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Abstract The synaptic vesicle cycle (SVC) holds center stage in the biology of presynaptic terminals.
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Through recurrent exocytosis and endocytosis, it facilitates a sequence of events enabling chemical
neurotransmission between functionally related neurons. As a fundamental process that links the inte-
rior of nerve cells with their environment, the SVC is also critical for signaling and provides an entry
route for a range of pathogens and toxins, enabling detrimental effects. In Alzheimer’s disease, the
SVC is both the prime site of amyloid b production and toxicity. In this study, we discuss the
emerging evidence for physiological and pathological effects of Ab on various stages of the SVC,
from postfusion membrane recovery to trafficking, docking, and priming of vesicles for fusion and
transmitter release. Understanding of the mechanisms of Ab interaction with the SVC within the uni-
fying calcium hypothesis of aging and Alzheimer’s disease should further elucidate the fundamental
biology of the presynaptic terminal and reveal novel therapeutic targets for Alzheimer’s disease and
other age-related dementias.
� 2018 Published by Elsevier Inc. on behalf of the Alzheimer’s Association.
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1. Alzheimer’s disease as a synaptic pathology

Alzheimer’s disease (AD) is a chronic neurodegenera-
tive brain disorder and the most common cause of demen-
tia in the elderly. Progressive depositions of amyloid
plaques and neurofibrillary tangles together with degenera-
tion of neurons and synapses in selected brain areas are the
most recognized histopathological features of the disease.
From histochemical and functional studies, it emerges
that the extent of synaptic loss in AD correlates closely
with cognitive decline and memory deficit, with dysregula-
tions of neuronal calcium and subtle impairments in
synaptic function detectable from early preclinical stages,
before the emergence of plaques and neurofibrillary tangles
thor. Tel.: ---; Fax: ---.

ak.ovsepian@gmail.com
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[4,5,60,133]. In the cerebral cortex, a 25%–35% decrease
in synaptic connections has been reported within the first
2–3 years of clinical AD, while in the hippocampus these
numbers exceed 50% [5,28]. Elucidating the mechanisms
of synaptic impairments, thus, are of special interest for a
better understanding of AD pathobiology and early
therapeutic intervention, before slowing down the onset
of irreparable damage with synaptic loss and cognitive
decline [27,46].

According to the amyloid hypothesis of AD [45,47],
synaptic impairments are triggered by a pathological
increase in the amyloid b (Ab) level in the brain, with
soluble oligomers of Ab42 known to be especially
detrimental. Among the best-characterized negative effects
of Ab, the dysregulation of Ca21 homeostasis and disruption
of the fine balance between a wide range of kinases and
phosphatases are of special relevance to the synaptic deficit
and altered neuronal excitability [8,12,43]. Most reports of
iation.
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the synaptic effects of Ab have been focusing on the
postsynaptic side, with impairments of NMDA [126], me-
tabotropic GluR5 [109], and M1 muscarinic cholinergic
[37] receptors as well as deregulation of insulin and insulin
growth factors [77], ephrin [24] and neurotrophin signaling
[26,90]. The stimulation of Fyn kinase downstream of
NMDAR and PrP activation appears to hold centre stage in
the postsynaptic toxicity of Ab, causing collapse of
dendritic spines and synaptic degeneration [21,137].
Misplacement of microtubule-associated tau protein from
axon to dendrites also contributes toward postsynaptic defi-
cits with loss of dendritic spines, leading to degeneration of
synaptic connections [50,149]. Reports also suggest a key
role for GSK3b, CDK5, and other kinases in postsynaptic
pathology of AD [25,86,114].

The presynaptic facets of AD, in the meantime, remain
poorly elucidated, despite mounting evidence implying
axon terminals as the prime site for Ab production and the
starting point of synaptic pathology [89,120]. Results of
human and animal AD model studies demonstrate
considerable changes in the expression and functions of
presynaptic proteins, attributed in parts to direct effects of
Ab on the synaptic vesicle cycle (SVC) (Box 1). In this
study, we present a detailed account of Ab interference
with different stages of SVC and transmitter release. Dis-
cussed herein, Ab-related changes in presynaptic biology
suggest a considerable overlap between the physiological
and pathological effects of Ab, unveiling numerous previ-
ously unrecognized challenges and therapeutic opportu-
nities.
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2. Modulation of presynaptic functions by Ab

