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Abstract— The quantification of hemoglobin oxygen saturation 

(sO2) with multispectral optoacoustic (photoacoustic) tomography 

(MSOT) is a complex spectral unmixing problem, since the 

optoacoustic spectra of hemoglobin are modified with tissue depth 

due to depth (location) and wavelength dependencies of optical 

fluence in tissue. In a recent work, a method termed eigenspectra 

MSOT (eMSOT) was proposed for addressing the dependence of 

spectra on fluence and quantifying blood sO2 in deep tissue. While 

eMSOT offers enhanced sO2 quantification accuracy over 

conventional unmixing methods, its performance may be 

compromised by noise and image reconstruction artifacts. In this 

work, we propose a novel Bayesian method to improve eMSOT 

performance in noisy environments. We introduce a spectral 

reliability map, i.e. a method that can estimate the level of noise 

superimposed onto the recorded optoacoustic spectra. Using this 

noise estimate, we formulate eMSOT as a Bayesian inverse 

problem where the inversion constraints are based on probabilistic 

graphical models. Results based on numerical simulations indicate 

that the proposed method offers improved accuracy and 

robustness under high noise levels due the adaptive nature of the 

Bayesian method.     

 
Index Terms — Optoacoustic/photoacoustic imaging, 

multispectral optoacoustic tomography, photoacoustic 

tomography, Bayesian methods, oxygen saturation, spectral 

unmixing.  

 

I. INTRODUCTION 

ISSUE blood oxygenation is a significant physiological 

marker of tissue viability, metabolism, hypoxia [1] and 

even neuronal activation [2]. By unmixing the absorption 

spectra of oxygenated and deoxygenated hemoglobin, 

multispectral optoacoustic tomography (MSOT) can produce 

label-free images of blood oxygenation (sO2) of tissue in vivo, 

at high spatial and temporal resolution [3, 4]. However, 

accurate quantification of blood sO2 in deep tissue in MSOT 

presents a complex spectral unmixing problem, since the 

measured optoacoustic (OA) spectrum from a tissue volume 

element (voxel) depends not only on the local concentration of 

different photoabsorbers but also on the wavelength-dependent 

optical fluence reaching that voxel. This effect is known as 

spectral coloring [5-7] or spectral corruption. 

In recent work [8], a novel method termed eigenspectra 

MSOT (eMSOT) was proposed for accounting for spectral 

coloring and quantitatively estimating blood sO2 deep within 

tissue in the near-infrared (NIR) region. The method is based 
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on the observation that any fluence spectrum recorded in tissue 

in NIR can be modelled based on four base spectra 

(eigenspectra), assuming oxygenated and deoxygenated 

hemoglobin as the two prominent NIR absorbers. The 

eigenspectra were derived by applying principal component 

analysis (PCA) to a set of simulated optical fluence spectra, 

which served as the training dataset. Modelling the light fluence 

spectrum as a linear combination of the four eigenspectra 

converts the fluence correction problem from the spatial 

domain to the spectral domain. Then the sO2 MSOT estimation 

problem can be written as a spectral unmixing problem that is 

dependent on the scalar weights of the linearly combined 

eigenspectra but independent of the tissue’s optical properties. 

By accounting for the effects of spectral coloring, eMSOT has 

been shown to offer substantially enhanced sO2 estimation 

accuracy over the linear unmixing technique in simulations, 

phantoms and animal measurements [8], especially as tissue 

depth increases.  

In addition to spectral coloring, optoacoustic spectra may 

also be corrupted due to noise and artifacts present in the images 

[9], compromising eMSOT convergence and accurate sO2 

estimation. In this work, we aimed to improve the accuracy of 

sO2 quantification by eMSOT under noise conditions. To 

achieve this aim, we formulate the eMSOT sO2 quantification 

problem as a Bayesian inverse problem where the noise in the 

recorded spectra is taken into account. Noise estimation is 

carried out by considering a new model that describes the 

recorded optoacoustic spectra and captures their variability due 

to both light fluence and hemoglobin absorption. Based on this 

model of recorded optoacoustic spectra we introduce the 

spectral reliability map (SRM) as an estimator of the noise in 

the measurements. In the SRM-enabled Bayesian eMSOT 

(BeMSOT), the original inversion constraints are modeled as 

prior probability distributions and implemented using 

probabilistic graphical models. We show how the parameters of 

the prior probability distributions affect the accuracy of sO2 

quantification by BeMSOT and optimize their values using 

simulated data. Results based on simulations indicate that the 

proposed method offers more robust sO2 quantification than 

eMSOT in the presence of high and non-uniform noise levels, 

due to the ability of the Bayesian formulation to reduce the 

impact of unreliable data on algorithm performance.  

In the following, we describe the methodology and findings 

by providing the physical background of optoacoustics and 
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theoretical background of eMSOT (Section II), formulating the 

eMSOT algorithm as a Bayesian Maximum a Posteriori (MAP) 

estimation problem (Section III-A), and introducing the novel 

SRM noise estimator (Section III-B). Simulations are described 

in Section III-C. In Section IV (Results), we assess the 

performance of the noise estimation technique and BeMSOT. 

Finally, Section V (Discussion) places the findings in the 

perspective of future challenges and developments. 

II. BACKGROUND 

A. Physics of Optoacoustics. Forward and Inverse Problems 

In MSOT, a nanosecond laser pulse illuminates tissue at 

multiple wavelengths. Due to thermoelastic expansion caused 

by light absorption, this results in an initial pressure rise (IPR) 

p  which relates to the fluence Φ  and tissue absorption 

coefficient a  as follows [10]:  

 

),,(),()(),(  rrrr aΦΓp        (1) 

 

where r  denotes the spatial coordinates,   is the illumination 

wavelength, p  is the space- and wavelength-dependent initial 

pressure and Γ  is the spatially varying Grüneisen parameter. 

