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SUMMARY  
All biological systems exhibit cell-to-cell variability. Frameworks exist for understanding how 

stochastic fluctuations and transient differences in cell state contribute to experimentally 

observable variations in cellular responses. However, current methods do not allow to identify the 

sources of variability between and within stable subpopulations of cells. We present a data-driven 

modeling framework for the analysis of populations comprising heterogeneous subpopulations. 

Our approach combines mixture modeling with frameworks for distribution approximation, 

facilitating the integration of multiple single-cell datasets and the detection of causal differences 

between and within subpopulations. The computational efficiency of our framework allows 

hundreds of competing hypotheses to be compared. We initially validate our method using 

simulated data with an understood ground truth, then we analyze data collected using quantitative 

single-cell microscopy of cultured sensory neurons involved in pain initiation. This approach 

allows us to quantify the relative contribution of neuronal subpopulations, culture conditions, and 

expression levels of signaling proteins to the observed cell-to-cell variability in NGF/TrkA-initiated 

Erk1/2 signaling. 

 



INTRODUCTION 
Cellular heterogeneity is a common phenomenon in biological processes (Elsasser, 1984; De 

Vargas Roditi and Claassen, 2015). Even isogenic cells of the same cell-type may respond 

differently to identical stimuli (Tay et al., 2010). This cellular heterogeneity is critical for cellular 

decision making and the formation of complex organisms (Balázsi et al., 2011). It is also a cause 

of failure in treatments of cancer, pain, and a wide range of common diseases (Willyard, 2016). 

Many studies have attempted to gain a deeper understanding of cell-to-cell variability (Rubin, 

1990), and recently even a large-scale initiative was found to investigate this heterogeneity 

(Regev et al., 2017).  

Experimentally, most common approaches use methods giving single-cell resolution, such as 

microscopy (Schroeder, 2011), flow and mass cytometry (Pyne et al., 2009), and single-cell RNA 

sequencing (Islam et al., 2014). These techniques yield increasing amounts of data, which are 

commonly analyzed using statistical techniques. Accordingly, a large number of powerful 

statistical methods have been developed for the analysis of single-cell data (see, e.g., Qiu et al. 

(2011); Kharchenko et al. (2014); Lun et al. (2017)). Unfortunately, these are unable to identify 

causalities and latent causes, or to reconstruct the governing equations of the process. Improved 

methods of data analysis are therefore required. We propose a model-based analysis framework 

for systems exhibiting cell-to-cell variability at different levels:  

• differences between cell-types or cellular subpopulations, for example, caused by the cellular 

micro-environment (Ebinger et al., 2016) or stable epigenetic markers established during 

cell differentiation (Reik, 2007), and   

• differences between cells of the same cell population that arise, for example, from differences 

in the cell state (Buettner et al., 2015) or from intrinsic stochastic fluctuations (Elowitz et 

al., 2002).   

The differences on both levels can be caused by extrinsic or intrinsic noise (see definition by 

Elowitz et al., 2002). 

In the case of homogeneous cell populations, the reaction rate equations (RREs) provide a 

description of the population behavior in the form of ordinary differential equations (ODEs) (Figure 

1A). Stochastic fluctuations or latent differences between cells result in cell-to-cell variability and 

a distribution of cell states (Hasenauer et al., 2011; Zechner et al., 2012; Yao et al., 2016; Filippi 

et al., 2016) (Figure 1B). The statistical moments of this distribution are described by moment-

closure approximation equations (Engblom, 2006) and system size expansions (van Kampen, 

2007; Fröhlich et al., 2016). These methods provide scalable approximations for a range of 



processes in which variability arises from different sources. The approximation might be wrong, 

e.g. even negative variances might be predicted (Schnoerr et al., 2014). Additionally, they fail to 

provide an accurate description of the population heterogeneity when subpopulations are present 

and cannot be used to study the causal differences between cells and subpopulations.   