Discovery of the positive correlation between the cogni-
tive decline and synaptic loss associated with AD [30,133]
prompted penetrating research into the effects of Ab on
synaptic mechanisms [97,101]. Until recently, the general
consensus was that at high dose, both, natural and
synthetic Ab oligomers suppress synaptic transmission and
plasticity [39,71,121,122]. These effects mostly induced
under experimental settings by application of exogenous
Ab have been ascribed in part to disruption of SVC and
related changes in presynaptic release [57,59]. In extreme
cases, over 50% reduction in the frequency of miniature
excitatory postsynaptic currents has been observed in brain
slices upon acute exposure to Ab oligomers, implying a
potent presynaptic site of action [121]. More recently, the
focus has shifted on the effects of endogenous Ab, with
several reports demonstrating that both, the production and
secretion of Ab into the extracellular space is tightly
controlled by neuronal activity (Box 1). Within the intact
brain, strong association between Ab secretion and synaptic
functions has been observed during pathological events,
such as epileptiform activity induced by electrical stimula-
tion [23] and under certain type of physiological activity
of brain circuits [53]. Such effects of Ab were considered
REV 5.5.0 DTD � JALZ2568_proof �
as part of a feedback loop that controls local and global
neuronal excitability and circuit dynamics.

Detailed analysis of the dose dependence of Ab effects
revealed that at low amounts, Ab can also act as a positive
regulator of presynaptic activity, enhancing the neurotrans-
mitter release probability and increasing the neuronal excit-
ability [2]. The facilitator effects of low Ab dose on
excitatory transmission does not involve postsynaptic
NMDAR and AMPAR Qcurrents, but has shown dependence
on activation of a7–nicotinic acetylcholine receptor, in
agreement with the presynaptic action site [81,103,104].
From these studies, it emerges that the directionality of Ab
effects in addition to the dose also depends on the site of
action. While in the first instance, the presynaptic
modulator effects of exogenous Ab42 on transmitter
release were thought to be mediated only via stimulation
of presynaptic a7–nicotinic acetylcholine receptor and
downstream changes in the presynaptic calcium [32,139],
other mechanisms underlying the presynaptic effects have
been subsequently also considered. In terms of the action
mode, it is important to note that both local autocrine and
long-range paracrine action of Ab on synaptic transmission
have been documented, with potent effects on the strength of
synaptic transmission and on the density of synaptic connec-
tions described [52,135,139] (Fig. 1A and B).

Soluble Ab is present in the healthy brain, with its phys-
iological levels in rodents estimated to bewithin the picomo-
lar range [104,117]. In healthy humans, the concentrations
of Ab40 and Ab42 in the cerebrospinal fluid are w1.5 and
w2.0 nM, respectively [38]. It is noteworthy that while the
level of Ab in the cerebrospinal fluid of preclinical AD ex-
ceeds that of physiological, with the emergence of amyloid
plaques and a cognitive deficit of clinical AD, the concentra-
tion of Ab in the CFS Qdeclines [14,38,140]. The impact of
such slow changes in endogenous Ab levels on synaptic
transmission in the human brain remains to be shown.
Evidence from amyloid precursor protein (APP)-KO Q[118],
PS1-KO [116], or BACE1-KO mice [68] lacking endoge-
nous Ab shows that both synaptic transmission and plasticity
are notably reduced. Likewise, pharmacological inhibition
of BACE1 caused a reduction in dendritic spine formation
and synaptic plasticity in the cerebral cortex and hippocam-
pus [36]. These findings agreewith the positive effects of thi-
orphan (inhibitor of Ab degradation) on the frequency of
miniature excitatory postsynaptic current in mouse brain sli-
ces [2] (Fig. 1C and D). While in all these reports, the pre-
synaptic effects of Ab are viewed as a result of activation
of surface receptors, the direct influence of intracellular
Ab42 oligomers injected into axon terminals, causing a
blockade of synaptic transmission, has also been also docu-
mented [79] (Fig. 1E and F). Unchanged presynaptic Ca21

currents and reduction in the size of the docked synaptic
vesicle pool imply direct negative effects of intracellular
Ab with the SVC. As discussed in the following sections,
behind these effects underlie Ab action upon all major steps
of the SVC, from postfusion membrane recovery to synaptic
26 February 2018 � 5:18 pm � ce