The generated ultrasound waves subsequently exit the tissue 

and propagate towards the acoustic detectors. 

Due to the hybrid nature of optoacoustics, the forward and 

inverse problems are two-fold: 

 Optical forward problem – compute Φ  when the optical 

properties of the medium and illumination are known.  

 Acoustic forward problem – compute the time-dependent 

pressure signals prs on the detectors around the sample given 

the initial pressure rise p .  

 Acoustic inverse problem – reconstruct optoacoustic images 

),( rp  given the detector signals prs . 

 Optical inverse problem – determine the spatial distribution 

of the optical properties within the sample given the map of 

the initial pressure rise.  

Accounting for ),( rΦ  and computing ),(  ra , or solving the 

optical inverse problem, is the key challenge in quantitative 

optoacoustics.  

A multitude of approaches to solving the inverse optical 

problem have been considered [11-22]. Typically, the solution 

is computed by inverting a discretized optical forward model 

under certain assumptions (e.g. some of the optical parameters 

being known). The forward model is governed by ether the 

Radiative Transfer Equation [11, 18, 19, 21, 22]  or less 

computationally expensive Diffusion Approximation [11-14, 

16, 17, 19]: 
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where   is the tissue region,   is the tissue boundary,   

        1
,',,


  rrr sad is the diffusion coefficient, 

d is the dimensionality of the domain, s' is the reduced 

scattering coefficient; d  is a dimensionality-dependent 

parameter; A  describes reflectivity and s is the illumination 

pattern. The inversion may be performed for one as well as 

several wavelengths simultaneously. 

Such approaches, although theoretically accurate, are 

however limited by several factors [19]. First, since the optical 

fluence is modeled accurately in the whole domain, the 

knowledge of the initial pressure rise in the illuminated volume 

is required, i.e. accurate image reconstruction is an important 

prerequisite for the described methods. Such reconstruction is 

often not achievable, and various artifacts as well as spatially 

inhomogeneous noise are typically present in the OA images. 

Second, due to the inverse problem being physics-driven, the 

absolute values of the absorbed energy density ),(),(  rr aΦ  

are required, which necessitates calibration for various scaling 

factors including the Grüneisen parameter as well as knowledge 

of accurate tissue boundary and illumination. Finally, due to a 

large number of unknowns, the resulting computational 

complexity of the problem is very high. The mentioned 

challenges effectively limit application of such methods to 

experimental data.  

In contrast, eMSOT presents a simpler, although less 

versatile, alternative to the aforementioned approaches. It 

utilizes a linear spectral model of fluence (the eigenspectra 

model), converts the inverse problem to lie in the spectral 

domain and allows local fluence correction while avoiding 

modelling light transport in the inversion step. Instead of 

computing the distributions of the optical properties within the 

sample, eMSOT directly quantifies sO2, making its application 

to experimental data possible [8]. 

 

B. The Eigenspectra Model 

  The Eigenspectra model is derived based on the assumption 

that oxygenated and deoxygenated hemoglobin are the main 

absorbers in tissue in the NIR region (700-900 nm) and that the 

influence of other absorbers can be neglected. Thus, Eq. 1 can 

be rewritten as:  
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where 
2

)(/),(),(' rΦrr  ΦΦ  is the normalized fluence 

spectrum; 
2

)(rΦ  is the 𝑙2-norm of the optical fluence 

spectrum at position 𝐫; 
2

)()()( rΦrr ΓC  ; HHbc  and HbO2c  

are the concentrations of deoxy- and oxyhemoglobin, 

respectively; HHbHHb' cCc   and HbO2HbO2' cCc   are relative 

concentrations; and HHb  and HbO2 are the corresponding 

wavelength-dependent absorption coefficients. To exclude 

)(rC  from consideration, eMSOT operates on normalized 

initial pressure spectra (or simply normalized OA spectra), i.e. 

2
)(/)()(' rprprp  . If the relative concentrations can be 

found, sO2 can be computed as: 
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In eMSOT, 𝛷′(𝐫, 𝜆)  is modeled as a linear function of four base 

spectra derived from PCA of a training dataset of simulated 

fluence spectra (see [8]): 
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where  MΦ  is the mean spectrum in the training data, 

  3...1,i iΦ   are the principal components, and 𝑚𝑖 are scalars 

referred to as the eigenfluence parameters. If 

 HbO2HHb321 ',',,, ccmmmθ , the eigenspectra model ),,(ˆ θr p  

that approximates the normalized OA spectrum ),(' rp takes 

the following form: 
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C. eMSOT Inversion  

eMSOT is formulated as a constrained minimization problem 

in which the goal is to identify the values  of a set of parameters 

optθ  that minimize the second norm of the difference between 

the measured normalized spectrum )(' rp  and the modeled 

),(ˆ θrp . The inversion is performed simultaneously for several 

selected spatially distributed spectra. The locations of the 

spectra are determined by a circular grid 
  ptln

, ...1,...1| nlnklk  rG  of lnn  lines, each consisting of 

ptn  pixels, that is assigned to a region of interest (ROI) in the 

MSOT image. (Fig. 1 shows an example of such a grid.) A 

detailed overview of eMSOT inversion can be found in 

Supplementary Materials and [8].  