To address parameter differences between cell population, we recently (Hasenauer et al., 2014) 

introduced a method that combines mixture modeling and mechanistic RRE modeling of the 

subpopulation means (Figure 1C). Cell-to-cell variability within a subpopulation is treated naively 

as an additional parameter that is to be estimated. Thus, the method assumes that the 

subpopulations are homogeneous and no mechanistic description of cell-to-cell variability within a 

subpopulation is possible. Moreover, the extant method can only be applied to one-dimensional 

measurements. When multivariate measurements are used, only marginal distributions can be 

analyzed and correlations between measurements are neglected, which may result in a 

substantial loss of information (Altschuler and Wu, 2010; Buchholz et al., 2013).   

In this study, we introduced a non-trivial combination of mixture models that is able to capture 

subpopulation structures and models for individual subpopulations that account for differences 

between individual cells (Figure 1D). The approach therefore covers several levels of 

heterogeneity simultaneously (Figure 1A-D). This was not possible using the afore-mentioned 

approaches, which are all special cases of our model. The means and covariances of the 

observed species in each subpopulation are linked to a mixture distribution, allowing the entire 

cell population to be described and providing a mechanistic description of inter- and intra-

subpopulation variability. We used the sigma-point approximation (van der Merwe, 2004), a 

scalable approach allowing for the analysis of large models, to capture the distribution of cell 

properties within a subpopulation. Similarly, our framework is able to exploit moment equations 

and system size expansion for the description of individual subpopulations. In contrast with 

previous work in (Hasenauer et al., 2014), the proposed framework can fully leverage the 

correlation information in multivariate data, rendering a better conditioned problem and improving 

identifiability.  

We applied this framework to study signal transduction in the extracellular-signal regulated kinase 

(Erk) pathway, a signaling cascade that is involved in a range of biological processes. Our 

specific focus was on the pain sensitization signaling in highly heterogeneous primary sensory 

neurons in response to nerve growth factor (NGF) stimulation (Hucho and Levine, 2007; Ji et al., 

2009; Andres et al., 2012). Our findings suggest that extracellular scaffolds, which provide 

important structural and biochemical cues to cells, play a crucial modulatory role in pain 

sensitization signaling and that several changes such as relative TrkA expression, Erk1/2 

expression, but not subgroup composition is involved therein.  



RESULTS 

Mechanistic hierarchical population model for single-cell data  

We considered populations comprising heterogeneous subpopulations. To allow coverage of 

multiple levels of heterogeneity, we linked a mixture distribution ! to a mechanistic model of the 

means and covariances of individual subpopulations. The distribution of the parameters, e.g., 

initial conditions or kinetic rates, produces a distribution of cell states and observables (Figure 2A-

B). This distribution can be simulated using Monte Carlo methods by drawing parameters from 

the parameter distribution and simulating the single-cell model. Since this approach is 

computationally demanding, we approximated the distribution of parameters, states, and 

observables using finite mixture distributions. The components of the mixture describe the 

individual subpopulations.  

Each cell !  has cellular properties encoded in the parameter vector !! . In the hierarchical 

framework (Figure 2C), these parameters are considered to be drawn from a mixture distribution, 

as follows: 

!! ∼ !!!(!!,!!) 
!

, 

with subpopulation weight !! , mean !!  and covariance !!  for subpopulation ! = 1, . . .!.  The 

subpopulation parameters !! = (!!,!!) classify the variability of a property !!
 as follows:  
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allowing correlated parameters, !!,!" ≠ 0. The temporal evolution of the statistical properties of 

the cells of a subpopulation, including the mean and covariance, are computed using scalable 

methods. System size expansions and moment equations (van Kampen, 2007; Engblom, 2006) 

are used to describe stochastic single-cell dynamics, whereas sigma-points (van der Merwe, 

2004) are used otherwise. These approaches yield an ODE model of the statistical moments, 

comprising the means and covariances !! = (!!,!!) of species !. The model is simulated for 

each of the ! subpopulations 



!! = !(!!, !!, !), !!(0)  =  !!(!!, !)  (1) 

with initial conditions !! and experimental condition ! . The moments of the species in a 

subpopulation are then mapped to the distribution parameters !! = ℎ(!!, !!, !) of the distribution 

!, including measurement noise ! which is assumed to be the same for all subpopulations. The 

observables, the quantities of the biological system that can be measured experimentally, are 

assumed to have the distribution  

! ∼ !!!(!!)
!

