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Abstract

Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) 

cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower 

risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) 

have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of 

SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted 

sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high 

plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine 

replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs 

posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in 

transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the 

homozygous subject, and in mice. Large population-based studies revealed that subjects who are 

heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. 
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P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio 

= 1.79, which is statistically significant).

The strong inverse association between amounts of high-density lipoprotein (HDL) 

cholesterol (HDL-C) and coronary heart disease (CHD) risk has generated interest in a 

potential causal relationship between HDL metabolism and CHD. However, clinical trials 

with drugs that raise HDL-C levels, niacin and cholesteryl ester transfer protein (CETP) 

inhibitors, have produced disappointing results (1). Furthermore, recent studies of human 

genetic variants that are associated with HDL-C levels have generally failed to show 

association with CHD (2, 3). Most notably, a loss-of-function variant in LIPG, a gene 

encoding an endothelial lipase that, in the heterozygous state, raises HDL-C by ~5 mg/dl, 

was found to have no association with CHD (4). Although these previous studies suggest 

that higher HDL-C levels may not be causally protective against CHD, we reasoned that 

additional human genetic analyses might provide mechanistic insight into the complex 

relationship between HDL and CHD.

The scavenger receptor class BI (SR-BI), encoded by the gene SCARB1, was discovered to 

be an HDL receptor two decades ago (5). SR-BI promotes the selective uptake of HDL 

cholesteryl esters (HDL-CEs) into cells, particularly hepatocytes and steroidogenic cells (5, 
6). In mice, overexpression of SR-BI in the liver reduces levels of HDL-C (7–10), and 

genetic deletion of SR-BI results in higher HDL-C levels (11–13). Remarkably, these 

genetic manipulations in mice have effects on atherosclerosis opposite to those predicted by 

human epidemiological data: Overexpression reduces atherosclerosis despite the lower 

HDL-C levels (14–16), and gene deletion increases atherosclerosis despite the higher HDL-

C levels (17–20). One potential explanation relates to the flux of cholesterol from 

macrophages through the reverse cholesterol transport (RCT) pathway; SR-BI 

overexpression increases macrophage RCT, and SR-BI knockout reduces macrophage RCT 

(21). The human relevance of these observations has been unclear.

Identification of SCARB1 P376L homozygote and association with 

extremely high HDL-C

We hypothesized that humans with extremely high levels of HDL-C may harbor loss-of-

function variants in SCARB1 and undertook a targeted resequencing discovery experiment 

in 328 participants with very high HDL-C (>95th percentile, mean HDL-C of 106.8 mg/dl) 

and a control group of 398 subjects with low HDL-C (<25th percentile, mean HDL-C of 

30.4 mg/dl). In this cohort, we sequenced the exons of ~990 genes located within 300 kb of 

each of the 95 loci with significant associations (P < 5 × 10−8) with plasma lipid levels 

identified by the Global Lipids Genetics Consortium as of 2010 (22). Among the high HDL-

C subjects, we identified a homozygote for SCARB1 P376L (g.125284671 G>A, c.1127 

C>T, p.P376L, rs74830677), a 67-year-old female with an HDL-C of 152 mg/dl, and 

confirmed this finding by Sanger sequencing. This subject harbored no mutations in other 

high HDL-C genes such as CETP and LIPG. In addition to this homozygote, four P376L 

heterozygotes were identified by targeted sequencing in the high HDL-C group; no 

heterozygotes were found in the low HDL-C group (P =0.008, Fisher’s exact test).
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To identify additional P376L carriers, we genotyped an expanded cohort of very high versus 

low HDL-C subjects. Among 524 additional subjects with very high HDL-C (mean HDL-C 

95.0 mg/dl), we identified 11 heterozygotes for P376L; whereas among 758 subjects with 

low HDL-C (mean HDL-C 33.5 mg/dl), we identified 3 heterozygotes. In total, our 

combined sequencing and genotyping for discovery of the P376L variant showed that this 

variant is significantly overrepresented in subjects with high HDL-C [minor allele frequency 

(MAF) = 0.010 in high HDL-C versus 0.0013 in low HDL-C controls, P = 0.000127, 

Fisher’s exact test, Table 1].

Because this variant is present on the exome array, we expanded our analysis to the Global 

Lipid Genetics Consortium exome array data in >300,000 individuals. The P376L variant 

was very rare in this population (MAF of ~0.0003). It was significantly associated with 

higher HDL-C levels with a relatively large effect size (beta = 8.4 mg/dl; P =1.4 × 10−15). 

