pseudotime	 reveals	 temporal	 ordering	 and	 cellular	 decisions	 on	 the	 single	 cell	 level.	 (a)	
Outline	 of	 the	 computational	 workflow.	 The	 diffusion	 transition	 matrix	𝑻!" 	is	 constructed	 by	
superimposing	 local	 kernels	 at	 the	 expression	 levels	 of	 cells	 x	 and	 y	 (1).	 The	 diffusion	 pseudotime	
dpt(x,y)	approximates	the	geodesic	distance	of	x	and	y	on	the	mapped	manifold	(2).	Branching	points	
are	identified	as	points	where	anti-correlated	distances	from	branch	ends	become	correlated	(3).	(b)	
Application	of	DPT	to	single-cell	qPCR	of	42	genes	in	3934	single	cells	during	early	hematopoiesis15,	
sorted	 from	 5	 different	 populations:	 primitive	 streak	 (PS),	 neural	 plate	 (NP),	 head	 fold	 (HF),	 four	
somite	GFP	negative	(4SG-),	four	somite	GFP	positive	(4SG+).	DPT	identifies	one	branching	point.	(c)	
Exemplary	 dynamics	 of	 genes	 Erg	 and	 Ikaros	 show	 qualitatively	 different	 behavior	 in	 the	 two	
branches,	black	lines	describe	a	moving	average	over	50	adjacent	cells	along	the	respective	branch.	
(d)	 Heatmap	 of	 gene	 expression,	 with	 cells	 ordered	 by	 diffusion	 pseudotime	 and	 genes	 ordered	
according	 to	 the	onset	of	 first	major	 change	 in	expression	 (see	Supplementary	 Sec.	 7.2,	 smoothed	
along	50	adjacent	cells,	see	Supplementary	Fig.	5	for	non-smoothed	version).	Bars	on	top	indicate	the	
cells’	 population	 (b)	 and	 cell	 density,	 respectively,	with	 high	 density	 regions	 indicating	metastable	
states.	 The	 time	 series	 were	 clustered	 temporally	 by	 the	 time	 point	 of	 the	 first	 transition	 event	
(precursor	branch,	branch	1	and	none,	respectively,	Supplementary	Fig.	6).	The	pie	charts	(bottom)	
show	the	fraction	of	cells	making	up	the	metastable	states	(black	horizontal	line).			
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DPT	 identified	 regions	 of	 small	 time-steps	 i.e.	 of	 high	 cell	 density	 (Fig.	 1d,	 top	 and	
Supplementary	Fig.	7b)	along	the	differentiation	process.	These	high-density	regions	indicate	
metastable	 states,	 which	 correspond	 to	 biologically	 meaningful	 intermediates:	 We	 found	
four	metastable	states	with	expression	patterns	of	precursor	cells,	hemangioblast-like	cells	
at	 the	 decision	 state,	 erythroid-like	 and	 endothelial-like	 cells.	 Notably,	 both	 decision	 and	
precursor	 states	 consist	 of	 cell	mixtures	 from	 two	 or	 three	 different	 stages,	 stressing	 the	
asynchrony	 of	 developmental	 stages	 that	 could	 not	 be	 resolved	 without	 pseudotemporal	
ordering.		
	
To	identify	key	decision	genes,	we	quantified	expression	differences	in	the	identified	states	
of	 decision	 versus	 precursor	 using	MAST18	 (Supplementary	 Fig.	 8a).	 This	 resulted	 in	more	
than	50%	of	changed	genes	(27	out	of	42),	including	Pecam1	and	Cbfa2t3h,	which	are	known	
to	indicate	hematopoietic	and	endothelial	development16,	respectively.	In	contrast,	only	24	
genes	are	differentially	expressed	between	sorted	cells	from	head	fold	and	primitive	streak,	
all	 changing	 gradually	 but	 preserving	 bimodal	 distribution	 (Supplementary	 Fig.	 8d	 and	
Supplementary	Table	1).	Also,	differential	gene	expression	between	HF	and	4SG-	cells	fails	to	
identify	endothelial	differentiation	but	brings	up	erythroid	factors	(Runx1,	 Ikaros	and	Gfi1b	
amongst	others,	see	Supplementary		Fig.	8e	and	Supplementary	Table	2).	In	summary	when	
comparing	 differentially	 expressed	 genes	 between	 metastable	 states,	 we	 identify	 more	
genes	 than	comparing	developmental	 stages,	and	the	genes	have	 less	bimodal	expression.	
This	 shows	 that	 the	 anatomical	 stages	 overstate	 developmental	 heterogeneity	 thus	
disguising	the	role	of	key	factors.	
	