 (2) 

at the population level. In this study, we used mixtures of multivariate log-normal distributions, 

yielding  !! = (!!,!!). The sigma-point approximation (detailed in STAR Methods) provides time-

dependent moments of the system defined in (1) and accounts for cell-to-cell variability. When 

combined with subpopulation variability, this yields both the inter- and intra-subpopulation 
variability. For a comparison of our approach to existing methods, we refer to STAR Methods.  

Parameter estimation and model selection  

The parameters of biochemical processes, the sources of cell-to-cell and subpopulation 

variability, and the precise network structure are in general unknown. We therefore calibrated the 

hierarchical population model using single-cell snapshot data !!,!,!  with cell ! measured at time 

point !!  under experimental condition !! , for example, representing a drug dosage. The 

parameters ! ∈ ℝ!! usually comprise characteristics of a subpopulation (e.g., the means and 

covariances of the parameter distributions), subpopulation sizes and measurement noise. 

Maximum likelihood estimation was used to derive these parameters from the data. The 

maximum likelihood estimate ! was obtained by solving the following optimization problem: 

max
!∈!

ℒ(!) = !!!(!! ,!)
!

! !!,!,!|!!!( !! ,!, !!
!,!,!

 

subject to  !!! = !(!!! , !!, !!), !!!(0)  =  !!!(!!(!), !!) 
!!!  =  ℎ(!!! , !!(!), !!). 

The likelihood function ℒ incorporates all cells, time points, and experimental conditions. For 

efficient parameter estimation, we performed multi-start local optimization with a robust evaluation 

scheme for the log-likelihood function and its gradient. The gradient of the log-likelihood function 

with respect to the parameters was computed using forward sensitivity analysis (see (Loos et al., 

2016) and STAR Methods). The practical identifiability and uncertainty of the parameter estimates 

was evaluated using profile likelihoods as well as sampling methods. For parameter sampling we 

employed an adaptive parallel tempering method.  



To infer the subpopulation structure, the difference between subpopulations, the variability within 

subpopulations, and the influence of the experimental condition, a collection of hierarchical 

models is formulated. We compare these models and the corresponding hypotheses using the 

Bayesian Information Criterion (BIC) (Raftery, 1999). The BIC provides a computationally 

relatively inexpensive approximation to the Bayes factors, which gives the favor of a model over 

another.  To justify the use of the BIC, we compared the results with those obtained by using (i) 

Bayes factors computed using thermodynamic integration (Hug et al., 2016) and (ii) log pointwise 

posterior predictive densities (Gelman et al., 2014).  

The subpopulation structures and parameters inferred with the hierarchical population models 

were subsequently used as prior information for the calibration of the single-cell models. The 

regularization provided by the prior allows the prediction of single-cell trajectories although the 

dataset for each individual cell is scarce. These can then be used to predict individual single-cell 

trajectories (see STAR Methods for more details).  

The hierarchical models were implemented in the MATLAB toolbox, incorporating efficient 

simulations for the individual subpopulations. While any simulation that provides means and 

covariances of the subpopulations can be employed, in this study, we used the sigma-point 

approximation. This approach accounts for cell-to-cell variability, which is manifested in the 

parameters (see STAR Methods for more details).  

Unraveling sources of heterogeneity 

To demonstrate the advantages of the hierarchical population model, which incorporates a 

mechanistic description of the means and variances, over the method proposed by Hasenauer et 

al. (2014), we applied our approach to simulated data on a simple conversion process. Such 

conversions are common in biological systems, for example, in phosphorylation. The conversion 

process comprised two species A and B, with cell-to-cell variable conversions from B to A (Figure 

3A), corresponding to different levels of phosphatase in the cells. Two subpopulations were 

assumed with different responses to stimulus u. This produced subpopulations with different rates 

of stimulus-dependent conversion from A to B. Artificial measurement noise was added to allow 

the capability of the framework to distinguish measurement noise from biological variability to be 

assessed. We assumed the underlying subpopulation structure, i.e., the subpopulation variability 

of !!, to be known (detailed in STAR Methods).  