Notably, this variant was not associated with plasma levels of low-density lipoprotein 

cholesterol (LDL-C) or triglycerides (TGs) (table S1). Thus, we conclude that SCARB1 
P376L is associated specifically with elevated HDL-C levels.

HDL-related phenotypes of SCARB1 P376L homozygote and heterozygotes

We next recruited the P376L homozygote, eight heterozygous carriers, and both high HDL-

C and normal HDL-C noncarrier controls for deep phenotyping of HDL metabolism and 

related traits. All of the P376L study participants were of European ancestry, almost 

exclusively of Ashkenazi Jewish descent. Clinical characteristics and lipid profiles of the 

subjects are reported in Table 2. Fast protein liquid chromatography (FPLC) analysis of 

plasma lipoproteins confirmed the increase in large HDL particles in the homozygote (Fig. 

1A). Cholesterol and apolipoprotein A-I (apoA-I) levels in HDL were significantly increased 

in the homozygote and heterozygotes compared with controls, but HDL apoA-II levels were 

not elevated (Table 2 and Fig. 1B). There were no differences between P376L carriers and 

controls in the absolute amount of HDL free cholesterol or the ratio of free-to-esterified 

cholesterol in their HDL (Fig. 1C). P376L heterozygotes had a 2.8-fold increase and the 

homozygote a 6.1-fold increase in large HDL-2b particles compared with noncarrier controls 

(Fig. 1D). There was more apoA-I (Fig. 1E and fig. S2) and apoC-III (Fig. 1F) in large HDL 

particles in the homozygote and heterozygous carriers. Cholesterol efflux capacity was 

similar in carriers and controls (Fig. 1G). In contrast to the infertility phenotype of Scarb1-

deficient female mice (18), the P376L homozygote had two healthy children and reported no 

fertility impairment. We also did not observe the steroidogenic or platelet phenotypes 

reported in Scarb1-deficient mice (see supplementary materials).

SCARB1 P376L results in complete loss of function of SR-BI

Given the profound HDL phenotype of the P376L carriers, we sought to understand the 

impact of the variant on SR-BI function. We generated induced pluripotent stem cells 

(iPSCs) using peripheral blood mononuclear cells from the P376L homozygote and a 

noncarrier control. We next differentiated these cells into hepatocyte-like cells (HLCs) to 

study HDL metabolism in the setting of endogenous cellular SCARB1 expression. HLCs 

differentiated through this protocol recapitulate phenotypes of cultured primary hepatocytes 
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such as albumin and VLDL (very low density lipoprotein) secretion (23–26). The cell lines 

from the control donor and the P376L homozygous subject demonstrated expression of 

hepatocyte-specific genes ALB (albumin) and AFP (alpha-fetoprotein) and exhibited 

comparable SCARB1 gene expression (fig. S3). Compared with control iPSC hepatocyte 

lines, those from the P376L homozygote demonstrated a profound reduction in selective 

cholesterol uptake from HDL in vitro (Fig. 2A). Similar results were observed in 

experiments with COS7 cells transfected with plasmids expressing wild-type (WT) or the 

P376L variant of SCARB1 (fig. S3, A and B), along with defective binding to HDL in vitro 

at 4°C (fig. S4, C and D).

To evaluate the physiological impact of the P376L variant on HDL-C levels and catabolism 

in vivo, we used adeno-associated virus (AAV) vectors to direct hepatic overexpression of 

WT SR-BI or the P376L variant in mice with depleted Scarb1 [Scarb1 knockout (KO) mice]. 

The two groups of mice demonstrated similar hepatic expression levels of Scarb1 mRNA 

(fig. S5A) and SR-BI protein (fig. S5B). Mice expressing WT Scarb1 demonstrated a robust 

73% decrease in HDL-C. In contrast, mice expressing the P376L variant had no reduction in 

HDL-C; their HDL-C levels were comparable to those in the control AAV-null injected mice 

(Fig. 2B). Although the clearance of 125I-labeled HDL protein was not different among the 

three groups, the clearance of [3H]HDL-CE was much slower in mice expressing the P376L 

variant compared with those expressing WT SR-BI and was comparable to that in the 

control mice (Fig. 2, C and D). Selective HDL-CE clearance from plasma was increased by 

WT SR-BI but was undetectable in the P376L-expressing mice (Fig. 2E and fig. S5C), as 

was hepatic uptake of [3H]CE at 24 hours (fig. S5D). This indicates that the P376L sequence 

variant results in complete loss of the canonical function of SR-BI—namely, selective 

uptake of HDL-CE.

