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Abstract. Fluorescence molecular imaging (FMI) has shown potential to detect and delineate cancer during surgery 

or diagnostic endoscopy. Recent progress on imaging systems has allowed sensitive detection of fluorescent agents 

even in video rate mode. However, lack of standardization in fluorescence imaging challenges the clinical application 

of FMI, since the use of different systems may lead to different results from a given study, even when using the same 

fluorescent agent. In this work we investigate the use of a composite fluorescence phantom, employed as an FMI 

standard, to offer a comprehensive method for validation and standardization of the performance of different imaging 

systems. To exclude user interaction, all phantom features are automatically extracted from the acquired epi-

illumination color and fluorescence images, using appropriately constructed templates. These features are then 

employed to characterize the performance and compare different cameras to each other. The proposed method could 

serve as a framework towards the calibration and benchmarking of fluorescence molecular imaging systems, to 

facilitate their clinical translation.  
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1 Introduction 

An important goal of surgical oncology is the complete removal of malignant tissue. However, 

limitations in human vision and tactile feedback lead to insufficient intraoperative inspection of 

tumor margins. Typically, post-surgical assessment of excised specimen with histopathology is 

required for verification if a complete tumor resection was achieved. Histological analysis of 

biopsies and surgical specimen is nevertheless time consuming, labor intensive, and subject to 

sampling errors as involves specialized personnel and subjective interpretation of readouts. 

Importantly, post-surgical findings of positive tumor margins may require secondary procedures. 

Thus, new technologies for real-time guidance are needed to address limitations that may lead in 

incomplete surgical treatment of disease. Indeed, statistics with breast conserving surgeries, for 
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example, show that the incomplete resection rates range between 20% and 50%1-3, entailing 

recurrent surgical intervention with associated risks4. 

Fluorescence imaging has the potential to improve surgical and endoscopic guidance and 

positively impact the clinical management and prognosis of numerous diseases. Even though 

indocyanine green (ICG) and other fluorescent agents have been considered for surgical guidance5-

7, including robot assisted interventions8, 9, their ability for tumor delineation is limited due to lack 

of specificity10. Conversely, fluorescent agents that target specific biochemical and molecular 

features can improve demarcation of malignant tissue and have received approvals for 

experimental clinical use10-12. 

A critical issue associated with the clinical translation of fluorescence molecular imaging 

relates to the reproducibility of the collected measurements. In particular, images acquired from 

the same target using different fluorescence cameras may vary considerably when the employed 

systems have markedly different specifications. Methods that standardize fluorescence imaging 

are therefore becoming necessary for assessing the performance of fluorescence systems and 

agents and for providing a reference to the recorded data. Consequently, a number of phantoms 

have been suggested for comparing fluorescence imaging systems13-16. Polyurethane-based 

phantoms were considered recently for assessing the sensitivity of fluorescence cameras or for 

quantifying the excitation light leakage into the acquired fluorescence images13, 14. Tissue 

mimicking phantoms simulating optical properties and/or geometry of sample tissues have also 

been applied for training surgeons or for validating new hardware configurations and software 

methodologies15, 17, 18. Nevertheless, most of these phantoms resolve one or a few parameters and 

do not allow for comprehensive characterization of all variables associated with fluorescence 

imaging performance. 
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In this work we sought to identify a methodology that could offer seamless benchmarking of 

fluorescence cameras. We have recently proposed a composite FMI phantom, i.e. a phantom 

capable of integrating multiple targets within the field of view of a fluorescence camera, so that 

multiple camera characteristics can be examined with a single or a few image acquisitions19. Using 

this composite phantom, we develop an approach to process the fluorescence phantom image and 

quantify different camera performance parameters automatically. We show, for the first time, how 

the use of a composite phantom can be employed for the comprehensive calibration of a camera 

system. Further, we demonstrate how composite phantoms can be employed for comparing 

systems of different specifications. The described benchmarking method may become critical for 

standardization of imaging systems with broader applications for clinical translation of 

fluorescence molecular imaging. 

2 Materials and Methods 

2.1 Standardization phantom 

We have previously proposed a rigid phantom for interrogating different aspects of fluorescence 

and optical imaging performance19. The phantom contains a number of imaging targets and 

resolves different fluorescence features (Fig.1). In particular, as shown in Fig. 1b, each quadrant 

of the phantom tests different performance parameters, i.e. (i) sensitivity as a function of the optical 

properties (red color); (ii) sensitivity as a function of the depth from the top surface (blue color); 

(iii) resolution of the fluorescence and optical imaging (purple color); (iv) cross-talk from the 

excitation light (pink color). The five wells at the corners and center of the phantom (green color) 

have been added to assess the field illumination (i.e. illumination for enabling reflectance color 

imaging) homogeneity when optical measurements are performed through a color camera. 
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The main constituent of the phantom is a transparent polyurethane (WC-783 A/B, BJB 

Enterprises, Tustin, USA). The fluorescence compounds are organic quantum dots (Qdot® 800 

ITK™, Q21771MP, Thermofisher Scientific Waltham, USA). Scattering is imposed by anatase 

TiO2 nanoparticles (Titanium IV Oxide, Sigma Aldrich, St. Louis, USA); absorption is mimicked 

by alcohol solvable nigrosin (Sigma Aldrich, St. Louis, USA) in the phantom main body and by 

Hemin (Sigma Aldrich, St. Louis, USA, from bovine ≥ 90%) in the different wells. Selection of 

the specific phantom materials was based on the stability of their optical properties over time and 

their ability to create homogeneous mixtures14, 19. The specific mixtures content of all phantom 

elements are given in Fig. 1b. The procedure of the phantom’s preparation has been explicitly 

described elsewhere19. 