The simulated data were analyzed using (i) the approach introduced in Hasenauer et al. (2014) 

which describes the subpopulations using RREs and (ii) the proposed approach using 

hierarchical single-cell analysis. The first approach does not model the temporal evolution of the 

variance, requiring different parameterizations to be compared, i.e., constant, time-dependent, 



and time/subpopulation-dependent variability. Model selection with the BIC indicates that different 

parameters for each subpopulation at every time point are required to be used to describe the 

data (Figure 3B). A full Bayesian analysis using the model evidence as well as the log pointwise 

predictive density justified the use of the computationally less expensive BIC (see Figure S1 and 

STAR Methods). This demonstrates that the observed cell-to-cell variability changes over time 

but provides no information about the sources of the observed cell-to-cell variability. 

The mechanistic modeling of multiple levels of heterogeneity facilitates the prediction of its causal 

source via model selection. We considered a range of hypotheses and performed model selection 

using BIC (Figure 3B). Given the subpopulation structure, the additional source of heterogeneity, 

namely, the conversion from B to A, was correctly predicted using the BIC and the corresponding 

model provided a good fit to the data (Figure 3C). The BICs for most of the hierarchical models 

were substantially lower than that of the best model that incorporates only the mean. This 

confirms that a mechanistic description of the variability is more appropriate.  

We analyzed the ability of the hierarchical model to predict the different contributions of cell-to- 

cell variability and measurement noise, as both are normally present in single-cell experiments. 

The uncertainty analysis suggested that the hierarchical modeling approach was able to 

distinguish between the two (Figure 3D).  

To evaluate the predictive power of the method for single-cell trajectories, we inferred the 

parameter of individual cells from the single data point available for each cell in combination with 

the calibrated hierarchical population model as a prior. We found that the information about the 

behavior of a single- cell encoded in the measurement of the first time point was limited (Figure 

3E), e.g., the prediction is off. However, using data from late time points, we obtained an good 

estimate of the (latent) single-cell trajectory (Figure 3F). The prediction of the trajectories for 100 

single-cells from measurements at time point ! = 120  min (Figure 3G) reveals a correlation 

between true and predicted values > 0.9 for all but early time points.  

This example shows how the hierarchical population model outperforms the variants of models 

presented in Hasenauer et al. (2014). We confirmed the power of the proposed approach by 

studying a model of stochastic gene expression (Figure S6) and comparing the approach to the 

method by Zechner et al. (2012) (see STAR Methods). Our model employs a mechanistic 

description of the variability, thereby enabling a more detailed insight into the heterogeneity of the 

population and reducing the number of parameters that need to be estimated from the data.  

Identification of differential protein expression 

Many single-cell technologies provide multivariate measurements and therefore convey 



information about the correlations between the observables. To incorporate this, we extended our 

hierarchical modeling framework to multivariate data and demonstrated its capability to 

reconstruct the differential protein expression of cellular subpopulations (Sauvageau et al., 1994; 

Kharchenko et al., 2014) using simulated data. We considered a model describing the abundance 

of two proteins, the expression of which is regulated by stimulus u (Figure 4A). The influence of ! 

varies between cell populations and is therefore able to capture, e.g., different levels of 

membrane receptors. We generated multivariate data by simulating a single-cell model (see 

STAR Methods for more details).  

An analysis using our hierarchical approach confirmed the ability of the proposed model to 

reproduce the data (Figure 4B) and to provide reliable parameter estimates (Figure 4C). Such 

multivariate data cannot be exploited by the existing model-based approaches. When the 

temporal evolution of proteins is measured individually, the correlation information is missing and 

a symmetry arises in the system (Figure 4D). This is reflected in the multimodal profiles of the 
parameters !!,! and !!,!, indicating a lack of practical identifiability.  

Our framework exploits the correlation structures of multivariate data, which in this simulation 

example allowed us to conclude that each subpopulation had a high expression of only a single 

protein. This only becomes possible when the correlations are analyzed.  