We hypothesized that the markedly reduced HDL-CE uptake could be because of aberrant 

processing of the P376L SR-BI protein, which leads to impaired cell surface localization. To 

test this, we isolated cell surface proteins from COS7 cells transfected with WT and P376L 

SR-BI using biotinylation and found markedly reduced cell surface SR-BI in the P376L 

transfected cell lysates after streptavidin cell surface protein pull-down assays (fig. S4E). 

Given that SR-BI undergoes N-glycosylation in the endoplasmic reticulum concomitant with 

proper folding, we hypothesized that altered posttranslational modification may underlie its 

reduced cell surface localization (27–29). We measured the molecular weights of SR-BI 

forms after endoglycosidase-H (Endo-H) treatment of transfected COS7 (fig. S4E) and 

iPSC-derived HLC lysates, as well as mouse liver lysates expressing WT or mutant SR-BI 

(Fig. 2, F and G). Higher-molecular-weight forms represent N-glycosylation modified Endo-

H–resistant and partially sensitive forms at the cell surface after modification by alpha-

mannosidase II in the Golgi apparatus (28).In the iPSC-derived differentiated HCLs from the 

P376L homozygote (Fig. 2F), we found much less total cellular SR-BI in the mutant cell 

lines relative to that of WT cells, despite comparable SCARB1 gene expression (fig. S3C). 

After Endo-H treatment, the SR-BI from SCARB1 WT cell and liver lysates across models 

was predominantly the partially sensitive form, along with small amounts of the fully 

resistant form. In contrast, the SR-BI from cell and tissue lysates across P376L-expressing 

groups was all the immature, fully Endo-H–sensitive form (Fig. 2, F and G, and fig. S4F). 

Together, these data are consistent with a model in which the P376L sequence variant alters 
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the endogenous posttranslational N-glycosylation of SR-BI to prevent either transit from the 

ER to the Golgi or further posttranslational modifications in the Golgi, which ultimately 

result in reduced cell surface expression.

SCARB1 P376L is associated with increased risk of CHD in humans

Despite a profound increase in HDL-C, SR-BI deficiency in mice causes accelerated 

atherosclerosis (17–20). The relationship of reduced SR-BI function to atherosclerotic 

cardiovascular disease in humans has not been established. The P376L homozygous subject 

did not have clinical CHD, but her carotid intimal-medial thickness (cIMT) was 0.789 mm 

(left-right average), which is in the >75th percentile for females of her age; in addition, she 

had detectable plaque throughout the left internal carotid artery and at the bifurcation of her 

right internal carotid artery. cIMT measurements were not significantly different in the 

P376L heterozygotes compared with both groups of controls (fig. S8), but because of small 

sample size, the statistical power is limited.

To achieve greater statistical power to address this question, we performed a meta-analysis 

of large exome array genotyping studies of CHD cases and healthy controls to determine the 

relationship of the P376L variant with risk of CHD (Table 3). Among 16 sample sets from 

two consortia [the CARDIoGRAM Exome Consortium and the CHD Exome+ Consortium], 

we tested the association between P376L carrier status and CHD in 137,995 individuals. 

Across 49,846 CHD cases and 88,149 CHD controls, we found that P376L carriers had a 

significantly higher risk of CHD compared with noncarriers [odds ratio for disease among 

carriers = 1.79; P = 0.018] (Table 3). Thus, carriers of this SCARB1 P376L variant have 

significantly increased HDL-C levels and a significantly increased risk of CHD.

Discussion

Studies of mice have provided important insights into the effects of SR-BI on HDL 

metabolism, RCT, and atherosclerosis. These studies revealed that overexpression of SR-BI 

reduces HDL-C (7–10) and reduces atherosclerosis (14–16), whereas gene deletion of SR-BI 

increases HDL-C (11–13) and accelerates atherosclerosis (17–20). The clinical relevance of 

these findings has remained uncertain, however. Studies of injected labeled HDL-CE in 

humans suggested that the majority of the HDL-CE was transported to the liver via CETP-

mediated exchange to apoB-containing lipoproteins rather than by direct uptake from HDL 

by the liver (30), which brings into question the importance of hepatic SR-BI in human 

physiology. Common genetic variants near the SCARB1 locus were found to be significantly 

associated with plasma HDL-C levels, which suggests that SR-BI may play a role in HDL 

metabolism in humans (22, 31). A family with a rare SCARB1 variant in which serine 

replaces proline 297 (P297S) was reported in which the heterozygous carriers of the variant 

had modestly elevated HDL-C levels (31). However, the variant retains substantial SR-BI 

activity, no homozygotes were identified, the apparent effect on HDL-C was modest, and 

there was insufficient power to address its effects on atherosclerosis.