DPT	 copes	 well	 with	 large-scale	 experiments	 such	 as	 scRNA-seq	 combined	 with	 droplet	
barcoding10:	 In	 the	 experiment,	 Klein	 et	 al.	 monitored	 the	 transcriptomic	 profiles	 and	
heterogeneity	 in	differentiation	of	mouse	ES	 cells	 after	 LIF	withdrawal	 (Fig.	2a).	After	 cell-
cycle	normalization	 (Supplementary	Figs.	9-10),	DPT	describes	a	 single	differentiation	path	
from	 which	 two	 populations	 branch	 off.	 With	 increasing	 pseudotime,	 we	 observe	
upregulated	epiblast	markers	(Krt8/18/19)	and	downregulated	pluripotency	factors	(Nanog,	
Fig.	 2b).	 Clustering	of	 the	 gene	expression	dynamics	 identified	 four	 clusters	with	different	
temporal	behaviors	(Fig.	2c	and	Supplementary	Fig.	11)	but	coherent	biological	functions	(Fig.	
2d).	Early	pseudotime	coincides	with	day	0	cells	exhibiting	strong	expression	of	pluripotency	
factors	 (purple	 cluster).	 	 Then,	 a	 small	 subpopulation	 (57	 cells)	mainly	 consisting	 of	 day	 2	
cells	branches	off,	enriched	in	neuron-associated	genes	(Bc1,	Lin7b,	Snord64,	Tagln3,	Dtnbp1,	
Nenf;	 6	 out	 of	 22,	 see	 Supplementary	 Fig.	 12).	 Subsequent	 stages	 are	 characterized	 by	 a	
gradual	decrease	of	pluripotency	factors	and	slow	rise	of	both	primitive	endoderm	markers	
(yellow	 cluster)	 and	 epiblast	 markers	 (orange	 cluster)19.	 In	 late	 pseudotime,	 another	 two	
branching	event	gives	rise	 to	a	population	with	 increased	primitive	endoderm	markers	 (21	
cells),	whereas	epiblast	marker	genes	rise	two-to	three-fold	in	the	other	branch	(120	cells).	
Altogether,	 DPT	 is	 able	 to	 remove	 asynchronity	 of	 scRNA-seq	 snapshot	 data	 from	 several	
days,	aligning	cells	in	terms	of	their	degree	of	differentiation.	
	
To	evaluate	DPT’s	performance	without	branching	 compared	 to	Wanderlust	and	Monocle,	
we	 counted	 how	 often	 a	 pseudotime	 puts	 a	 cell	 from	 a	 later	 temporal	 sorting	 before	 an	
earlier	one	(measured	by	Kendall	rank	correlation	𝜏).	DPT	reconstructs	the	temporal	orders	
of	 ESC	 differentiation	 with	 significantly	 higher	 accuracy	 than	 Wanderlust	 (𝜏	=	 0.78±10-3	
versus	0.71±10-3,	respectively,	Fig.	2e	and	Supplementary	Fig.	13).	This	holds	true	also	when	
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compared	 to	 Monocle	 in	 repeated	 bootstrap	 runs	 and	 on	 other	 data	 sets	 (Fig.	 2f	 and	
Supplementary	Table	3).		
	

	
	