2.2 Imaging Systems 

To develop a methodology that employs composite phantoms for comparing different systems we 

used two imaging systems (Fig. 2). The system in Fig. 2a (Camera I) is a modified version of the 

one that has been developed, characterized, and reported by our group elsewhere20. Briefly, a 750 

nm CW laser diode (BWF2-750-0, B&W Tek, Newark, Delaware, USA) with a maximum power 

of 300 mW is used to excite the fluorescence compounds of the phantom, while field illumination 

is enabled by a 250 W halogen lamp (KL-2500 LCD, Schott AG, Mainz, Germany). The laser 

power incident to the phantom at a working distance of 15 cm was measured at 85 mW/cm2, which 

is lower than the maximum permissive exposure according to American National Standards 

Institute (ANSI) standard for eye exposure. A short-pass filter (E700SP, Chroma Technology, 

Rockingham, Vermont, USA) is used to remove the near infrared (NIR) component of the field 

illumination and thus to eliminate the cross-talk between fluorescence detection and field 

illumination optical paths (F1 in Fig. 2a). Ground glass diffusers (DG10-220, Thorlabs, Newton, 
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New Jersey, USA) are used to achieve uniform illumination of the field of view from both light 

sources (D in Fig. 2a). The optical signal is collected by a motorized zoom/focus lens (CVO 

GAZ11569M, Goyo Optical Inc, Asaka, Saitma, Japan) and spectrally resolved in two channels 

by a dichroic mirror (700DCXXR, AHF analysentechnik AG, Tubingen, Germany) (DM in Fig. 

2a). The first channel, which is within the spectral range 720 – 850 nm, is relayed through a NIR 

achromatic doublet pair (MAP10100100-B, Thorlabs, Newton, New Jersey, USA) (RL1 in Fig. 

2a), filtered by a NIR emission filter (ET810/90, Chroma Technology, Rockingham, Vermont, 

USA) (F2 in Fig. 2a) and recorded by an iXon electron multiplying charge-coupled device 

(DV897DCS-BV EMCCD, Andor Technology, Belfast, Northern Ireland). The second channel, 

which is within the spectral range 450 – 700 nm, is relayed through a visible achromatic doublet 

pair (MAP10100100-A, Thorlabs, Newton, New Jersey, USA) (RL2 in Fig. 2a), filtered by a short-

pass filter (ET700SP-2P, Chroma Technology, Rockingham, Vermont, USA) (F3 in Fig. 2a) and 

recorded by a 12-bit color CCD camera (pixelfly qe, PCO AG, Kelheim, Germany). 

Camera I can operate under two configurations: i) with both cameras (EMCCD and CCD) 

enabled for simultaneous acquisition of fluorescence and color images (Camera I-FC) or ii) using 

only the EMCCD camera; thus capturing only fluorescence images (Camera I-F). 

The second system (Camera II; Fig.2b) is also based on EMCCD detection (Luca R, Andor 

Technology, Belfast, Northern Ireland). Camera II has four major differences compared to Camera 

I: (i) it lacks the color imaging channel (450 – 700 nm spectral band), (ii) it has different 

operational characteristics (see Table 1), (iii) it uses a different fluorescence filter (D850/40m, 

Chroma Technology, Rockingham, Vermont, USA) (F4 in Fig. 2b), and (iv) it employs a different 

lens (Zoom 7000 Macro Lens, Navitar, New York, USA). The differences between the two 

fluorescence imaging systems are summarized in Table 1. 
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Table 1 The main differences between Camera I and Camera II. 

 Camera I Camera II 

Resolution (pixels) 512×512 1004×1002 

Pixel Size (μm) 16×16 8×8 

Quantum Efficiency (at 800 nm) ~70% ~40% 

Dynamic Range (bit) 16 14 

Detection Wavelength (nm) 810/90 850/40 

Color Reflectance Imaging Yes (450 – 700 nm) N/A 

 

Data acquisition and control of cameras was enabled via the Solis software (Solis I, Andor 

Technology, Belfast, Northern Ireland) and a GPU based C++ software developed by our group20. 

All data processing was implemented in MATLAB (Mathworks Inc., Massachusetts, USA). 