Modeling signal transduction in sensory neurons 

We applied the hierarchical modeling approach to investigate the sources of variability of NGF-

induced Erk1/2 activation in cultures of adult sensory neurons (Figure 5A). This was done by 

monitoring the rates of NGF-mediated Erk1/2 phosphorylation in dissociated cultures of the 

primary sensory neurons of rat dorsal root ganglia. Primary sensory neurons form a 

heterogeneous population, from which, upon NGF stimulation, a subpopulation reacts with a 

graded Erk1/2 phosphorylation response. Previous models have attempted to approximate this by 

assuming the existence of responders and non-responders with differing levels of the NGF 

receptor TrkA (Hasenauer et al., 2014). In the current study, we refined this substantially by 

modeling the overall population using two heterogeneous subpopulations that differed in their 

average response. To calibrate this refined model, we collected quantitative single-cell 

microscopy data on NGF-induced Erk1/2 phosphorylation kinetics and dose response curves 

using immunofluorescence labeling of pErk1/2 alone, co-labeled with Erk1/2 and TrkA antibodies 

(see STAR Methods for more details). Our analysis used the ODE model introduced in 

(Hasenauer et al., 2014). This has six structurally identifiable parameters !!, !!, !!, !!, !![TrkA]! 
and ![Erk]!.  

 



Causal differences between subpopulations of cultured sensory neurons  

In this test case, the ultimate goal of our modeling is to provide a mechanistic explanation for why 

a subpopulation of cultured neuron reacts to NGF stimulation with a graded Erk1/2 

phosphorylation response (phosporylated Erk is active). Erk1/2 is activated by TrkA and 

differences between the responses of responders and non-responders are likely caused by 

variation in TrkA levels. We first validated our modeling approach by predicting causal differences 

between subpopulations and its accordance with described differences in TrkA expression. We 

used experimental kinetic and dose response data from sensory neurons cultured on the 

adherence substrate poly-D-lysine (PDL). We fitted 64 models with up to 33 parameters, 

accounting for all combinations of the six potential differences between subpopulations, which 

was only feasible due to the computational efficiency of our approach. Our assessment of the 

importance of individual differences between the subpopulations using a BIC-based ranking 

scheme suggested that cellular TrkA activity (!![TrkA]!) made the greatest contribution (Figure 

5B). This was indicated by a high BIC weight, which captures differences by Bayesian model 

averaging (see STAR Methods for more details), and the substantially better mean rank of the 

models using differences in cellular TrkA activity compared with those using other differences. 

The additional subpopulation variability of TrkA expression levels was also confirmed 

experimentally in the cultures (Figure 5D) and use of this difference alone produced an excellent 

fit to the experimental data (Figures 5C and S4). The following potential differences are the 

relative Erk1/2 expression levels (![Erk]!) and the dephosphorylation rate (!!). However, our 

experimental data showed no statistically significant difference in total Erk1/2 levels between 

responders and non-responders (Figure 5E). To assess the relevance of the dephosphorylation 

rate and thus the corresponding phosphatase activity we performed experiments in which we 

monitored the pErk1/2 decline dynamics after inhibiting the mitogen-activated protein kinase 

(Mek) that phosphorylates Erk1/2. If the phosphatase activity does vary, we would expect to 

observe different equilibration dynamics. However, this could not be confirmed (Figures 5F and 

S3).  

This demonstrates that the hierarchical approach using experimental data provided an 

appropriate ranking of differences which could be demonstrated experimentally and is in line with 

literature (reviewed in. e.g., Mantyh et al. (2011)).  

Influence of extracellular scaffolds on sensitization signaling 

As second test of our approach, we systematically varied the extracellular environment and asked 

whether our modeling approach could generate mechanistic hypothesis to explain the altered 

cellular responses we observed. Specifically, we characterized NGF-stimulated signaling when 

neurons were either grown on collagen type I (Col I), a classical extracellular matrix protein that 



forms receptor-matrix interactions, or on poly-D-lysine (PDL), an organic molecule that promotes 

cell adherence by electrostatic interaction. We determined the kinetics and dose response curves 

of NGF-induced Erk1/2 phosphorylation in sensory neurons cultured overnight on Col I or PDL 

(see STAR Methods for more details). We found that the mean Erk1/2 activation was 

approximately 17% higher in Col I compared to PDL after NGF treatment (Figure 6A for pErk1/2 

dose responses and Figure S5A for the other datasets). In addition to showing increased NGF-

induced Erk1/2 activation, the number of cells was observed to be 1.5 times lower in the collagen 

cultures than in the poly-D-lysine cultures. These observations raised questions about the source 

of the measured increase in mean NGF-mediated Erk1/2 activation. We considered two 

hypotheses: (i) the increase results from a biological action of the different scaffolds onto the 

neurons and (ii) the increase reflects a shift of the subpopulation sizes arising from a nonrandom 

loss of parts of the high-responder subpopulation due to reduced cell adherence in the collagen 

cultures. To unravel the causal differences between the primary sensory neurons cultured on 