Figure	2:	
Diffusion	pseudotime	 identifies	differentiation	dynamics	 in	droplet-based	scRNA-seq	experiments10.	
(a)	Mouse	ESCs	after	 LIF	withdrawal	were	harvested	at	 T=0,	2,	 4	 and	7	days	and	profiled	with	 the	
dropSeq	protocol,	giving	2717	cells	with	24175	observed	unique	transcripts10.	After	correction	for	cell	
cycle	variation,		a	low	dimensional	visualization	using	diffusion	maps	shows	overlapping	but	directed	
temporal	 dynamics.	 (b)	 Temporal	 dynamics	 of	 selected	 genes	 as	 in	 the	 original	 publication	
reconstructed	by	DPT,	relative	to	expression	at	initial	time	point.	(c)	DPT	identifies	a	main	time	axis	
with	 two	minor	 branching	 events:	 an	 early	 side	 branch	 and	 late	 separation	 of	 cells	 enriched	with	
markers	for	epiblasts	and	primitive	endoderm	(top).	Population	and	cell	density	are	shown	as	in	Fig.	
1d.	 The	 heatmap	depicts	 gene	dynamics	 after	 hierarchical	 clustering	 and	 removal	 of	 a	 fluctuating,	
mainly	constant	subgroup	 (cf.	Supplementary	Fig.	11b):	The	dynamic	subgroups	 (indicated	by	color	
bar,	right)	consist	of	epiblast	markers	such	as	Krt8/18/19,	Sfn,	Tagln	(orange),	gradual	downregulated	
pluripotency	 factors	 such	 as	 Pou5f1	 (Oct4),	 Sox2,	 Trim28,	 Nanog	 (purple)	 and	 slow	 consistent	
upregulated	primitive	endoderm	markers	such	as	Col4a1/2,	Lama1/b1,	Serpinh1,	Sparc	(yellow).	(d)	
Gene	ontology	enrichment	shows	a	cellular	reorganization	signature	(orange),	a	metabolic	signature	
consistent	 for	 differentiation	 (purple)	 and	 a	 cell	 motility	 signature	 (yellow).	 (e)	 Pseudotime	
distribution	 of	 cells	 in	 the	 experiments	 from	 the	 four	 different	 days,	 for	 DPT	 and	 Wanderlust.	
Diffusion	pseudotime	orders	cells	well	along	the	 four	 temporal	categories	 (Kendall	 rank	correlation	
0.78±10-3),	significantly	better	than	pseudotemporal	ordering	by	Wanderlust	(Kendal	rank	correlation	
0.71±10-3,	see	also	Supplementary	Fig.	13).	(f)	Comparisons	of	Kendall	rank	correlation	on	bootstrap	
samples	 (n=100	bootstrap	runs,	downsampling	to	maximal	1800	cells	 for	Wanderlust	and	DPT,	700	
cells	for	Monocle	due	to	performance	issues)	for	the	presented	ESC	data	set,	the	qPCR	data	set	from	
figure	 1	 and	 an	 scRNA-seq	 of	 differentiating	 myoblasts	 from	 the	 Monocle	 paper5	 show	 that	 DPT	
consistently	outperforms	the	other	two	methods	(2-sided	t-test	with	significance	levels *p<0.05;	
**p<0.01;	***p<0.001,	n.s.	not	significant).	
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In	conclusion,	we	introduce	DPT	as	a	pseudotime	measure	that	overcomes	the	deficiencies	
of	existing	approaches:	it	is	able	to	deal	with	branching	lineages	and	identifies	metastable	or	
steady	states,	it	is	statistically	robust,	and	its	computation	can	be	scaled	to	large	datasets	
without	dimension	reduction.		Compared	to	Wanderlust6,	which	has	been	proposed	for	the	
lower-dimensional	mass	cytometry	data,	we	replaced	approximate	and	computationally	
costly	sampling	of	shortest	paths	by	the	exact	and	computationally	cheap	average	over	
random	walks	in	eq.	(1).	Compared	to	Monocle5,	which	works	on	RNA-seq	data	but	only	
after	dimension	reduction	and	on	medium	sample	numbers,	DPT’s	average	over	all	random	
walks	is	significantly	more	robust	than	Monocle’s	minimum	spanning	tree	approach	(Fig.	2e).	
	
In	 the	 future,	 robust	 computation	 of	 pseudotimes	 will	 allow	 inferring	 regulatory	
relationships	 with	 much	 higher	 confidence	 than	 based	 on	 perturbations	 alone15,	 and	 we	
expect	DPT	to	allow	scaling	this	to	genome-wide	models.	Recently	pseudotemporal	ordering	
has	 been	 applied	 to	 cell	 morphology	 to	 identify	 cell	 cycle	 states20	 –	 here	 diffusion	
pseudotime	would	allow	inclusion	of	branching	for	example	to	identify	cells	switching	into	a	
quiescent	 state	 as	 well	 as	 comparison	 to	 time-lapse	 microscopy	 via	 universal	 time.	 To	
summarize,	 diffusion	 pseudotime	 provides	 a	 powerful	 and	 robust	 tool	 to	 order	 cells	
according	to	their	state	on	differentiation	trajectories	in	single-cell	transcriptomics	studies.	
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Online	Methods	

Overview	of	DPT	algorithm	
0) (Initialization)	inputs	the	following:	

a. The	n	by	G	data	matrix	
b. One	(or	several)	root	cell(s).	
c. Diffusion	maps	options	“classic”	or	“locally	scaled”	and	respectively	the	

parameters	“θ”	(kernel	width)	or	“κ"	(numberof	nearest	neighbours	for	
adjusting	the	kernel	width).	

1) Computes	the	transition	matrix	T.	
2) Builds	the	accumulated	transition	matrix	M	and	computes	diffusion	pseudotime	with	

respect	to	the	specified	root.	If	several	roots	are	defined,	DPT	averages	the	
pseudotime	for	each	cell	y	over	these	roots.	