2.3 Data acquisition protocols 

We explored the use of the composite phantom in association with two acquisition parameters: 1) 

the level of pixel-binning of the camera sensor and 2) the working distance, i.e. the distance from 

the camera lens to the surface of the target object. For all experiments performed, fluorescence 

was enabled by the same excitation source, that is the 750 nm laser diode (Fig. 2), and images were 

acquired with room lights turned off. The integration time was set at 0.1 s, to resemble real-time 

measurements as they are performed in vivo. To ensure minimization of boundary effects, the 

phantom was placed on top of a highly absorbing material. 

Table 2 The acquisition settings for all the investigated cases. 

Experimental 

Configuration 

Working Distance 

(mm) 

Binning Gain Temperature (°C) 

Camera I-F 

Camera I-FC 
320 1× 4000 -70 

Camera II-a 320 1× 200 -20 

Camera II-2×a 320 2× 200 -20 

Camera II-4×a 320 4× 100 -20 

Camera II-b 200 1× 200 -20 

Camera II-2×b 200 2× 200 -20 

Camera II-4×b 200 4× 60 -20 

 



7 

To examine the effects of pixel-binning, both cameras were positioned at the same 320 mm 

working distance from the phantom surface. This distance is a representative working distance for 

a wide range of intraoperative applications. Fluorescence images were then acquired with different 

gains, cooling temperatures and pixel binning, as listed in Table 2. 

The influence of the working distance was also examined by operating Camera I at 320 mm 

distance from the target while changing the working distance of Camera II to 200 mm. 

Fluorescence images were acquired from Camera II without pixel-binning (Camera II-b), with 2× 

(Camera II-2×b) and with 4× (Camera II-4×b) pixel-binning. The gain of Camera II-4×b was 

reduced compared to the other configurations of Camera II in order to avoid saturation. Table 2 

summarizes all acquisition settings for both tests implemented. 

For every fluorescence image acquired, a corresponding dark image, i.e. image with the 

excitation light disabled and maintaining constant all other acquisition settings, was also captured. 

This image was used for estimating the effects of ambient illumination, that is stray light emitted 

from sources different than the ones of the two systems (i.e. computer monitors, optical mice, 

indication light emitting diodes on electronic devices, to name a few). Further, subtraction between 

the fluorescence and dark images compensated for possible parasitic illumination (i.e. ambient 

illumination at the detection wavelengths) or dark current influence on the validation process. 

In addition, reflectance images were acquired for every experimental configuration shown in 

Table 2. These images were used to estimate the optical parameters of each camera (i.e. 

magnification and optical resolution, see Sec 2.4 below). The reflectance images, for all 

configurations of Camera I-C and Camera II, were acquired with room lights turned on. On the 

other hand, for the configuration of Camera I-FC the reflectance images were acquired by the CCD 

camera with field illumination enabled and room lights turned off. 
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2.4 Camera Performance Assessment 

To calibrate and compare different imaging systems with minimal user intervention we developed 

an automated method for the detection of all the composite phantom elements. This method was 

based on the application of the speeded-up robust features (SURF) algorithm21 applied on the 

acquired images and specially designed templates. The distance between the two sets of features 

was then computed and thresholded based on an efficient approximate nearest neighbor search22. 

The outcome of this process was two sets of image points, one set corresponding to the template 

and one to the acquired image. These points were then used to estimate the geometric 

transformation between the two images. Two phantom templates were designed: i) one that was 

used for the fluorescence images (Fig. 3a), and ii) one that was used for the reflectance images 

(Fig. 3b).  

Employing the geometric transformation derived from the abovementioned process predefined 

points of interest were projected from the templates onto the acquired images. These points include 

(i) the four corners of the phantom, (ii) the center and one perimeter point of all the circular 

phantom elements, (iii) the six corners of the L-shaped phantom element, and (iv) the four corners 

of the USAF-1951 target, as well as the four corners of all the target’s line elements. These points 

are adequate to extract all phantom components and consequently to quantify camera performance 

metrics, i.e. magnification, optical resolution, diffused fluorescence resolution, excitation light 

leakage and parasitic illumination, sensitivity and field illumination homogeneity as described in 

the following: 

2.4.1. Magnification 

By detecting the boundaries of the phantom in the acquired images, the magnification, M , is 

approximated by the following formula: 
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where phantom 100D   mm is the phantom’s width, and the denominator represents the Euclidean 

distance in Cartesian coordinates between two adjacent corners of the phantom on the imaging 

plane. In Eq. (1)  1 1,u v  and  2 2,u v  are the pixel coordinates of the two phantom corners, pwD  

is the pixel width, and phD  the pixel height. This metric is then expressed as the well-known 

magnification ratio 1: M . The magnification can be approximated either from the acquired 

fluorescence images or from the reflectance ones. 