III. METHODS 

A. Formulation of the BeMSOT inverse problem 

The eMSOT inversion described in Section II-B has been 

shown to provide more accurate sO2 quantification in 

simulations and phantoms than commonly used linear 

unmixing, and it has been successfully applied in measurements 

of small animals [8]. However, these validation studies made 

clear that eMSOT accuracy is sensitive to noise in the data. In 

order to make eMSOT more robust to noise and thereby 

improve its overall accuracy, we hypothesized that we could 

estimate the noise in the MSOT data and, then, use that 

information in Bayesian-based eMSOT inversion (BeMSOT) to 

refine the quantification accuracy.  

In the following, we will consider the eMSOT inverse 

problem in a Bayesian framework. The inverse problem will 

therefore be treated as a problem of statistical inference and the 

variables will be treated as random variables. It will be shown 

that, in contrast to sO2 quantification using eMSOT, which uses 

no information on the quality of the measured normalized OA   

spectra, in the resulting problem of MAP estimation the noise 

in the measurements is taken into account. All inversion 

constraints in BeMSOT are formulated using probabilistic 

graphical models.  

A.1. Bayesian formulation of eMSOT inversion 

We denote as measured'P  the vector of 1ptln nnn measured 

normalized OA spectra on a grid G  of points selected for 

inversion, where 21n is the number of wavelengths. We 

denote the set of five unknown variables for every spectrum 

 HbO2HHb321 ',',,, ccmmm  as Θ  with dimensions 5ptln  nn . Θ

can be written as  ,,,,, HbO2HHb321 CCMMMΘ  where 𝐌𝑖  

denotes the set of all 𝑚𝑖 parameters for all grid points, i.e. 
  ptln

,

i ...1,...1| nlnkm lk

i M , and HHbC  and HbO2C  are 

defined analogously. Elements of Θ  can be referred to based 

on their linear index (e.g. ptln

)(

1 ...1, nnii M ) or their node 𝐫 

in the grid (e.g. GrM
r ,)(

1
). 

Under the assumption of additive noise E , the observation 

model is written as follows: 

 

  ,'
measured EΘPP model        (7) 

 

where  ΘPmodel  denotes the eigenspectra model that 

corresponds to the measurements. The solution to the inverse 

problem is the posterior probability  measured'| PΘ , which, 

according to the Bayes’ formula, can be written in terms of 

conditional probabilities as follows [23]:  
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where  ΘP |'measured  is the data likelihood   and  Θ  is the 

prior probability.  measured'P  is fixed for a given measurement 

'
measuredP , therefore Eq. 8 can be used in a nonnormalized form:  

 

     ,|''| measuredmeasured ΘΘPPΘ       (9) 

 

We will consider a pointwise estimate of Θ , more specifically, 

a maximum a posteriori estimate 
MAPΘ : 
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In the following subsections, we define models for data 

likelihood and prior distribution for BeMSOT inversion.  

A.2. Data Likelihood in BeMSOT 

Under the assumption of noise and Θ  being independent, 

Eq. 7 leads to the likelihood density [23, 24]: 

 

    ΘPPΘP model measuredmeasured '|' N ,   (11) 

 



where N  denotes the probability distribution of noise. If N is 

Gaussian noise with zero mean and covariance matrix Σ , Eq. 

11 becomes: 
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where Σxxx
T

Σ


2
. We assume that Σ  is a diagonal matrix 

with dimensions ptlnptln nnnnnn    in which each non-zero 

entry equals the variance of noise at a specific wavelength in a 

specific spectrum. Σ  (or 1
Σ ) can be estimated using the 

method described in Section III-B . 

A.3. Prior Distributions of Unknown Parameters 

Defining the prior probability distribution is an essential part 

of MAP estimation approach [25]. The prior distributions 

reflect the available knowledge on the expected values of the 

unknown parameters. 

Assuming the sets of unknown variables are independent of 

one another,  Θ  can be expressed as 
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where  iM ,  HHbC  and  HbO2C  are the prior 

distributions of the respective unknown variables.  

In reality, the absolute concentrations of oxy- and 

deoxyhemoglobin are not independent and depend on the total 

blood volume at a specific voxel. The blood volume at every 

voxel can vary and is typically unknown. Since the normalized 

spectra are used in the inversion and the normalization is 

performed per-spectrum, the potential quantitative information 

on the total blood volume is lost and the concentrations found 

are relative rather than absolute. Therefore, the only constraint 

imposed on the relative coefficients of oxy- and 

deoxyhemoglobin is that they cannot be negative,  HHbC  can 

be modeled using the uniform pseudo-distribution 
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and  HbO2C  can be defined analogously, where 𝛿  is a 

constant. Computationally Eq. 14 is implemented using 

appropriate inequality constraints.  

When modelling the prior distributions of 1M , 2M  and 3M

it is important to take into account the spatial dependencies of 

parameter values [8]. To achieve this, probabilistic graphical 

models are used to model the spatial variation of 1M , 2M  and 

3M  across neighboring grid points on the graph  en GG , , 

which corresponds to the grid G . nG  is the set of pixels in the 

grid (graph nodes) and eG  is the set of  spatial connections 

between the pixels (graph edges). Fig. 1a shows an example of 

a radial grid G  of 𝑛ln = 5 lines (white radial lines), each 

consisting of 𝑛pt = 3 points, superimposed on a simulated OA 

image. The pixels used in inversion are marked in red and 

represent nG .  