Through sequencing of subjects with extremely high plasma levels of HDL-C, we identified 

a homozygote for a P376L variant in SR-BI. Our complementary approaches consistently 
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demonstrated that this variant confers virtually complete loss of function of SR-BI. Our 

results demonstrate many similarities in the consequences of SR-BI deficiency on HDL 

composition between mice and humans, including a shift toward large, buoyant HDL 

particles and a significant increase in apoA-I, but not apoA-II, in plasma and HDL (12, 32, 
33). The homozygote is a woman who had two healthy children without fertility issues or 

delivery complications, which suggests that, in humans, SR-BI deficiency may not impair 

reproductive function in the same manner as it does in mice (18, 34). In mice, SR-BI–

mediated CE uptake from HDL is a critical process underlying steroid hormone synthesis in 

adrenal and gonadal tissues, and SR-BI deficiency alters adrenal cholesterol content, impairs 

adrenal glucocorticoid response under stress, and can lead to fasting-induced hypoglycemia 

(6, 35, 36). We did not observe any differences in fasting glucose, serum cortisol, 

adrenocorticotropic hormone, or female gonadal hormones in P376L heterozygous subjects 

versus controls, and we saw only a modest increase in testosterone in male P376L 

heterozygotes relative to noncarriers. We postulate that differences in expression or capacity 

for up-regulation of apoB-containing lipoprotein receptors relative to SR-BI between mouse 

models and humans in steroidogenic tissues may account, at least partially, for the lack of 

recapitulation of some of the phenotypes of SR-BI deficiency in mice. We also observed no 

differences in platelet levels, cholesterol content, and activation from the P376L carriers, 

despite reports of thrombocytopenia and altered platelet activity in Scarb1 KO mice (31). 

These results suggest a relatively different contribution of SR-BI to platelet function 

between mice and humans. Note that the phenotypes of human SCARB1 P376L 

homozygote (elevated HDL-C and large HDL particles but relatively normal 

steroidogenesis, reproductive viability, and platelet function) are comparable to those 

observed in mice lacking PDZ domain containing 1 (PDZK1), an adaptor protein for SR-BI 

(37).

Perhaps the most important finding of our study is that, despite the elevation in HDL-C, 

P376L carriers exhibit increased risk of CHD, as do Scarb1 KO mice. Our results are 

consistent with a growing theme in HDL biology that steady-state more important than 

absolute levels. Using an in vivo assay of macrophage RCT, we previously showed that 

Scarb1 KO mice have impaired macrophage RCT even though they have elevated HDL-C 

levels (21). Our results suggest that reduced hepatic SR-BI function in humans causes 

impaired RCT, which leads to increased risk of CHD despite elevation in HDL-C levels. 

However, SR-BI is also expressed in vascular cell types, including endothelial cells, vascular 

smooth muscle cells, and macrophages, where it could have protective effects against 

atherosclerosis as well (38, 39). Our results are also consistent with the previously suggested 

concept (39) that up-regulation or enhancement of SR-BI could be a novel therapeutic 

approach to reducing CHD risk in the general population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We appreciate the participation and support of participants of the deep clinical phenotyping studies. We thank E. 
Mohler for assistance in interpretation of cIMT results and J. Billheimer and E. Pashos for helpful discussions. We 