Box 1

Synaptic vesicle cycle and Ab production

Based on the results of pioneering research into the mechanisms of neurotransmission at frog neuromuscular junctions,
Katz and Fatt propose the quantal hypothesis [35,56]. According to this model, neurotransmitters at the presynaptic
terminals of neurons are stored and released in small and relatively constant packages. Shortly after this landmark
discovery, membrane-bound synaptic vesicles were visualized in the synaptic terminals of neurons using electron micro-
scopy [96]. Follow-up biochemical and molecular biological studies revealed further mechanistic details of the storage and
release of transmitters at axon terminals, summed up in the modern hypothesis of the synaptic vesicle cycle (SVC) [127],
which present neurotransmitter secretion as a highly complex and multistep process. It starts with the loading of synaptic
vesicles with transmitters followed by their trafficking and docking at specialized release sites known as active zones.
Therein, synaptic vesicles become primed for rapid calcium-dependent fusion with the surface membrane to discharge their
content into the synaptic cleft. The latter depends upon specific interactions of vesicular and target membrane-associated
soluble N-ethylmaleimide sensitive factor attachment receptor proteins (v- and t-SNAREs) such as VAMP-1/2, SNAP-
25, and Syntaxin-1/2 and an array of chaperone and regulator proteins [51,92]. This step is followed by rapid recovery of the
synaptic vesicle membrane by clathrin-coated pits, which after shedding the propitious coat are recycled to the interior of the
presynaptic terminal for refilling and preparation for the next cycle. The entire process of SVC is known to take approxi-
mately 60 seconds, with.90% of the time occupied by the recovery of the presynaptic membrane and transmitter reuptake
[10].

The SVC is also the primary site for the amyloid b (Ab) production [80,134]. Enriched at presynaptic terminals, amyloid
precursor protein (APP) and fragments of APP are known to play major roles in cell-cell adhesion, synaptic signaling, and
stability of dendritic spines. Reports investigating the mechanisms relating neuronal activity with Ab production showed
that SVC is essential for amyloidogenic processing of APP [44,108]. Indeed, while APP undergoes nonamyloidogenic
cleavage on the cell surface, it is the internalization of APP within clathrin-coated vesicles that facilitates amyloidogenic
processing of APP catalyzed by b- and g-secretase (BACE1 and g-secretase complex), resulting in Ab production and
release [76,138]. This process was shown to depend on regulated exocytosis and associated with it clathrin-dependent
endocytosis [22,41,95] and involves membrane lipid rafts, which present the first point of contact between BACE1 and
APP [1,34]. In the hippocampus of Tg2576 transgenic mice, SVC is responsible for over 70% of released Ab in the
interstitial fluid, with direct infusion of a dynamin dominant-negative inhibitory peptide (dynamin-DN), with pharmaco-
logical blockade of synaptic activity inhibiting both production and secretion of Ab [22,23]. The remaining fraction of Ab
release appears to rely on housekeeping recycling of the surface membrane [44,67]. These observations agree with the
results of sensory deprivation and functional brain imaging studies, which revealed strong association of neuronal
activity and Ab lodging in brain circuits [17,95,106,131].
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3. Reaching and wrecking synapses from within

Although most intracellular Ab is contained within mem-
branous compartments, substantial amounts have also been
found in the cytoplasm of neurons [13,42]. The first
evidence for intracellular Ab came shortly after the
discovery of Ab as the main constituent of AD plaques.
However, as early studies used anti-Ab antibodies with
cross-reactivity with APP, the validity of conclusions drawn
remained a matter of controversy [66]. Interestingly, in au-
topsy samples tested from individuals between 38 and
83 years of age, Ab deposition in neurons proved to be
age-independent [66]. It is important to note that unlike
the bulk of extracellular Ab terminating at AA40, most intra-
cellular Ab terminates at AA42 [40,42,130]. There seems to
be a close mechanistic link between extracellular and
intracellular pools of Ab, with deposition of extracellular
Ab in plaques causing a reduction of intracellular Ab
REV 5.5.0 DTD � JALZ2568_proof �
[64,85]. From the clinical standpoint, it is important to
note that increases in intracellular Ab can be detected
from early, mild cognitive impairment stages of AD, with
its levels particularly high in neurons of the hippocampus
and entorhinal cortex, two brain regions affected most
severely by AD [40,130]. Whether the buildup of
intracellular Ab in diseased brains results from reduced
secretion or enhanced reuptake of extracellular Ab
remains to be determined. It is clear, however, that
pathological loading of neurons with Ab occurs primarily
when the levels of extracellular soluble Ab are abnormally
high and depends on its specific binding to a range of
receptor proteins and membrane biomolecules (e.g., lipids
and proteoglycans).