For 1M and 3M , the values of the parameters do not depend 

directly on the values of neighboring nodes. Instead, due to the 

nature of light propagation, the spatial smoothness of the 

solution should be ensured globally [8]. Thus, an undirected 

graphical model, namely pairwise Markov random field [26], is 

used, with a Gibbs distribution, which takes the form 

      3,1,)(exp/1i   
iVZ

n
iGs

sM [27]. Here Z  is a 

normalization constant and iV   is the potential function. Fig. 1b 

presents an undirected graph corresponding to the grid shown 

in Fig. 1a used to model the prior distributions of 𝐌1 and 𝐌3. 

The white lines connecting the graph nodes represent the graph 

edges 𝐆𝐞. The common choice for the prior model is a Gaussian 

Markov Random Field [27]. For 𝐌1, the potential function 𝑉 

takes the following form: 
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where 𝜕𝐬  denotes the set of all neighbors of the node 𝐬 , and 

𝑎1
(𝐫,𝐬)

  is a constant coefficient.  

It has also been shown previously that for the nodes close to 

the surface, the correct values of 1M and 3M are more likely to 

lie close to the prior estimates  s
M1
ˆ and  s

M3
ˆ  [8] . With tissue 

depth, this probability decreases. The constraints based on this 

observation proved essential for inversion stability. To reflect 

this behavior in a probability distribution, we augmented the 

potential functions as follows:   
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Fig. 1: BeMSOT inversion grid and corresponding graphical models. 

(a) A radial grid 𝐆 (red dots) of 𝑛ln = 5 lines (white radial lines), each 

consisting of 𝑛pt = 3 points superimposed on a simulated OA image. 

(b) An undirected graph corresponding to 𝐆 used to model the prior 

distributions of 𝐌1 and 𝐌3. (c) A directed graph corresponding to 𝐆 

used to model the prior distributions of  𝐌2 and to ensure that 𝐌2 

decreases with depth. 

 



For  𝐌3 the potential function 𝑉3(𝐬) is defined analogously.

3,1, iGGi  corresponds to the exponential part of a 

generalized Gaussian distribution parametrized by the shape 

parameter 𝑞 and the scale parameters  s

1m  and  s

3m  [28, 29]. 

These scale parameters define ranges around the mean values 
 s

1m  and  s

3m  within which the values of  s
M1

 and  s
M3

are 

more likely to lie. We will refer to these scale parameters as 

deviations.  The mean values  s

1m  and  s

3m  are computed for 

each eigenfluence parameter  
3,1, ii

s
M  based on the prior 

estimates  s
M1
ˆ and  s

M3
ˆ , as described [8]. It is important to 

note that the value of  𝑞 is unknown at this point and remains to 

be defined.  

While 1M and 3M ,do not have a clear relation to a single 

physical parameter but rather depend on both sO2 and tissue 

depth, 2M has been shown to correlate primarily with tissue 

depth [8]. Therefore the constraints imposed on this parameter 

in the inversion are different from those imposed on 1M and 

3M . In contrast to the undirected graphical approach, a directed 

graphical model is used to model the spatial behavior of 2M  

and constrain it to decrease with depth. Fig. 1c presents a 

directed graph corresponding to the grid in Fig. 1a that is used 

to model the prior distributions of 2M . The distribution of  s
M2  

at each node s  is conditional on the values  S
M2

 of the parent 

nodes S  and is modeled as a uniform distribution in the range 

between  S
M2min  and 2MIN  through application of 

appropriate  linear constraints.  

Substituting Eqs. 9, 12-14 and 16 into Eq. 10 and taking into 

account the inequalities modeling the distribution of 2M , HHbC   

and HbO2C  yields 
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In Eq. 17   is a constant; IΣΣ   , where I  is the 

identity matrix; and   is the diagonal loading constant, which 

dampens large variations in Σ  that may arise due to large 

variations in SNR across the measured spectra. Eq. 25 is the 

main equation of BeMSOT inversion. In order to solve it one 

needs to define values of the parameters 𝑞,  sr,

1a ,  sr,

3a ,  s

1m  and 

 s

3m , as well as estimate Σ . The values for the parameters are 

set as described in the next subsection. Estimation of Σ is 

described in Sec. III-B. Eq. 17 is solved using the sequential 

quadratic programming (SQP) algorithm supplied in 

MATLAB.  

A.4. Choosing Parameters of the Prior Distributions 

The prior probabilities   3,1,i iM  incorporate prior 

knowledge about the deviation of model parameters from the 

prior estimates  lk ,

1M̂ and  lk ,

3M̂ , which are computed as 

described previously [8]. The deviations  lk

m

,

1  and  lk

m

,

3  of the 

generalized Gaussian distribution, which determine the 

deviation of the optimized eigenfluence parameters from  lk

m

,

1  

and  lk

m

,

3 , increase linearly with tissue depth because  lk ,

1M̂ and 

 lk ,

3M̂  become less accurate with depth [8]. Given the initial 

deviations  0,

1

k

m  and  0,

3

k

m  for the surface grid points, the 

deviations at an arbitrary grid point are defined as 
   0,

11

,

1 )( k

m

lk

m d   ,    0,

33

,

3 )( k

m

lk

m d   , where 1  and 3   

are coefficients that depend on the depth 𝑑 of the considered 

point. The values of 1  and 3  in this study were retained as 

described [8], and the values of   0,

1

k

m  and  0,

1

k

m  were selected 

based on cross-validation using simulated IPR maps (see 

Supplementary Materials).  

The coefficients that govern the spatial smoothness of 1M

and 3M  were set to be inversely proportional to the Euclidean 

distance  
2

sr   between the neighboring pixels r  and s : 

   

2

31

1

sr

r,sr,s


 waa .  