Zanoni et al. Page 7

Science. Author manuscript; available in PMC 2016 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also acknowledge J. Tabita-Martinez for expert assistance with clinical phenotyping studies. This work was 
supported in part by an award from the National Center for Research Resources (grant TL1RR024133) and 
National Center for Advancing Translational Sciences of the NIH (grant TL1R000138) to support patient 
recruitment. D.B.L. was supported by a fellowship from the Doris Duke Charitable Foundation. S.K. has financial 
relationships with Novartis, Aegerion, Bristol-Myers Squibb, Sanofi, AstraZeneca, Alnylam, Eli Lilly, Leerink 
Partners, Merck, Catabasis, Regeneron Genetic Center, San Therapeutics, and Celera. H.S. has financial 
relationships with MSD Sharp and Dohme, Sanofi-Aventis, and Amgen. S.B. has financial relationships with 
Boehringer Ingelheim, Bayer, Novartis, Roche, and Thermo Fisher. N.S has financial relationships with Amgen, 
Sanofi, Astrazeneca, and MSD Sharp and Dohme. A.K. has a financial relationship with Amgen. J.D. has a 
financial relationship with Novartis. A.T.-H. has financial relationships with Eli Lilly and LGC Genomics. 
Sequencing data have been deposited in GenBank (SRX1458096). Genotyping data have been deposited in the 
Gene Expression Omnibus (GSE76065).

REFERENCES AND NOTES

1. Rader DJ, Tall AR. Nat Med. 2012; 18:1344–1346. [PubMed: 22961164] 

2. Haase CL, et al. J Clin Endocrinol Metab. 2012; 97:E248–E256. [PubMed: 22090275] 

3. Frikke-Schmidt R, et al. JAMA. 2008; 299:2524–2532. [PubMed: 18523221] 

4. Voight BF, et al. Lancet. 2012; 380:572–580. [PubMed: 22607825] 

5. Acton S, et al. Science. 1996; 271:518–520. [PubMed: 8560269] 

6. Hoekstra M, Van Berkel TJ, Van Eck M. World J Gastroenterol. 2010; 16:5916–5924. [PubMed: 
21157967] 

7. Wang N, Arai T, Ji Y, Rinninger F, Tall AR. J Biol Chem. 1998; 273:32920–32926. [PubMed: 
9830042] 

8. Ueda Y, et al. J Biol Chem. 1999; 274:7165–7171. [PubMed: 10066776] 

9. Kozarsky KF, et al. Nature. 1997; 387:414–417. [PubMed: 9163428] 

10. Ji Y, et al. J Biol Chem. 1999; 274:33398–33402. [PubMed: 10559220] 

11. Varban ML, et al. Proc Natl Acad Sci USA. 1998; 95:4619–4624. [PubMed: 9539787] 

12. Rigotti A, et al. Proc Natl Acad Sci USA. 1997; 94:12610–12615. [PubMed: 9356497] 

13. Brundert M, et al. Arterioscler Thromb Vasc Biol. 2005; 25:143–148. [PubMed: 15528479] 

14. Ueda Y, et al. J Biol Chem. 2000; 275:20368–20373. [PubMed: 10751392] 

15. Kozarsky KF, Donahee MH, Glick JM, Krieger M, Rader DJ. Arterioscler Thromb Vasc Biol. 
2000; 20:721–727. [PubMed: 10712397] 

16. Arai T, Wang N, Bezouevski M, Welch C, Tall AR. J Biol Chem. 1999; 274:2366–2371. [PubMed: 
9891004] 

17. Van Eck M, et al. J Biol Chem. 2003; 278:23699–23705. [PubMed: 12639961] 

18. Trigatti B, et al. Proc Natl Acad Sci USA. 1999; 96:9322–9327. [PubMed: 10430941] 

19. Huszar D, et al. Arterioscler Thromb Vasc Biol. 2000; 20:1068–1073. [PubMed: 10764675] 

20. Braun A, et al. Circ Res. 2002; 90:270–276. [PubMed: 11861414] 

21. Zhang Y, et al. J Clin Invest. 2005; 115:2870–2874. [PubMed: 16200214] 

22. Teslovich TM, et al. Nature. 2010; 466:707–713. [PubMed: 20686565] 

23. Ghodsizadeh A, et al. Stem Cell Rev. 2010; 6:622–632. [PubMed: 20821352] 

24. Cayo MA, et al. Hepatology. 2012; 56:2163–2171. [PubMed: 22653811] 

25. Mallanna SK, Duncan SA. Curr Protocol Stem Cell Biol. 2013; 26(Unit 1G):4.

26. Si-Tayeb K, et al. Hepatology. 2010; 51:297–305. [PubMed: 19998274] 

27. Babitt J, et al. J Biol Chem. 1997; 272:13242–13249. [PubMed: 9148942] 

28. Viñals M, Xu S, Vasile E, Krieger M. J Biol Chem. 2003; 278:5325–5332. [PubMed: 12429731] 

29. Calvo D, Gómez-Coronado D, Lasunción MA, Vega MA. Arterioscler Thromb Vasc Biol. 1997; 
17:2341–2349. [PubMed: 9409200] 