The first and the best-characterized mechanism of
receptor-dependent internalization of Ab is mediated via
the a7-nicotinic acetylcholine receptor mechanism [82].
Lipoprotein receptor protein represents the second best-
studied receptor that facilitates the uptake of Ab by
neurons, involving additional molecules such as apolipo-
protein E Q(APOE) [16]. In basal forebrain cholinergic
26 February 2018 � 5:18 pm � ce
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neurons, p75NTR can mediate the uptake of Ab [90,93].
Finally, Ab has been shown to bind multiple scavenger
receptors and advanced glycation end products in
neurons and glia [29,115] as well as formyl peptide
receptor-like-1 expressed in the brain [49]. As both, mem-
brane turnover and receptor internalization are tightly
coupled with SVC at axon terminals, presynaptic compart-
ments present the primary site for Ab entry into neurons.
These processes not only can enrich the intracellular
membrane-bound organelles with Ab but are thought
also to favor the buildup of Ab in the cytoplasm, with
cytotoxic effects [148,150]. It is noteworthy that the
extent of Ab internalization can be influenced by
specific mutations, with especially high intracellular Ab
deposits detected in the brains affected by APPswe
(K595M and M596L) [18,111]. Analysis of the
intracellular Ab distribution in SH-SY5Y neuroblastoma
cells revealed that monomers of both Ab40 and Ab42
can colocalize with markers for RAB-8 (trans-golgi
network and golgi), RAB-9 (trans-golgi network and recy-
cling endosomes), LAMP 1/2 (late endosomes and lyso-
somes), RAB-5 (early endosomes), RAB-3 (exocytosis
vesicle marker), and VAMP-2 (synaptic vesicles). Impor-
tantly, however, a substantial fraction of Ab42 granules
do not colocalize with any of these, implying cytoplasmic
Ab aggregates [150]. Using high-power electron micro-
scopy, it was shown recently that a large fraction of intra-
cellular Ab is present in the cytosol [150]. While cellular
mechanisms leading to deposition of Ab therein remain a
matter of controversy, the leakage of Ab from membrane-
bound compartments and active export from the ER to the
cytoplasm for degradation through the ER-associated pro-
tein degradation pathway have been closely considered
[69]. It appears that under physiological conditions, only
limited amounts of Ab are transported into the cytoplasm
and timely degraded therein. If dysregulated, this process
leads to excessive depositions of cytoplasmic Ab, which
interferes with a range of proteins, including the protea-
some complex [3,88] and SVC proteins at presynaptic
terminals. Analysis of the functional consequences of
intracellular Ab for synaptic functions in the human
brain is limited to correlational studies in postmortem
tissue. Experimental data from animal models and
neuronal cultures, however, show manifold effects of
intracellular Ab with a direct and indirect impact on the
neurotransmitter release machinery. Within endosomes,
Ab leads to disruption of endosomal sorting via
inhibition of the ubiquitin-proteome system [3]. This
mechanism has been discussed particularly in the context
of the buildup of tau protein and its abnormal distribution,
critical for synaptic functions [87,136]. As noted,
proteasome inhibition also accelerates the accumulation
of intracellular Ab, with detrimental effects on the
molecular machinery of neurotransmitter release
[79,145]. Intracellular Ab interferes with presynaptic
functions also via disruption of mitochondrial biology,
REV 5.5.0 DTD � JALZ2568_proof �
depleting presynaptic and axonal mitochondria and
changing their size and number [150]. Finally, presynaptic
Ab has been shown to interfere with molecular scaffolds
governing the trafficking of synaptic vesicles and their
priming for regulated exocytosis [112,144]. While the
exact mechanisms underlying these abnormalities remain
unclear, the clues gained from recent studies in this
direction highlight a considerable variety of mechanisms
and functional outcomes.
4. Obstructing SNARE “zippering”

Sharma et al. demonstrated for the first time that in the
postmortem AD brains, the level of SNARE Qcomplex forma-
tion, which is necessary for driving synaptic vesicle fusion at
the presynaptic active zone, is significantly reduced [123]. In
the absence of changes in expression of individual SNARE
proteins in their study, this finding has been interpreted as
evidence that Ab hinders the “zippering” of vesicle SNARE
VAMP-2 with target SNAREs syntaxin-1 and SNAP Q-25 into
a four-helical SNARE complex (Fig. 2A). Such effects of Ab
could contribute toward a wide range of synaptic impair-
ments and network dysfunctions found in AD [5,97]. In
the search for molecular correlates of this effect, Yang
et al. recently analyzed the impact of Ab42 monomers and
oligomers on SNARE complex formation in APP-PS1
mice, using biochemical assays in vitro and a transgenic
approach in vivo [144] (Fig. 2B and C). As APP-PS1 mice
are engineered to overexpress Ab but no other AD-related
proteins (e.g. tau, presenilin) [48], they are very suitable as
a model for exploring specific effects of pathologically
enhanced levels of Ab on SNARE interactions. In APP-
PS1 mice, like in humans, the Western blot bands
corresponding to the super-stable SNARE complex are
significantly reduced, without a change in the expression
of SNARE proteins. The outcome of these biochemical ex-
periments is in agreement with functional data, which
demonstrate inhibition of exocytosis by intracellular Ab42
oligomers [79]. Detailed analysis of Ab interactions with
v-SNAREs and t-SNAREs Qshowed that the hampering ef-
fects of Ab42 oligomers on SNARE complex formation
were due to its high-affinity interactions with t-SNARE syn-
taxin 1a, and specifically with the SynH3 motif, known to
play a critical role in the formation of four-helical SNARE
bundles [100,129] (Fig. 2D and E). Indeed, it is the disrup-
tion of the association of syntaxin-1 with VAMP-2 and
SNAP-25 that limits the formation of the trans-SNARE
complex, essential for setting vesicle fusion into motion.