The parameters of the Bayesian inversion method, namely q

, w ,  s

1m  and  s

3m , were selected using cross-validation of a set 

of simulations described in the following subsection; the 

selection process itself is described in Supplementary 

Materials.  

B. Noise Estimation in BeMSOT Using a Spectral Reliability 

Map (SRM) 

Since the level of noise in OA spectra depends on the voxel 

location, with shallower voxels typically showing better signal-

to-noise ratio (SNR) than deeper ones, noise in eMSOT spectra 

needs to be estimated on a per-voxel (per-collected spectrum) 

basis. To estimate the noise present in each individual spectrum, 

we developed a model for normalized OA spectra, termed a OA 

spectral model. We use the OA spectral model to estimate the 

underlying ideal noise-free normalized OA spectra of 

experimental noisy normalized OA spectra, and then estimate 

the level of random noise in spectra obtained at different 

locations (voxels), giving rise to a spatial map of estimated 

noise variance. This map, which we term a spectral reliability 

map (SRM), is used to weight different spectra selected for the 

BeMSOT inversion according to the amount of estimated noise.  



B.1. OA Spectral Model 

The OA spectral model describes noise-free normalized OA   

spectra recorded at different locations within tissue. Spectrum 

location r  is not important for model derivation and is 

therefore omitted to simplify the notation. Building on the 

eMSOT assumption that the spectrum of light fluence anywhere 

within tissue can be accurately modeled using a small set of 

base spectra, the OA spectral model assumes that all possible 

normalized OA spectra )(' p  (Eq. 1) can also be modelled as 

a linear combination of a few base spectra )(ip . These spectra 

)(ip are derived from analysis of a training dataset of noise-

free normalized OA spectral patterns. This dataset captures 

variations in normalized OA spectra due to fluence and 

absorption of hemoglobin. The training dataset was generated 

as follows: 

1. A set  2170...1|)(ˆ  iΦi Φ  of 1470 fluence spectra 

)(iΦ  was computed as a 1-D analytical solution for Eq. 2 

in an infinite medium in which hemoglobin is the only 

absorber, as described for eMSOT [8]. The following 

parameters were assumed:  𝜇𝑎 = 0.3 cm-1 at 800 nm, 𝜇′𝑠 =
10 cm-1, depth of up to 1 cm with a step size of 0.0145 cm 

(70 in total) and for oxygenation levels of 0%-100% with a 

step size of 5% (21 in total).  

2. Absorption spectra of hemoglobin at different oxygenation 

levels  21...1|ˆ
,  iiaa μ  were calculated. While 

absorption spectra can be calculated as 

)(')(' HbO2HbO2HHbHHb  cca  , we did not use this 

approach because we are interested only in the shape of the 

absorption spectrum, not absolute absorption values. 

Therefore we computed absorption spectra as a function of 

tissue oxygen saturation O2c : 

  )(1)( HbO2O2HHbO2  cca  . We varied O2c  from 

0% to 100% with a step size of 5%, producing a total of 21 

absorption spectra of hemoglobin.  

3. Each fluence spectrum in Φ̂  obtained in step 1 was 

multiplied element-wise by every absorption spectrum in 

aμ̂  calculated in step 2. The resulting spectral patterns were 

normalized to their respective 𝑙2-norms, producing a 

training dataset 'P̂  of 21×1470 normalized OA   spectra 

(30,870).   

PCA was applied to this training dataset 'P̂  to derive the base 

spectra )(ip  as follows: 

1. Since PCA requires that input data have a mean value of 

zero, the mean normalized OA   spectrum  'ˆmean)(M Pp  

was computed from the training set 'P̂  and subtracted from 

every spectrum in 'P̂ , resulting in a zero-mean input set 0'P̂  

of 30,870 spectra.  

2. PCA was applied to the input set 0'P̂  of spectral patterns 

obtained in step 1. The resulting principal components were 

the base spectra )(ip . 

These base spectra (principal components) derived from a 

distinct precomputed set 0'P̂  can now be combined linearly 

with the mean spectrum of the training dataset )(M p  to model 

an arbitrary normalized OA spectrum ),(' rp  from a specific 

location r  in an OA dataset: 

 

,)()()(),('

1

iiM 




D

i

papp  rr       (18) 

 

where 


ia pppr ,')( Mi  , with 


.,.  denoting the scalar 

product of spectra. The number of components D  returned by 

PCA is equal to the number of wavelengths used (21 in this 

study). Only a subset of these base spectra is typically needed 

to approximate the data sufficiently well, i.e.  

 

 ,...1|, mM Dii pp        (19) 

 

where DD m . Eq. 13 will be referred to as a mD -dimensional 

OA spectral model.  

B.2.  Spectral Reliability Map (SRM) 

Next we applied the mD -dimensional OA spectral model to 

noisy OA spectra to estimate what the ideal, noise-free 

measurements should be. The difference between the noise-free 

estimation and the experimental values provides an estimate of 

the noise in the experimental spectra. We modeled a noisy 

experimental normalized OA spectrum ),('exp rp  as 

),(),(),(' nfexp  rrr npp  , where ),(nf rp  is a noise-

free spectrum of initial pressure and 𝑛( ,r 𝜆) is noise. Since the 

main source of OA noise is electronic noise in the imaging 

system [9], we modeled  𝑛( ,r 𝜆) as a random Gaussian process 

with zero mean, assuming that variance of ),( rn  is constant 

at all wavelengths, but might vary with r . Since ),(nf rp  lies 

almost entirely in a subspace of spectra defined by the mD  base 

spectra )(ip  and since ),( rn  is random and therefore 

equally distributed across all base spectra, an estimate 𝑝est of 

the noise-free spectrum can be obtained as: 

 

.,'
NIPSdim

1

MexpMest 




i

ii pppppp


     (20) 

 

Estimation of noise estn  can then be calculated as  

 

).,(),(),( estexpest  rrr ppn         (21) 

 

This is equivalent to projecting Mexp' pp   onto the last 

mDD   base spectra. Given an MSOT dataset ),( rp ,  Eqs. 