30. Schwartz CC, VandenBroek JM, Cooper PS. J Lipid Res. 2004; 45:1594–1607. [PubMed: 
15145983] 

31. Vergeer M, et al. N Engl J Med. 2011; 364:136–145. [PubMed: 21226579] 

32. Hildebrand RB, et al. Arterioscler Thromb Vasc Biol. 2010; 30:1439–1445. [PubMed: 20431066] 

Zanoni et al. Page 8

Science. Author manuscript; available in PMC 2016 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



33. Lagrost L, et al. Arterioscler Thromb. 1993; 13:815–825. [PubMed: 8499401] 

34. Miettinen HE, Rayburn H, Krieger M. J Clin Invest. 2001; 108:1717–1722. [PubMed: 11733567] 

35. Hoekstra M, et al. J Lipid Res. 2008; 49:738–745. [PubMed: 18204096] 

36. Hoekstra M, et al. J Lipid Res. 2009; 50:1039–1046. [PubMed: 19179307] 

37. Kocher O, et al. J Biol Chem. 2003; 278:52820–52825. [PubMed: 14551195] 

38. Mineo C, Shaul PW. Curr Opin Lipidol. 2012; 23:487–493. [PubMed: 22907331] 

39. Rigotti A, Miettinen HE, Krieger M. Endocr Rev. 2003; 24:357–387. [PubMed: 12788804] 

Zanoni et al. Page 9

Science. Author manuscript; available in PMC 2016 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. HDL composition and functionality in a SCARB1 P376L homozygote, heterozygous 
carriers, and controls
(A) FPLC fractionation of plasma lipoproteins from the P376L homozygote subject (red) 

and from a control with normal HDL-C. (B) Cholesterol, apoA-I, and apoA-II content in 

total HDL. (C) Free cholesterol (FC) and esterified cholesterol (CE) in total HDL (left) and 

the FC/CE ratio in total HDL (right). (D) HDL subclass concentrations after separation by 

density-gradient ultracentrifugation. (E) ApoA-I content in the same HDL subclasses. (F) 

ApoC-III content in the same HDL subclasses. (G) Cholesterol efflux capacity from 

macrophages of the THP-1 cell line. All data are reported as means ± SD.
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Fig. 2. SCARB1 P376L is a null variant in vitro and in vivo
(A) [3H] Cholesterol ether (CEt) uptake (left) and selective cholesterol uptake from HDL 

(right) in iPSC-derived HLCs from the P376L homozygote versus a noncarrier control. Cells 

were incubated with [3H]CEt and 125I-labeled tyramine cellobiose (TC) dual-labeled human 

HDL. All values are normalized to relative ALB gene expression in each cell line. All data 

represent mean values for wells of respective cell lines ± SD. (B) Plasma HDL cholesterol 

levels before and 12 days after AAV administration to Scarb1 KO mice. (C) [3H]Cholesterol 

ether (CEt) clearance (left) and fractional catabolic rate (right) from plasma of Scarb1 KO 

mice injected with null or SR-BI AAVs after administration of [3H]CE/125I-labeled TC dual-

labeled human HDL. (D) 125I-labeled TC clearance (left) and fractional catabolic rate (right) 

from plasma after administration of dual-labeled HDL. (E) Selective cholesterol uptake in 

mice expressing null, SR-BI WT, or P376L measured by relative differences in 3H- and 125I-

labeled fractional catabolic rates. (F) Sensitivity to Endo-H in P376L homozygous versus 

noncarrier iPSC-derived HLCs. Cell lysates of each genotype were treated with Endo-H to 

remove complex N-linked glycans from mature forms of proteins and then immunoblotted 

for SR-BI. Molecular weights of different forms of SR-BI after Endo-H treatment are given 

on the left. (G) SR-BI Endo-H sensitivity from liver lysates from mice expressing null, SR-

BI WT, or SR-BI P376L AAV. Lysates were treated with Endo-H, followed by 

immunoblotting for SR-BI. Molecular weights of different forms of SR-BI after Endo-H 

treatment are given on the left. (A) Mean values for wells of respective cell lines ± SD; [(B) 
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to (E)] means ± SD for each of the three groups. *P < 0.05; ** P < 0.01; ***P <0.001 by 

analysis of variance (ANOVA) [(B) and (C)]; plasma clearance, unpaired t test (E).
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