3) DPT	iteratively	assigns	cells	to	branches	and	subbranches.	DPT	groups	the	cells	for	
each	branch	and	provides	diffusion	pseudotime	for	each	group.	

	
Diffusion	pseudotime	
We	calculate	 the	diffusion	maps	 transition	matrix	T	 and	 its	 right	and	 left	eigen-vectors	ψ!	
and	𝜑! .	It	then	computes	the	accumulated	transition	probabilities	over	all	numbers	of	time	
steps.	

M = 𝑻! = (𝐼 − 𝑻)!! − 𝐼   where     𝑻 =  T - ψ!𝜑!! .   
!

!!!

	

This	 is	done	 relative	 to	 the	steady	state	𝜑! ,	which	stores	no	 information	about	dynamics.	
Fixing	a	known	root	cell	x	as	start	of	the	dynamical	process	of	interest,	Diffusion	pseudotime	
of	cell	y	is	defined	as	a	density	weighted	L!	norm	

dpt(𝑥,𝑦) =  𝑴 𝑥, . −𝑴 𝑦, . ! !!
.	

Further	details	are	given	in	Supplementary	Sec.	3.		
	
Branch	assignment	
We	find	the	cell	y	with	the	maximal	dpt	distance	from	the	root(s)	x	and	also	another	cell	z	
which	has	maximal	distance	to	x	and	y:	

z = argmax!!  dpt 𝑧′, 𝑥 + dpt 𝑧′,𝑦  .	

If	the	manifold	is	branching,	then	as	defined	y	and	z	will	provide	cells	at	two	different	tips	of	
two	branches.	
DPT	 then	obtains	 two	orderings	Oy=dpt(.,y)	 and	Oz=dpt(.,z)	 and	determines	 the	 cutoff	 cell	
until	which	the	sequence	of	ordered	cells	in	Ox		(call	them	Xi),	Oy	and	Oz	become	maximally	
correlated	using	Kendall’s	rank	correlation.	DPT	thus	assigns	cells	Xi	to	the	branch	of	x.			
DPT	 treats	 y	 and	 z	 as	 root	 of	 the	 subbranches	Yi	 and	 Zi	 respectively	 and	 in	 a	 similar	way	
searches	 for	 new	 subbranches	 within	 each	 branch.	 Further	 details	 are	 provided	 in	
Supplementary	Sec.	4.	
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Metastable	states	
The	 pseudotemporal	 ordering	 of	 cell	 populations	 reflects	 gradual	 and	 switch-like	 changes	
along	a	certain	branch.	Highly	similar	cells	have	small	distance	in	the	gene	space	and	a	high	
probability	to	be	reached	by	a	random	walk	as	defined	by	the	transition	matrix	T.	Then,	the	
difference	in	pseudotime	between	such	cells	is	small,	i.e.,	the	density	of	the	distance	to	the	
root	 cell	 dpt(r,.)	 increases	 at	 sites,	 where	 highly	 similar	 cells	 are	 found.	 In	 particular,	
developmental	 steady	 states	 have	 high	 densities	 in	 the	 pseudotime	 measure,	 but	 these	
accumulation	sites	are	not	sufficient	to	depict	a	steady	state.	However,	these	accumulation	
sites	are	not	sufficient	to	depict	a	steady	state.	
 
Detecting	transcriptional	changes	
To	 identify	 the	 succession	 of	 switch-like	 transcriptional	 changes	 revealed	 by	 the	
pseudotemporal	 order	 in	 qPCR	 data,	 we	 computed	 an	 approximate	 derivative	 of	 the	
smoothed	 gene	 expression	 level	 along	 branch	 1.	 A	 switch-like	 change	 is	 defined	 as	 the	
maximum	in	the	derivative	(details	in	Supplementary	Sec.	7.2).	
 
Differential	expression	analysis	
We	employed	a	two-part,	generalized	linear	model	that	allows	to	quantify	the	proportion	of	
cells	 expressing	 a	 certain	 gene	 as	 well	 as	 the	 mean	 expression	 level,	 a	 modified	 Hurdle	
model1.	 Briefly,	 the	 model	 has	 two	 parts:	 A	 discrete	 part	 to	 decide	 whether	 a	 gene	 is	
expressed	and	a	continuous	part	using	a	normal	distribution	if	the	gene	is	expressed.		Then,	
a	 likelihood	 ratio	 test	 is	 used	 to	 identify	 differentially	 expressed	 genes	 (details	 in	
Supplementary	Secs.	5	and	7.3.	and	Finak	et	al1).		
 