20 and 21 can be applied to normalized OA   spectra )(' rp  at 

every pixel location r  to estimate the noise )(est rn  

superimposed onto the measurements. The corresponding 

variance in the noise  )(rnestVar  can be calculated and 

spatially mapped, giving what we term a spectral reliability 

map (SRM): 

 



    .rnr estVarSRM         (22) 

 

The SRM can then be used to weight spectra chosen for eMSOT 

inversion such that noisier measured normalized OA spectra 

will influence BeMSOT inversion less. 

C. Validation and Performance Assessment 

In order to select optimal dimensionality mD  of the OA 

spectral model and to define values of the parameters of prior 

distributions, simulations of multispectral IPR maps were used. 

To assess the performance of BeMSOT, simulations were 

created with spatially varying amounts of noise. For such 

simulations with inhomogeneous noise distribution, IPR maps 

were simulated first, for which the corresponding transducer 

signals were calculated. Noise was added to the transducer 

signals and MSOT images were reconstructed from the noisy 

signals. MSOT images created from multispectral IPR maps 

were used for BeMSOT inversion.  

C.1. Simulations of IPR maps  

Multispectral IPR maps of a circular tissue sample (radius, 1 

cm) with randomly varying optical properties were simulated 

as described [8] for different excitation wavelengths. Fig. 2 

shows the simulated maps, which were generated in the 

following manner: 

1. Spatial maps of optical absorption ( )(ra ) and reduced 

scattering ( )(' rs ) coefficients were created for an 

illumination wavelength of 800 nm, which is the isosbestic 

point of hemoglobin. Fig. 2a-b shows an example of random 

spatial maps of optical properties, while Table 1 provides 

the means and standard deviations of the normal 

distributions used. Random maps of tissue sO2 were created 

by assuming a normal distribution of sO2 values. Fig. 2c 

shows an example of a simulated sO2 map.  

2. Using the maps specified in step 1 as well as the absorption 

spectra of oxy- and deoxyhemoglobin, the optical 

absorption ),(  ra  was constructed for the entire 

wavelength range used (700-900 nm, step size of 10 nm, 21 

maps in total).  

3. The optical forward problem was solved using finite-

element solution to the diffusion equation (Eq. 2) to 

simulate light propagation through the sample, generating a 

light fluence map ),( rΦ  for all illumination wavelengths.  

4. According to Eq. 1, the multiplication of the absorption map 

),(  ra  specified in step 2 and the light fluence map 

),( rΦ  obtained in step 3 gives the simulated IPR map 

),( rp . This map assumes that 1)( rΓ , which does not 

affect sO2 quantification accuracy because all spectra )(rp  

are normalized in eMSOT and BeMSOT. Fig. 2d presents a 

simulated IPR map that corresponds to the optical properties 

defined in Fig. 2a-c.   

IPR maps were generated with different distributions of 

optical properties in order to simulate a reasonable range of 

tissue heterogeneity created by the presence of tissue structures.  

 
Fig. 2: Simulations of IPR maps and MSOT images. (a-c) Maps 

generated for an illumination wavelength of 800 nm based on 

randomly generated values of (a) 𝜇𝑎, (b) 𝜇′𝑠  and (c) sO2. (d) IPR image 

simulated from the maps in panels (a)-(c); (e,f) IPR maps simulated 

with (e) low and (f) high heterogeneity in the distributions of optical 

properties. (g) IPR image simulated with an absorbing vessel in deep 

tissue (red arrow). (h) Simulated MSOT image corresponding to the 

IPR map shown in panel (e) and showing the simulated blood vessel 

(red arrow). Negative values in panel (h) are an artifact of 

reconstruction. 

TABLE 1. Simulation specifications. 

 



Fig. 2e shows an example of a simulation with low 

heterogeneity; Fig. 2f, an example with high heterogeneity. 

Since the SRM is evaluated on a per-pixel level, the 

individual spectra extracted from the IPR simulations were 

augmented with zero-mean Gaussian nose n  of the following 

powers: 0.8, 1.5, 2.5, 4.5, 6, 8 or 10 percent of spectra power 

(referred to as percent noise). 

 

C.2. Simulations of MSOT images  

To create simulations with heterogeneous noise distribution, 

we started from the simulated IPR maps and solved the acoustic 

forward problem using a linear model of pressure wave 

propagation [30, 31], obtaining the corresponding OA pressure 

signals recorded by the piezoelectric transducers of the imaging 

system. Then zero-mean Gaussian noise was added to the 

simulated transducer signals, which were reconstructed into 

MSOT images. This process involved the following steps: 

1. An IPR map λP  for a specific illumination wavelength λ 

was simulated and reshaped into a vector λp . 

2. The forward acoustic problem was solved. The 

corresponding OA pressure signals prs  were simulated  as 

λpr pAs c , where cA  is a model matrix representing the 

linear model of OA wave propagation. The detection 

geometry represented in cA  assumed the geometry of a 

commercially available, limited-view 2D MSOT imaging 

system [32], comprising 256 detectors arranged in a ring 

with a radius of 4 cm, which provides angular coverage of 

270 degrees. 