In similar experiments with Ab42 monomers, while
Ab42 displayed the ability to interact with syntaxin-1, it
failed to prevent the formation of the SDS Q-resistant SNARE
complex or membrane fusion reaction, implying the unique
capability of Ab42 oligomers to interfere with the assembly
of SNAREs and exocytosis [144]. Intriguingly, no evidence
was found for impairments of synaptic vesicle docking by
either Ab monomers or oligomers, an observation that
26 February 2018 � 5:18 pm � ce
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Fig. 1. Three distinct modes of amyloid b (Ab) action Q21on neurotransmission. (A and B) Inhibition of the synaptic transmission in hippocampal slices by endog-

enous Ab mediated via a long-range paracrine mechanism. (A and B) Overexpression of amyloid precursor protein (APP) harboring Swedish mutation

(APPSWE) in selected neurons leads to excessive Ab release (red granules, A) with suppression of evoked excitatory postsynaptic currents (EPSCs) mediated

via NMDA and AMPA Q22receptors in noninfected neighboring neurons (infected, I vs. noninfected, NI) (B). No significant changes in neurotransmission could be

detected in slices infected with a BACE-1–resistant mutated variant of APP (APP MV) (B). In the same study, authors report decreased frequency of miniature

EPSCs in APPSWE infected slices, implying reduced density of synaptic connections due to Ab effects (not shown). Adapted with permission from [52]. (C and

D) Presynaptic inhibition of neurotransmission by endogenous Abmediated via an autocrinemechanism (red granules). Pharmacological blockade of Ab degra-
dation by thiorphan lowers the frequency of mEPSCs (i.e., presynaptic effects) and can be countered by a monoclonal HJ5.1 antibody against Ab supplemented

to the recording medium (D). Adapted with permission from [2]. (E and F) Inhibition of glutamate release and neurotransmission by Ab dialyzed in the pre-

synaptic terminal of a giant squid synapse through the patch pipette (E). Complete blockade of synaptic transmission (75 min after Ab injection), with no

changes of presynaptic calcium currents (F, top traces) and action potentials implies selective effects on synaptic vesicle cycle. Adapted with permission

from [79].
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suggests the differential sensitivity of synaptic vesicle dock-
ing and fusion to Ab [144]. Given the pivotal role of
t-SNARE syntaxin-1 in synaptic vesicle docking, the differ-
ential effects of Ab on docking versus fusion have been in-
terpreted as a result of steric hindrance of Ab oligomers
(but not monomers) to “zippering” of SNAREs into a four-
helix complex (cis-SNARE), while sparing their partial as-
sembly required for docking (trans-SNARE) (Fig. 3D and
E). In this context, it is worth stressing that presynaptic ter-
minals represent the principal site of Ab reuptake, which
may subsequently leak from early and recycling endosomes
into the cytoplasm [66,112]. As mentioned above, in
hippocampal neurons, internalized Ab42 interferes with
specific interactions between synaptophysin and VAMP-2,
which is essential in priming synaptic vesicles for regulated
exocytosis, another major step in SVC [112]. These findings
agree with functional measurements detailed below, consol-
idating the disruptive effects of Ab on synaptic vesicles traf-
ficking and recovery after fusion.
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5. Synaptic vesicle recovery and trafficking

Endocytosis is a critical step in the SVC, which affords
recovery of the synaptic membrane after exocytosis. Four
REV 5.5.0 DTD � JALZ2568_proof �
main types of endocytosis have been defined, with
clathrin-dependent endocytosis enabling the retrieval of syn-
aptic vesicles. In neurons, this process is controlled by a set
of regulatory and adaptor proteins (AP-2, AP-180, dynamin,
epsin, and others), which promotes the fission, pinching off,
and uncoating of the surface membrane followed by forma-
tion of synaptic vesicles [113,143]. Considerable evidence
suggests that in AD, clathrin-dependent recovery of synaptic
vesicles may be severely compromised [141,145], with
both genomic and proteomic studies showing also reduced
expression of regulator proteins in AD autopsies
[145–147]. Indeed, analysis of the expression of dynamin
1, AP180, and synaptophysin across various brain regions
showed a notable decrease in their levels in the
hippocampal CA1 Qregion and the entorhinal cortex. The
expression of AP180 and synaptophysin was also lower in
the hippocampal dentate gyrus and CA4 region, as well as
in the wider temporal cortex.