2.4.2. Optical resolution 

The optical resolution is approximated through the USAF-1951 target, which consists of a series 

of elements (having two sets of three lines separated by spaces equal to one line’s width) at right 

angles, organized in groups. This metric is quantified as cycles per mm (c/mm) through the general 

formula: 
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which provides the frequency, F , of any target element in any target group. In addition, the line 

or space width of each element can be estimated from the frequency as  
1
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For each one of the bounding boxes of the USAF-1951 target elements, as defined by the four 

corners of the corresponding line, the contrast transfer function (CTF) is quantified by the 

Michelson’s formula23: 
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where 
iI  denotes the intensity values of the pixels inside the 

thi  bounding box. Adopting the 

Rayleigh criterion for optical imaging, the limit where CTF is ~26.4%20 defines the USAF-1951 

target’s elements that can be fully resolved by the system. The frequency of these elements is then 

estimated by Eq. (2), and thus the resolution of the system for the specific working distance and 

field of view is quantified. 

Optical resolution can be validated only on reflectance images, acquired either with room lights 

turned on (i.e. for all Camera II configurations and Camera I-F) or under field illumination (i.e. for 

Camera I-FC configuration), as described in Sec. 2.3. 

2.4.3. Diffused fluorescence resolution 

The diffused fluorescence resolution is quantified by the L-shaped element of the phantom. The 

determination of diffused resolution of a fluorescence imaging system is achieved for a specific 

set of optical properties of the fluorescent target and the surrounding medium and changes if the 

optical properties of either one change. Thus, the purpose of the L-shaped element in the phantom 

is the quantification of resolution improvements that may be offered by a system and/or method. 

As in the optical resolution, the CTF is employed for the approximation of the diffused 

fluorescence resolution. Specifically, the CTF is calculated over every line segment that is 

perpendicular to the bisector of the L-shaped element (Fig. 3c). In order to exclude any possible 

bias by the USAF-1951 target, all lines crossing it are not considered. In addition, to remove high 

frequency noise from the CTF measurements, the CTF distribution across the lines is fitted to a 

second order polynomial. Limiting the CTF to ~26.4%, the length of the last line, 
FL , over this 

threshold is transformed from image to scene (phantom) coordinates, using the pixel dimensions, 

pw phD D , and the magnification, M : 
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2 22 2

1 2 1 2F pw ph
L M D u u D v v       , (4) 

where  1 1,u v  and  2 2,u v  are the two edges of the line segment. This distance is reported as the 

diffused fluorescence resolution of the investigated camera. 

2.4.4. Excitation light leakage and parasitic illumination 

The presence of excitation light leakage through the filters is assessed by the highly scattering and 

the highly absorbing wells in the upper left quadrant of the phantom (pink color in Fig. 1b). 

Specifically, the transmission ratio, 
excR S N , is estimated by assuming the average pixel 

counts (i.e. digitized pixel intensity) from the highly scattering element as the signal component, 

S , and the average pixel counts from the highly absorbing element as noise, N . If this ratio is 

equal to or smaller than 1, it implies reduced excitation light leakage, whereas higher values 

indicate the presence of excitation light in the acquired data. 

Parasitic illumination is assessed following the exact same process as for light leakage, but on 

the dark images. With the excitation source disabled, the highly scattering and absorbing elements 

of the phantom can only be visualized under the presence of parasitic illumination. The 

transmission ratio, parR , will provide a quantified indicator on the influence and significance of 

parasitic illumination. This quantity may be related to filter parameters and environmental 

conditions, such as ambient light, and can be further employed to optimize the system or the 

lighting conditions. 
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2.4.5. Sensitivity vs. optical properties and depth 

The sensitivity of a fluorescence camera for various optical properties (i.e. different absorption 

and scattering) or depth has been validated based on readouts from the 18 corresponding phantom 

wells (red and blue colors in Fig. 1b). 

The signal-to-noise ratio (SNR) for each of these wells is approximated through the formula: 

 20 log
dB

S
SNR

RMSN

 
   

 
 (5) 

where S  is the average intensity within each well of the raw fluorescence image and RMSN  

corresponds to the root mean square noise approximated from the phantoms’ main body (i.e. 

excluding all elements). In this way the SNR is normalized for variations that are introduced by 

the base constituents of the phantom and excitation light leakage. Moreover, considering normal 

signal distributions, a measurement is assumed to present 95% confidence if the signal is twofold 

the noise level20, which in the dB scale corresponds to 6 dB. 

The capability of the system to image the fluorescence wells is further assessed through the 

contrast as expressed by the Weber’s fraction, C  24: 

 
S N

C
N


  (6) 

where N  is the average pixel counts from the highly scattering element of the phantom (right pink 

color in Fig. 1b). The higher this metric for a fluorescence element of the phantom, the better a 

fluorescence camera can discriminate it from light leakage. Similar to SNR, 95% confidence is 

achieved when the signal is twofold the noise level, which corresponds to 1C  . As expected from 

the definitions of SNR and contrast, these quantities are figures of merit for benchmarking different 

systems as a function of the specific phantom, rather than absolute values to characterize a single 

system. 
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2.4.6. Field illumination homogeneity 

The homogeneity of the field illumination can be approximated using the 5 highly scattering 

elements located at the 4 corners and the center of the phantom (green color in Fig. 1b). A 

normalized average intensity equal to 1 for all 5 elements indicates a homogenous illumination 

profile, whereas the higher the deviation between the 5 values, the higher is the illumination 

heterogeneity. We note that while this phantom offers a crude spatial sampling of the illumination 

field, integration of more reflecting elements could be considered for more accurate determination 

of field illumination. 