3. Zero-mean Gaussian noise was superimposed upon the 

simulated signals prs  to obtain noisy signals nss .  

4. The inverse acoustic problem was then solved by using the 

noisy signals nss  along with cA  in a model-based 

reconstruction algorithm [30, 31] to obtain the distorted IPR 

image recP . In all cases, speed of sound was assumed to be 

1,530 m∙s-1 during signal simulation and reconstruction. 

Since noise is superimposed on the signals (step 3) rather 

than on the spectra, the noise in recP  is non-uniformly 

distributed in space, with SNR varying directly with signal 

intensity. 

For example, the simulated IPR map in Fig. 2g was 

reconstructed into the noisy MSOT image recP  in Fig. 2h. The 

reconstructed image contains negative values, which are a 

reconstruction artifact [33]. The red arrow marks the location 

of a simulated blood vessel, which should have a much higher 

SNR than the surrounding area. 

For each simulated IPR dataset, the power of noise was 

varied so that the mean peak SNR (PSNR) of the reconstructed 

datasets varied from 36 to 32 dB in 1-dB steps. PSNR was 

defined as
 

 λrec

2

rec
10

,

max
log10

PP

P

MSE
PSNR  , with  λrec ,PPMSE  

denoting the mean squared error of the reconstructed image. 

 

C.3. Performance evaluation of the OA spectral model, SRM 

and BeMSOT 

For each simulated noise-free normalized OA spectrum nf'p

, the fitting residual 
2estnf' pp res  was computed, where 

estp  was obtained using the normalized OA   model according 

to Eq. 14. The fitting residual was computed for all test spectra 

for different OA spectral model dimensionalities mD . For a 

particular value of mD , lower residual values mean better 

approximation by the NIPSdim -dimensional OA spectral model.  

For every simulated noisy normalized OA   spectrum exp'p , the 

superimposed noise was estimated using Eqs. 20 and 21. The 

variance  )(rnestVar  was compared to the actual variance 

 )(rnVar  of superimposed noise. For a particular value of  mD

, lower relative estimation errors (i.e. 

   
 

%100
)(

)()(




rn

rnrn

Var

VarVar est
) mean better noise estimation 

by the mD -dimensional OA spectral model. 

BeMSOT performance was compared to that of eMSOT and 

linear unmixing based on mean absolute sO2 estimation error in 

a deep-seated blood vessel (representative of a target feature in 

the sample), as well as in non-vessel areas covered by the grid 

G used for inversion (representative of sample background).  

For every pixel, the absolute sO2 estimation error was computed 

as GSa sOsO 22 lg  , where lg2asO  is the sO2 value obtained 

by a certain algorithm and GSsO2  is the gold standard value. 

In all cases, sO2 level in the blood vessel was set to be 25% 

higher than the level in the background, or to 100% if the mean 

sO2 level of the background was above 75%. For example, if 

sO2 of the background was 35%, sO2 level of the vessel was set 

to 60% (35+25%); if sO2 of the background was 80%, sO2 level 

of the vessel was set to 100%. 

IV. RESULTS 

A. Noise estimation using the OA spectral model and SRM 

Fig. 3 demonstrates the optimization of the OA spectral 

model and the noise estimation capability of the SRM based on 

analysis of 384,750 simulated normalized OA   spectra sparsely 

sampled from 1,710 IPR simulations (225 spectra per simulated 

dataset). Fig. 3a shows how the fitting residual varies with 

dimensionality mD ; most of the signal is accounted for by the 

first four principal components. Fig. 3b shows a reasonable fit 

between the SRM-estimated variance in noise based on a four-

dimensional OA spectral model and the ideal prediction of a 1:1 

correspondence (orange line). Finally, Fig. 3c shows that mD  

values of 3 or 4 minimize relative error in the estimation of the 

variance of noise. Using more than 4 components leads to 

model overfitting and increases estimation error due to noise 

being interpreted as signal. Therefore, subsequent computations 

were carried out using a four-dimensional OA spectral model.  

Fig. 3d presents a simulated IPR dataset (one wavelength 

shown) in which zero-mean Gaussian noise was added to the 

spectra at four energies. Fig. 3e shows the corresponding SRM 



based on Eq. 21 and 4m D . The spatial analysis of variance 

identifies areas with different SNR. 

 

 
Fig. 3: Optimization and performance of the OA spectral model and 

SRM. (a) Dependence of fitting residuals  𝑟𝑒𝑠 on dimensionality mD

of the normalized OA spectral model for approximating noise-free 

spectra. Mean data (dots) are shown with standard deviations (error 

bars). (b) Variance of noise estimated with a four-dimensional 

normalized OA spectral model plotted against the actual standard 

deviation of noise. The orange line shows ideal 1-to-1 correspondence. 

(c) Relative errors in the estimation of variance of noise produced by 

the normalized OA spectral model depending on its dimensionality. 

Mean data (dots) are shown with standard deviation (error bars). (d) A 

simulated IPR map (one wavelength presented) with zero-mean 

Gaussian noise of the specified energy (as noise %) superimposed onto 

the simulated spectra in four sectors. (e) An SRM computed for the 

simulated data shown in panel (d).  
 

B. Comparison of eMSOT and BeMSOT  

BeMSOT and conventional eMSOT were compared in their 

ability to estimate sO2 from a deep-seated blood vessel and 

background areas of the image. The results were compared with 

those obtained by standard linear mixing as a reference. 