Similar studies in APPswe AD transgenic mice revealed
reduced dynamin 1, AP180, and synaptophysin expression
in the hippocampus, particularly prominent in the CA1 and
CA4 subfields [19]. These findings imply that Ab can act
not only as a modulator of exocytosis but is a potent
regulator of synaptic vesicle recovery after fusion. It is
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interesting to note that reduction of dynamin 1 and synapto-
physin was also observed in rats injected with Ab42 into the
hippocampus, with RNA and protein levels of AP180, how-
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Fig. 3. Regulation of postfusion recovery of the presynaptic membrane by amyloi
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ever, unchanged or even elevated. Also, changes in dynamin-
1 and AP180 expression under chronic elevation of the
Ab levels were far more pronounced than those of
Aβ
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synaptophysin, implying that these effects result from down-
regulation of AP180 and dynamin 1 by Ab42 and are not a
by-product of synaptic degeneration [59]. Assessment of
the functional effects of Ab42 on stimulation-induced endo-
cytosis and recovery of the synaptic membrane in neuronal
cultures with FM1-43 fluorescence dye showed that in the
presence of Ab42, the dye uptake coupled with synaptic ac-
tivity is markedly reduced [19]. This effect was attributed to
the inhibition of dynamin 1 activity, as in similar experi-
ments in control neurons (i.e., in the absence of Ab42) post-
exocytosis membrane recovery was not altered.

Reduced dynamin 1 and AP180 activity are likely to
contribute toward the altered size of synaptic vesicle pools
in AD mouse models and AD autopsies [19,99]. At a typical
presynaptic terminal, three discrete but interconnected pools
of synaptic vesicles can be distinguished: (1) releasable, (2)
recycling, and (3) reserve, with all three of major relevance
to synaptic physiology and plasticity [110]. Using vGlut-
pHluorin fluorescence protein expression in cultured neurons,
Park et al. observed a reduction of recycling and increase of
the synaptic vesicle reserve pool by Ab42 oligomers [98].
These effects occur without alterations in the total synaptic
vesicle content of axon terminals. In a separate experiment,
the effects of Ab42 oligomers on the rate of endocytosis in in-
dividual synaptic boutons were analyzed, with endocytosis
and reformation of synaptic vesicles found to be slowed
down, with only 50% of released vesicles recycled back
to the releasable pool [98]. Although the molecular mecha-
nisms of delayed recovery of synaptic vesicles remain un-
known, CDK5, known to regulate synaptic vesicle pool size
[63], has been suggested to play a major role [98,132]
(Fig. 3A–C). Ab oligomers are known to activate CDK5 via
calpain, with levels of CDK5 in AD brain autopsies reported
being significantly enhanced [70,105]. Failure of Ab42
oligomers to inhibit endocytosis and alter the size of
recycling and resting vesicle pools in the presence of CDK5
inhibitors is consistent with this mechanism [98]. Other fac-
tors such as depletion of dynamin 1 by Ab oligomers [58]
with knock-on effects on synaptic vesicle recovery and traf-
ficking as well as vesicle exchange between different pools
could also potentially contribute.
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6. Voltage-gated calcium influx and Ab

Calcium is a ubiquitous regulator of neuronal functions,
with intracellular Ca21 dynamics tightly regulated by multi-
ple presynaptic and postsynaptic mechanisms. The causative
link between dysregulation of calcium homeostasis, brain
aging, and AD was first proposed by Z. Khachaturian
[60–62] in the calcium hypothesis of AD and brain aging
[4,60]. According to this hypothesis, sustained disruptions
of intracellular Ca21 signaling are not only the key for
triggering aging-related adverse changes in the functioning
of neurons but are also crucial for the initiation of patholog-
ical processes underlying synaptic deficit and neurodegener-
ation of AD (Box 2). In turn, both Ab monomers and
REV 5.5.0 DTD � JALZ2568_proof �
oligomers have been shown to disrupt Ca21 homeostasis,
with oligomers capable of forming calcium-permeable
pores, causing a pathological increase in the level of intracel-
lular calcium, with cytotoxicity [6,7,65]. These reports
received backing from biophysical studies, which
demonstrated activation of transmembrane cation currents
in cells exposed to Ab oligomers [33,72], capable of
disrupting the fine ionic balance and causing oxidative
stress, which can lead to cell death. Increase in presynaptic
Ca21 induced by Ab pores is expected also to interfere
with neurotransmitters release [31,99,124].