Flat-fielding can be achieved by applying bicubic splines interpolation of the average intensity 

from each of the 5 elements and dividing the acquired reflectance images with the resulting 

profile19. 

2.5 Image Registration 

In addition to the performance assessment of fluorescence cameras, the phantom enables 

interrogation of the registration between fluorescence and color images, as it applies to 

fluorescence/color imaging systems, such as Camera I. The transformation from the image 

coordinates of color camera,  ,c cu v , to the coordinates of the fluorescence camera,  ,f fu v , is 

performed through the linear system: 

 

1 1

c f

c f

u u

v v

   
   

 
   
      

A  (7) 

The 3 3  affine transformation A  can be estimated by Eq. (7) after solving the correspondence 

problem, i.e. the extraction of points of interest visible by both imaging modalities. Nevertheless, 

the fiduciary markers of the phantom (see Sec. 2.4) can serve as points of interest and thus can be 
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used to solve the correspondence problem and through that approximate the affine transformation

A . 

3 Results 

Fig. 4 shows the fluorescence and reflectance image pairs as acquired by three experimental 

configurations of the two cameras employed in this study. Specifically, Fig.4a shows the 

fluorescence image acquired by configuration Camera I-F and Fig. 4b depicts the corresponding 

reflectance image acquired with the room lights turned on. The equivalent image pair acquired by 

configuration Camera II-a is shown in Fig. 4c and Fig. 4d. Finally, for the experimental 

configuration Camera I-FC the fluorescence image of the phantom is shown in Fig. 4e and the 

reflectance image acquired by the color camera with enabled the field illumination and the room 

lights turned off is shown in Fig. 4f. The different sensor size and pixel resolution between the 

EMCCD and CCD of Camera I lead to the different aspect ratios between panels (e) and (f). The 

fluorescence images shown in Fig. 4 are employed for the determination of the fluorescence 

performance parameters of the two cameras for the various experimental configurations (i.e. 

fluorescence resolution, excitation light leakage, parasitic illumination, and sensitivity), while the 

reflectance images are used for the determination of the optical parameters (i.e. optical resolution, 

magnification). 

The boundaries of the phantom elements shown in all panels of Fig. 4 were determined by the 

projection of the points of interest describing each element from the templates to the phantom 

images via the application of the SURF algorithm (see Sec. 2.4). These elements are employed for 

the automated quantification of the camera parameters without any user intervention. 
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3.1 Assessment of Fluorescence Imaging Sensitivity 

Fig. 5 and Fig. 6 demonstrate the fluorescence imaging performance of the first and third 

configurations in Table 2. Fig. 5 depicts the fluorescence measurements from configuration 

Camera I-F. Specifically, Fig. 5a shows the pixel counts of the 9 wells with different optical 

properties and Fig. 5b,c depict the corresponding SNRs and contrast  C  achieved as estimated 

by Eq. (5) and (6) respectively. The visualization scheme adopted for the SNR and contrast is 

based on the corresponding thresholds (i.e. 6 dB for SNR and 1 for C ). This provides a rapid 

visual assessment whether these thresholds are exceeded in any of the wells. Further, the height of 

the saturated area, that is the red part of the cylinder, provides information regarding the order of 

magnitude that the achieved metric is higher than the corresponding threshold. The same metrics 

as derived from the 9 wells with different depths from the phantom’s top surface are shown in Fig. 

5d though Fig. 5f. Fig.6 shows the corresponding measurements for configuration Camera II-a in 

Table 2, and in the same order as in Fig.5. 

Two systems can be considered of similar sensitivity if 1) they succeed to pass the SNR and 

C  thresholds in the same number of wells, and 2) the quantified SNR and C  values are of 

equivalent distances from the corresponding thresholds. For the two systems considered in this 

study, it is evident from Fig. 5 and Fig. 6 that Camera I-F outperforms Camera II-a in all sensitivity 

metrics: (i) the pixel counts of Camera I-F exceed tenfold those from Camera II-a; (ii) Camera I-

F passes the 6 dB SNR threshold at 8 out of the 9 wells with different optical properties and at all 

depths, while Camera II-a passes the SNR threshold at 6 of the wells with different optical 

properties and at 7 wells of different depth; (iii) although C  for both camera configurations is 

above the threshold for all wells, Camera I-F presents twice as stronger contrast than Camera II-a. 
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Fig. 7 depicts the summary of quantitative comparisons between Camera I-F and all Camera 

II experimental configurations (see Table 2). Fig. 7a depicts the pixel counts from the 9 wells with 

the different optical properties, while Fig. 7b,c show the corresponding achieved SNRs and C . 

Similarly, panels (d) through (f) show the pixel counts, SNRs and C  from the 9 wells with the 

different depths from the phantom’s top surface. 