Simulated MSOT images with mean PSNR of 33 and 36 dB in 

the reconstructed data were used in order to showcase the 

performance of each algorithm. Fig. 4a presents the simulated 

MSOT image obtained for illumination at 900 nm, and spectra 

sampled from three image locations (Fig. 4b-d). SNR varies 

over the image, with less noise in highly absorbing and 

shallower areas. Fig. 4e-h show the error of BeMSOT and 

eMSOT in estimating sO2 in the deep-seated vessel. As 

expected, BeMSOT is better able to estimate sO2 than eMSOT 

when the target is surrounded by spectra of significantly lower 

quality, and this is true at both PSNRs tested.  

 
Fig. 4: Comparison of BeMSOT and eMSOT for quantifying sO2 in 

simulated MSOT images. (a) A map of simulated IPR (one wavelength 

presented). The red dashed square marks the ROI shown in panels (e) 

and (f), while I, II and III denote locations of the spectra shown in 

panels (b)-(d). (b-d) Respective spectra from locations I-III in panel 

(a). Black lines correspond to original spectra; red lines, reconstructed 

data with mean PSNR of 36; and blue lines, reconstructed data with 

mean PSNR of 33 dB. (e,f) Values for sO2 obtained from the 

reconstructions with mean PSNR of (e) 36 dB or (f) 33 dB, overlaid on 

the IPR image. Inversion grids are shown with red circles (active 

pixels) and blue circles (inactive pixels). Blue pixels were excluded 

from the inversion because the corresponding spectra had negative 

values. (g,h) Errors in sO2 estimation for the vessel and background 

obtained with BeMSOT, eMSOT or linear unmixing for the 

reconstructions with mean PSNR of (g) 36 dB or (h) 33 dB. Blue boxes 

indicate first and third quartiles; red lines, medians; and whiskers, 2.7 

standard deviations from the mean. 

 

These results were confirmed in statistical analysis of 285 

simulations (Fig. 5). Whereas eMSOT performance degrades 

with increasing noise, BeMSOT can recover sO2 of the vessel 

more accurately even at low SNRs. Both methods, in contrast, 



perform similarly well for the background ROI, indicating that 

BeMSOT offers advantages over eMSOT primarily in image 

areas with strong SNR heterogeneity.  

 

 
Fig. 5: Statistical evaluation of BeMSOT performance in simulations 

of MSOT images. Mean error in sO2 estimation by BeMSOT (red line), 

eMSOT (blue line) and linear unmixing (green line) in (a) target vessel 

and (b) background as a function of mean PSNR of the reconstructed 

images. Results are based on 285 simulations of MSOT images. Error 

bars indicate first and third quartiles of the plotted data. 

 

An example comparison of eMSOT and BeMSOT in 

experimental images of tissue mimicking phantoms can be 

found in Supplementary Materials (Suppl. Fig. 2). 

V. DISCUSSION AND CONCLUSION 

The mathematical framework of Bayesian inversion has been 

used extensively for the development of methods that offer 

robust solutions in inverse problems related to image 

reconstruction [27, 34], in particular in the field of optoacoustic 

imaging [12, 14]. In this work, we propose a Bayesian method 

for the inversion of the eigenspectra model to quantitatively 

estimate sO2 level accurately in OA data with spatially 

heterogeneous noise.  

To enable Bayesian formulation of the eMSOT inverse 

problem, we developed a novel tool called the SRM to estimate 

noise in the OA spectra. The SRM supports two functions: (1) 

to estimate the covariance of noise, which allows spectra to be 

weighted automatically based on their reliability; and (2) to 

identify well-reconstructed parts of the image for analysis. Even 

if unreliable areas are included in the BeMSOT inversion, the 

corresponding SRM can be used as an indication of the 

trustworthiness of the results. The proposed Bayesian inversion 

method can flexibly rely more on the less noisy measurements 

and suppress the impact of noisy data, therefore enhancing the 

accuracy of sO2 estimation in data with spatially varying SNR.  

Such spatial variation of noise power is characteristic of 

MSOT. Since MSOT image formation involves light 

absorption, the images are influenced by heterogeneous noise. 

Superficial regions as well as highly absorbing structures such 

as blood vessels show high intensity in images and so provide 

high SNR, while deeper and less-absorbing areas produce 

weaker signal easily dominated by noise.  

Formulation of the inversion algorithm in Bayesian terms 

also allows studying how different parameters and constraints, 

such as constraints of the search space or smoothness of the 

solution, influence the overall performance of the method and 

interpretation of the results in probabilistic terms. This comes 

at the cost of speed: inversion typically takes ~60 sec for 

BeMSOT but only ~5 sec for eMSOT.  

Since the presence of prominent absorbers other than oxy- 

and deoxyhemoglobin violates the assumptions of the 

eigenspectra model, in future work, the SRM may be adapted 

to take into account other absorbers, either separately from 

BeMSOT or in conjunction with an appropriately adapted 

BeMSOT algorithm. Optical wavelength selection, similarly to 

linear unmixing [35], may also improve sO2 estimation 

accuracy by BeMSOT. Future studies could try to improve 

inversion accuracy and speed using neural networks, which 

show promise for applications to the inverse problems in 

quantitative optoacoustics [36, 37]. 

We have presented a novel Bayesian method for sO2 

quantification from MSOT images as well as a method to 

estimate noise present in the measured OA spectra. It is possible 

that the extension of this method that takes into account 

absorbers other than hemoglobin may be useful for quantifying 

other parameters useful to basic biology and disease, which 

may substantially extend and improve the quantitative potential 

of MSOT.  
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