Perforation of the surface membrane, however, is not the
only mechanism of calcium dysregulation by Ab at the pre-
synaptic terminals. When in excess, both monomers and
oligomers modulate biophysical properties of voltage-
activated calcium channels as well as calcium release
from the endoplasmic reticulum, with knock-on effects
on transmitter release and synaptic plasticity [125,128].
Rapid and localized calcium influx mediated via voltage-
gated N- or P/Q-type calcium channels at presynaptic ter-
minals are the principal regulators of transmitter release,
coupled also to postfusion membrane recovery. In all
neuron types tested, Ab modulates voltage-gated calcium
currents [83]. In cortical synapses, for instance, low con-
centrations (10 nM) of Ab42 oligomers enhance sponta-
neous release of glutamate and noradrenaline, which can
be reversed by an N-type channel blocker u-conotoxin
GVIA Qbut not by u-agatoxin or diltiazem, inhibitors of
P/Q- and L-type calcium channels [15]. Under prolonged
Ab42 treatment, however, significant inhibition of N-type
calcium was also observed [55]. In cerebellar granule cells,
at potentials positive to 0 mV, calcium currents are signif-
icantly enhanced by prolonged exposure to 1-mM Ab [102].
The increase in calcium currents was accompanied by a
5-mV shift in channel activation in the positive direction
and increased deactivation. Similarly, in cortical neurons,
inhibition of L-type channels with nifedipine (2 mM) did
not prevent the rise in calcium channel currents or affect
current activation and deactivation. N-type calcium channel
antagonist u-conotoxin GVIA (1 mM), on the other hand,
abolished the augmentation of Ca21 current and deactiva-
tion rate changes but did not prevent the shift in the current
activation curve. These data suggest that Ab could exert
presynaptic effects via disruption of calcium influx through
N-type calcium channels. Subsequent reports showed that
in cortical neurons, both monomeric and oligomeric
Ab40 facilitate P-type calcium currents [73], while their ef-
fects on N-type channels depend on the Ab aggregation
state, causing bilateral changes [107]. Interestingly, a
more recent study in cultured hippocampal neurons demon-
strated that at micromolar dose, Ab42 oligomers inhibit P/
Q-type calcium currents [84], while the same preparation
of Ab increased P/Q-type calcium channel currents ex-
pressed in Xenopus laevis [78]. This discrepancy could
be due to the fact that in an expression system, enhanced
effects of Ab40 oligomers are due to direct interaction of
26 February 2018 � 5:18 pm � ce



Box 2

Calcium hypothesis of Alzheimer’s disease

The principal assertion of the calcium hypothesis of Alzheimer’s disease (AD) is that sustained dysregulation of intra-
cellular Ca21 dynamics plays a critical role in the pathobiology of AD and other age-related dementias [60,74]. In
addition to disruption of synaptic function and plasticity mechanisms, deregulation of Ca21 with impairments of
downstream signaling are viewed as the key to the neurodegenerative process in AD [11,43]. As a ubiquitous regulator
of cellular functions, changes in Ca21 handling are expected to affect virtually all major molecular processes in neurons,
including amyloid precursor protein hydrolysis, phosphorylation of MAP tau, mitochondrial functions, synaptic
plasticity and dendritic spine dynamics. There is growing consensus that abnormal Ca21 handling could play a crucial
role in the synaptic deficit during the mild cognitive impairment stage of AD, well before the onset of degenerative
changes [9,20]. Initial alterations in synaptic functions are thought to be related to the reversible remodeling of
intracellular Ca21 signaling, which may switch brain circuits from memory storage to memory loss mode. Perhaps the
most progressive tenet of the calcium hypothesis of AD is that it offers a heuristic framework unifying AD with
physiological brain aging and related changes in neuronal mechanisms [4,62]. The recently updated calcium hypothesis
of AD seeks to reinforce the association between age-related cognitive decline and dementia of AD [4]. It postulates that
decline in synaptic and neuronal functions associated with normal aging could contribute toward the abnormal performance
of neural circuits in the AD, thus presenting a unifying view on AD and aging, which could explain a spectrum of patho-
physiological and histopathological changes leading to cognitive deficit and neuronal loss in the elderly. Similar to AD,
aging displays compromised neuronal and synaptic energetics, heightened stress susceptibility, metabolic impairments,
DNA damage, a deficit of lysosomal functions, as well as reduced Ca21 buffering and sequestration by endoplasmic re-
ticulum and mitochondria. From the therapeutic standpoint, age- and AD-related remodeling of Ca21 signaling and synaptic
plasticity mechanisms and particularly long-term depression are of special interest, given their relevance to encoding or
erasing of traces of synaptic memory [75,119]. In effect, sustained alterations in Ca21 signaling change the functional states
of synapses, with disruptive effects on storage and processing of information by neural circuits and the brain as a whole. Due
to the reversible nature of these changes, restoration of Ca21 dynamics via dietary restrictions, physical exercise, and
intellectual challenges, as well as via pharmacological means hold the potential of forestalling the progression of brain
aging and AD.
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Ab with the Cav2.1 a-subunit of the P/Q-type channel, in
the absence of axillary subunits [83]. Functional measure-
ments of the effects of Ab42 oligomers via Ca21 channels
showed inhibition of spontaneous postsynaptic currents, an
outcome that could be partly attributed to the reduction of
calcium-dependent transmitter release at presynaptic termi-
nals [84]. In light of the key regulatory functions of N- and
P/Q-type calcium currents in transmitter release, changes
in presynaptic Ca21 currents induced by Ab are expected
to have a major impact on synaptic transmission and plas-
ticity mechanisms, with knock-on effects on neural circuit
dynamics and information processing.
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7. Concluding remark