Panels (a), (b), (d), and (e) of Fig. 7 show that binning or reduction of the working distance for 

Camera II improves both pixel counts and SNRs for all wells. For example, in Fig. 7a there is more 

than tenfold increase in the pixel counts between Camera II-a and Camera II-4×b for the well 

containing 20 μg/g Hemin, 0.66 mg/g TiO2, and 10 nM QDots (the right well of the B group in 

Fig. 1b), which is translated to almost 50% SNR increase as seen in Fig. 7b. In the last two columns 

of Table 3 the achieved sensitivity of all cameras is given by means of minimum (i.e. the minimum 

value above the 6 dB threshold) and maximum SNR for the 9 wells with different optical 

properties, SNROP,min and SNROP,max correspondingly, and the ones with different depth from the 

top surface of the phantom, SNRD,min and SNRD,max, correspondingly. However, the observable 

improvement in sensitivity comes with contrast reduction, as seen in panels (c) and (f) of Fig. 7. 

This is due to the increase of the excitation light leakage and the parasitic illumination (Table 3). 

Although Camera II-a presents inferior performance compared to Camera I-F, the measurements 

shown in Fig. 7 reveal that modification of its acquisition parameters (i.e. working distance and/or 

binning) can eventually lead to comparable to Camera I-F performance. 

3.2 Assessment of optical/fluorescence parameters 

Table 3 tabulates the magnification  M , the optical  RL  and diffused  FL  resolution, and the 

excitation light leakage  excR  from both cameras and all experimental configurations as 
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quantified by the images of Fig. 4. Parasitic illumination  parR  quantified by the transmission 

ratio from the corresponding dark images, is also included. The magnification does not deviate 

much from one measurement to another since the phantom was covering most of the field of view 

for all configurations. 

Table 3 Quantification of various validation metrics from both cameras under all experimental configurations. 

Camera M  RL  (mm)*** 
FL  (mm) 

excR  parR  
SNROP,min 

SNRD,min 

(dB)**** 

SNROP,max 

SNRD,max 

(dB)***** 

Camera I-F 1:13.3 0.13 × 0.10 1.3 1.9 1.3 
6.5C1 

9.4D9 

18.0B10 

17.0D1 

Camera I-FC 
1:15.9* 

1:17.5** 
0.04 × 0.04** 1.9 1.8 1.9 

6.5B1 

6.8D6 

14.0B10 

13.4D1 

Camera II-a 1:14.2 0.05 × 0.05 1.4 1.3 1.1 
7.4A10 

6.2D6 

10.9B10 

11.4D1 

Camera II-2×a 1:14.2 0.11 × 0.10 3.0 1.4 1.3 
6.5C1 

7.1D9 

14.6B10 

15.4D1 

Camera II-4×a 1:14.2 0.25 × 0.20 3.7 1.5 1.6 
9.0C1 

8.8D9 

16.2B10 

17.0D1 

Camera II-b 1:13.8 0.06 × 0.04 2.2 1.7 1.1 
7.4A10 

8.2D6 

12.9B10 

14.2D1 

Camera II-2×b 1:13.6 0.14 × 0.10 3.6 1.8 1.2 
6.4B1 

7.3D8 

15.0B10 

16.2D1 

Camera II-4×b 1:13.6 0.25 × 0.28 3.7 1.9 1.5 
8.0C1 

6.0D9 

15.0B10 

17.0D1 
* Fluorescence; ** Color; *** Horizontal × Vertical resolution, **** Indices represent the wells labeling according to Fig. 1b. 

The optical resolution depends on the pixel size of each camera and the magnification (i.e. 

512×512 pixels for the EMCCD of Camera I and 1002×1004 pixels for Camera II at 16×16 μm 

and 8×8 μm respectively). Camera I-F, having the largest pixel dimensions, presents lower 

resolution compared to Camera II-a and Camera II-b, but has similar resolution with Camera II-

2×a and Camera II-2×b. The diffused fluorescence resolution depends on the specific optical 

properties of the fluorescence target and is introduced to interrogate devices that may account for 

photon diffusion; a function that is not enabled in the experimental study herein.  

A limited amount of excitation light leakage in both cameras was observed, as shown in Table 

3. At the same working distance, Camera I-F displays higher light leakage than Camera II-a; 

possibly due to differences of the filters employed. Nevertheless, the light leakage becomes 
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comparable between the two systems when the working distance of Camera II is reduced to 200 

mm. The latter is expected and is due to the reduced distance between the imaged surface, the 

camera lens and the excitation source. When comparing Camera I-F and Camera II-a it becomes 

apparent that the level of parasitic illumination is slightly higher in Camera I-F; also possibly due 

to the different band-pass filters employed in the two cameras. Under binning, however, Camera 

II presents equal or even higher (i.e. binning 4×) parasitic light contamination than Camera I-F. 

Finally, the sensitivity measurements shown in the last two columns of Table 3 summarize the 

findings discussed in the previous section (Sec 2.1) when comparing Camera I with Camera II. 