ESC	qPCR	Data	
We	 reanalyzed	 a	 single-cell	 qPCR	 dataset	 (normalized	 version	 with	 3934	 cells,	 42	 genes)	
focusing	on	early	blood	development2.	For	each	gene,	the	limit	of	detection	(LOD)	was	the	
average	Ct	value	for	the	last	dilution	at	which	all	six	replicates	had	positive	amplification.	The	
overall	LOD	of	25	for	the	gene	set	was	the	median	Ct	value	across	all	genes.	Raw	Ct	values	
and	 normalized	 data	 can	 be	 found	 in	 Supplementary	 Table	 7	 of	 Moignard	 et	 al2.	 Gene	
expression	was	subtracted	from	the	limit	of	detection	and	normalized	on	a	cell-wise	basis	to	
the	mean	 expression	 of	 the	 four	 housekeeping	 genes	 (Eif2b1,	Mrpl19,	Polr2a	 and	Ubc)	 in	
each	 cell.	 Cells	 that	 did	 not	 express	 all	 four	 housekeeping	 genes	 were	 excluded	 from	
subsequent	analysis,	as	were	cells	for	which	the	mean	of	the	four	housekeepers	was	±3	s.d.	
from	 the	mean	 of	 all	 cells.	 A	 dCt	 value	 of	 −14	was	 then	 assigned	where	 a	 gene	was	 not	
detected.	85–90%	of	sorted	cells	were	retained	 for	 further	analysis.	Gata2	did	not	amplify	
correctly	 and	HoxB3	was	 not	 expressed	 in	 any	 cells,	 so	 these	 factors	 have	 been	 excluded	
from	the	analysis.		The	analyses	were	done	on	the	dCt	values	for	all	transcription	factors	and	
marker	genes,	but	not	housekeeping	genes.	
	
DropSeq	data	
We	reanalyzed	a	single-cell	RNA-seq	data	set	using	the	dropSeq	protocol	 from	Klein	et	al3.	
Here,	single	cells	along	with	a	set	of	uniquely	barcoded	primers	were	capture	in	tiny	droplets	
and	sequenced.	The	capabilities	of	 this	 technique	were	demonstrated	using	an	undirected	
differentiation	process	of	mouse	embryonic	stem	cells	upon	leukemia	inhibitory	factor	(LIF)	
withdrawal.	The	data	 set	 is	publicly	available	under	 the	GEO	accession	number	GSE65525.	
Count	data	were	normalized	by	 library	size	and	 log10	transformed	(see	Supplementary	Sec.	
8.1).	We	 corrected	 for	 cell-cycle	 and	 batch	 effects	 using	 scLVM4	 on	 	 2044	 highly	 variable	
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genes	 (see	 Supplementary	 Table	 3	 in	 Klein	 et	 al3).	 Then,	 diffusion	map	with	 local	 density	
rescaling	 (Supplementary	 Sec.	 2)	 visualizes	 the	 temporal	 order	 for	 all	 cells.	 Hierarchical	
clustering	 was	 performed	 in	 R	 (http://www.r-project.org/)	 using	 the	 hclust	 package	 on	
quantile-normalized	 data	 (Supplementary	 Sec.	 8.2)	 and	 displayed	 with	 ComplexHeatmap	
package,	 where	 the	 distance	 was	 defined	 as	 1	 –	 correlation	 between	 all	 samples	
(Supplementary	Sec.	8.3).	In	addition,	we	performed	a	rank	sums	test	on	the	first	side	branch	
to	identify	genes	being	uniquely	different	from	initial	pluripotent	and	late	epiblast-like	cells	
(Supplementary	Sec.	8.4).	
	
Concordance	of	pseudotime	with	time	labels	
We	subsampled	sets	of	 	~70%	of	data	and	 for	each	set	performed	Wanderlust5,	Monocle6	
and	DPT	pseudotime	orderings.	 Since	Monocle	does	not	perform	on	very	 large	number	of	
cells	(>103),	we	reduced	the	subsampling	to	700	cells	when	necessary.	The	concordance	for	
each	 subset	was	 then	measured	 as	 Kendall	 tau	 correlation	 of	 each	 pseudotime	with	 time	
labels	 of	 that	 subset.	 We	 then	 performed	 a	 t-test	 and	 calculated	 p-values	 between	 the	
histogram	of	the	concordance	measure	for	Wanderlust	and	Monocle	compared	to	the	DPT	
pseudotimes.	The	result	is	shown	in	Fig.	2f	of	the	main	text	and	Supplementary	Table	3.	 
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