The SVC plays a twofold role in the pathobiology of AD.
On one side, it facilitates the amyloidogenic processing of
APP by b-secretase BACE1 and g-secretase complex, lead-
ing to Ab production and release. On the other hand, it pre-
sents the prime target for Ab toxicity, resulting in failure of
synaptic function and leading to degeneration of synaptic
connections. Throughout this review, we considered and dis-
cussed emerging data illustrating the effects of Ab on major
steps in the SVC, from postfusion membrane recovery to
vesicle trafficking, docking, and fusion as well as on presyn-
aptic voltage-gated calcium currents. Conceivably, the most
REV 5.5.0 DTD � JALZ2568_proof �
important notion that threads across most studies reviewed
here is that SVC (and neurotransmitter release) is subject
to regulation by both, extracellular and intracellular Ab. In
fact, the early onset of functional changes associated with
the rise in intracellular Ab, in the absence of extracellular
amyloid deposits, emerges to be of major relevance to cogni-
tive impairments and changes in neural network dynamics in
preclinical AD. At more advanced stages, these alterations
become aggravated by the added effects of extracellular
Ab, disturbing all major synaptic functions and plasticity
mechanisms, leading to the collapse of dendritic spines
and loss of synaptic connections. From the above discussion,
it follows that in addition to the most widely used therapeutic
approaches targeting Ab production and clearance mecha-
nisms by developing specific APP protease inhibitors and
anti-Ab immunotherapies, modulators of Ab uptake mecha-
nisms and presynaptic Ca21 channel functions as well as in-
hibitors of the translocation of Ab into the neuronal cytosol
could hold major therapeutic potential. Dampening the hy-
peractivity of cortical circuits and acceleration of the extra-
cellular glutamate clearance are other areas of potential
interest, given the tight coupling between the synaptic
activity with Ab release and plaque formation [91,95,142].
While still at the premature stage, research into the
“Frankensteinian” drama unfolding at axon terminals,
where the product of synaptic activity Ab relentlessly
26 February 2018 � 5:18 pm � ce
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degrades all core synaptic functions and mechanisms has
already shown great promise for clarifying major facets of
the pathobiology of AD, for better understanding and
management of this highly complex brain disorder.
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RESEARCH IN CONTEXT

1. Systematic review: As a fundamental neurobiolog-
ical process that links the interior of neurons with
their external environment, the synaptic vesicle cycle
provides an entry route for a range of pathogens and
toxins, including amyloid b (Ab), into neurons, to
enable their signaling and toxic effects.

2. Interpretation: This study critically reviews the
recent evidence for the physiological and patholog-
ical effects of the Ab peptide on various stages of
the synaptic vesicle cycle. Effects of several forms
of Ab on different stages of the synaptic vesicle cy-
cle, from postfusion membrane recovery to traf-
ficking, docking, and priming of vesicles for fusion
and transmitter release are discussed.

3. Future direction: Future research and interpretation
of the mechanisms of Ab interaction with the synap-
tic vesicle cycle should elucidate the role played by
Ab in the biology of the presynaptic terminal and
reveal novel therapeutic targets for Alzheimer’s dis-
ease.
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