Although magnification is substantially different than in all other camera configurations, Camera 

I-FC shows higher sensitivity to many Camera II acquisition settings. 

To identify which of the acquisition settings of Camera II investigated in this study brings the 

performance of that camera closer to the performance of Camera I, we adopted a least squares 

method between all metrics quantified through the phantom. This analysis identified Camera II-

2×b as the one that approaches better the performance of Camera I. 

3.3 Correction of Field Illumination Homogeneity 

Fig. 8a depicts the normalized intensity inside the 5 highly scattering wells (green color in Fig. 1b) 

imaged by the color camera of the Camera I-FC. These values are used to approximate the field 

illumination profile onto the phantom surface. For the specific measurement, as seen in Fig. 8b, 

this profile is strongly inhomogeneous. This observation is further confirmed by Fig. 8c, where 

the phantom image is affected by vignetting. The applied flat-fielding, however, corrected for this 

inhomogeneity, while preserving all the color information in the acquired image, as it can be seen 

in Fig. 8d. 
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3.4 Registration of Color and Fluorescence Images 

Fig. 9 shows two versions of the same color image, after flat-fielding, augmented with the 

corresponding fluorescence image. In panel (a) the fluorescence image has been transformed to 

the coordinates system of the color image, while panel (b) depicts the inverse transformation (i.e. 

the color image transformed to the coordinates system of the fluorescence image). These 

transformations do not require increased computational cost, as all the fiducial markers, required 

for the estimation of the affine transformation between the two imaging planes, are available 

through the SURF algorithm. The derived transformation matrices can be employed to provide 

highly accurate co-registration between the color and fluorescence images. 

4 Discussion 

The absence of robust methods for benchmarking fluorescence molecular imaging platforms and 

standardizing fluorescence medical imaging may impose hurdles on its diagnostic and clinical 

translation. The study herein introduced a framework for the use of composite fluorescence 

phantoms for the a) automatic characterization of the performance of different imaging cameras 

and b) calibration of two imaging platforms. The procedure can also employ the calibration 

parameters extracted to configure different systems so that they offer comparable performance, 

which may be of relevance to multi-center clinical trials or for producing measurements using 

different systems. Equilibrating images could be also performed in retrospect by image processing 

using the calibration parameters extracted by the different systems.  

To benchmark two fluorescence imaging systems of markedly different specifications we 

employed a composite phantom, designed to exhibit a variety of optical and fluorescence 

characteristics19. Fluorescence images from this phantom were acquired using two cameras and 

different operational modes. The methodology developed provides the means for non-biased 
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validation of systems by automatically extracting imaging features and thus excluding human 

interference, using previously developed composite phantoms19. Compared to simple phantoms13-

16, composite phantoms can provide a comprehensive characterization of fluorescence imaging 

system performance using a single or a few images, possibly even at a single snapshot. 

As seen in Fig. 4, there is always a relatively large number of phantom elements visible in the 

acquired images, making the application of the SURF based registration algorithm quite robust 

and accurate. Nevertheless, other registration algorithms can also be applied with potentially 

equivalent results, as the novelty of the proposed approach is the use of templates, which even for 

the case of the fluorescence images, where not all wells are visible, ensures successful extraction 

of all phantom elements. 

The results presented in this study allowed the comparison of the two exemplary cameras 

employed herein for demonstration purposes and clearly indicated a superiority of Camera I 

compared to Camera II when operating at equivalent settings (i.e. working distance, pixel-binning, 

or gain, to name a few). However, modification of one or more of these acquisition parameters 

impacts imaging performance. Indeed, our results clearly demonstrate that appropriate adjustment 

of Camera II acquisition parameters can modify the performance and optimize certain performance 

features to resemble Camera I performance.  

Automatic extraction of camera specifications using composite phantoms can by employed in 

basic research and clinical studies to validate a camera’s performance prior to surgery or 

endoscopy (e.g. under miniaturization of the phantom design) and to confirm selected 

configurations and proper operation. Automatic feature extraction visualized in composite 

phantoms can therefore serve on a trouble-shooting role over time and before each experimental 

process20. Another possible use is in quality control during a camera manufacturing or selection 
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process. Finally, an intended application for the methodology developed is the generation of 

“equivalency” of data acquired during multi-center clinical trials; where the camera systems 

employed can be calibrated on the same composite phantoms for referencing purposes in 

association with the data collected. 

Future work includes the development of composite phantoms that can capture a larger number 

of camera parameters, such as characterizing the dynamic range and spectral response, and to offer 

a more accurate correction for inhomogeneous illumination. The base material of the phantom 

described herein presents a relatively high absorbance. This minimizes any possible cross-talk 

between neighboring wells and photon diffusion is relatively limited. Nevertheless, such 

implementation is not ideal for validating the performance of systems designed to encounter for 

photon diffusion. In order to enable such feature, we plan to develop phantoms that will incorporate 

a number of wells within highly absorbing base material and thus cross-talks between neighboring 

elements will be eliminated, whereas other wells will be within highly scattering base material, 

and thus allow for validation of the aforementioned systems. Functions for the automatic extraction 

of these additional features can then be developed to streamline the detection and analysis of a 

larger set of calibration parameters. Although there exists evidence in literature regarding the 

stability of the employed materials14, 19, we further plan to perform systematic constancy and 

mechanical integrity tests to validate the stability of the optical properties of the various phantom 

elements at different environments.  

The proposed herein methodology represents an early attempt of standardizing imaging 

measurements or systems for fluorescence molecular imaging. Overall, we expect that the field of 

standardization will play a major role in the growth of fluorescence molecular imaging. 
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Fig. 1 The standardization phantom employed in this study. (a) The designed phantom and its 

dimensions. (b) The different compartments per element and/or group of elements of the phantom. 

The base material is transparent rigid polyurethane. In (b): Arrowheads indicate that a group of 

elements (per row, column, or color code) have the same constituents, while the dotheads indicate 

the composition of a single element of the phantom. Color codes: Red - sensitivity vs. optical 

properties (three sets of optical properties, A, B, and C); Blue - sensitivity vs. depth (index in the 

3×3 matrix defines the depth); Purple - resolution; Pink - cross-talk; Green – field illumination 

homogeneity; Cyan - phantom body; Di - depth from the phantom’s top surface. 
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Fig. 2 Schematics of the two imaging systems employed in this study. (a) The fluorescence/color 

camera (Camera I) and (b) the fluorescence camera (Camera II) were validated and benchmarked 

through imaging the composite phantom. D: diffuser; F: filter; DM: dichroic mirror; RL: relay 

lens. 
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Fig. 3 The templates used for the automated detection of all phantom elements. (a) The template 

for the fluorescence images includes only the elements of the phantom containing the QDots. (b) 

The template for the reflectance images, on the other hand, includes all elements of the phantom. 

(c) The diffused fluorescence resolution is defined as the smallest line perpendicular to the bisector 

of the L-shaped element (purple line) that can resolve the two edges of the concave vertex (blue 

dot). The scanning direction of the purple line is indicated by the white arrow and following the 

template matching can be applied to the fluorescence images. 
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Fig. 4 The fluorescence and reflectance image pairs acquired by three experimental configurations 

of the two cameras employed in this study, with the phantom’s elements highlighted by color-

coded edges. (a) The fluorescence image acquired by Camera I-F and (b) the corresponding 

reflectance image acquired with room lights turned on. (c) The fluorescence image acquired by 

Camera II-a and (d) the corresponding reflectance image acquired with room lights turned on. (e) 

The fluorescence image acquired by Camera I-FC and (f) the reflectance image simultaneously 

acquired by the color camera of Camera I with the field illumination enabled and the room lights 

turned off. The color-code of the phantom elements correspond to the one of Fig. 1b. 
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Fig. 5 The fluorescence measurements from experimental configuration of Camera I-F. (a) The 

pixel counts of the 9 wells with different optical properties. (b) The corresponding SNR and (c) 

contrast achieved. (d) The pixel counts of the 9 wells with different depth from the phantom’s top 

surface. (e) The corresponding SNR and (c) contrast achieved. SNR and contrast were quantified 

through Eq. (5) and (6) respectively. Colorbars correspond to the z-axis of each panel and for SNR 

and contrast metrics define the threshold levels. 
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Fig. 6 The fluorescence measurements from experimental configuration of Camera II-a. (a) The 

pixel counts of the 9 wells with different optical properties. (b) The corresponding SNR and (c) 

contrast achieved. (d) The pixel counts of the 9 wells with different depth from the phantom’s top 

surface. (e) The corresponding SNR and (c) contrast achieved. SNR and contrast were quantified 

through Eq. (5) and (6) respectively. Colorbars correspond to the z-axis of each panel and for SNR 

and contrast metrics define the threshold levels. 
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Fig. 7 Quantitative comparisons between Camera I-F and all configurations of Camera II. (a) Pixel 

counts, (b) SNR, and (c) contrast from the 9 wells with different optical properties. (d) Pixel counts, 

(e) SNR, and (f) contrast from the 9 wells with different depths from the phantom’s top surface. 

In all panels x-axis labeling corresponds to the labeling of phantom elements shown in Fig. 1b. 
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Fig. 8 Field illumination correction through reflectance measurements. (a) The normalized 

intensity of the 5 highly scattering wells of the phantom. (b) The field illumination profile over the 

entire field of view. (c) An acquired image from the color camera of Camera I affected by 

vignetting. (d) Application of flat-fielding to correct for inhomogeneous field illumination. 
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Fig. 9 A color image of the phantom augmented with fluorescence data as acquired by Camera I-

FC. (a) The augmented image in its original coordinates system. (b) The augmented image 

transformed to the coordinates system of the fluorescence image. 
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Table 1 The main differences between Camera I and Camera II. 

Table 2 The acquisition settings for all the investigated cases. 

Table 3 Quantification of various validation metrics from both cameras under all experimental 

configurations. 