PDL and on Col I, we applied 128 hierarchical models with up to 36 parameters, using the 

previously derived subpopulation structure. These models considered all combinations of 

differences between the cell population on different scaffolds, including the size of 

subpopulations. The model for each adherence substrate accounted for the cell-to-cell variability 

of Erk1/2 and the inter- and intra-subpopulation variability of cellular TrkA activity. The model 

ranked first by the BIC (Figures 6B) gave a good fit to the data and suggested differences not 

only in cellular TrkA activity (!![TrkA]!) but also in Erk1/2 expression (![Erk]!), and Erk1/2 

dephoshorylation (!!)) (Figures 6C-D and S5B-D). These differences were assumed to explain 

the higher response on Col I, and therefore supported hypothesis (i). The model that assumed no 

difference between the extracellular scaffolds (rank 128) or changes only in the relative size of 

the subpopulations (rank 127) performed worst, indicating that hypothesis (ii) failed to explain the 

data. Indeed, the differences in relative TrkA and Erk1/2 expression levels predicted by the 

models with the highest ranked could be confirmed (Figures 6D-E). These results confirmed the 

model-based analysis and suggested an impact of the classical extracellular matrix protein 

collagen I on protein expression.  

DISCUSSION 
Elucidating the causes of cellular heterogeneity is a challenging task in systems biology and 

requires appropriate mechanistic models for use with single-cell data. In this study, we introduced 

a hierarchical modeling framework that allowed different levels of heterogeneity to be 

investigated, including subpopulation structures and cell-to-cell variability within subpopulations. It 

also provides mechanistic insights. Beyond cell-to-cell variability, the method accounts for 

measurement noise and is able to deconvolute these sources.  



This modeling approach unifies available mechanistic modeling and inference frameworks 

(Zechner et al., 2012; Hasenauer et al., 2014), complements available statistical methods, and 

exploits efficient simulation methods for cellular subpopulations. We focused on the cell-to-cell 

variability encoded in parameter values (Koeppl et al., 2012) and used sigma-point approximation 

to determine the subpopulation means and variances. To address variability arising from 

stochastic fluctuations, moment equations (Figure S6) and other methods, including the system 

size expansion (Fröhlich et al., 2016), can be used. The proposed method facilitates the 

integration and simultaneous analysis of multiple datasets, without requiring complex pre-

processing of the data (Lee et al., 2011). The modeling approach is implemented in the open-

source MATLAB Toolbox ODE-MM which is available on GitHub and ready to be reused by the 

community.  

Procedures such as a forward-backward algorithm (e.g., Hastie et al. (2009)) or reversible jump 

Markov Chain Monte Carlo (Green, 1995) could be implemented to perform parameter estimation 

and model selection simultaneously. An alternative approach to obtain the model evidence would 

be the use of sequential Monte Carlo methods, as, e.g., done by Filippi et al., 2016. In this study, 

mixtures of log-normal distributions were used to model the cell population. However, other 

distributions, including the Laplace distribution, could be integrated with the computational 

framework to improve robustness against outliers (Maier et al., 2017).  

The inference of mechanistic models from single-cell data relies on statistical models for the mea- 

surement and sampling process. In many modeling studies using single-cell data, no distinction is 

made between cells from different batches, obscuring cell-to-cell variability and differences 

between experimental batches (Hicks et al., 2015). In this study, we observed that the derived 

likelihood function can be overly sensitive and that model selection is biased towards complex 

models. To circumvent this issue, we used a ranking of potential differences rather than a precise 

measure of statistical significance. However, this problem will need to be addressed, as the use 

of single-cell data is increasingly common.  

In summary, we proposed the use of hierarchical population models as a novel tool to study 

heterogeneity in multivariate single-cell data and evaluated their performance. Our framework is 

the first to account for multiple levels of heterogeneity simultaneously. Our results on simulation 

and application examples suggest that this method can be used to obtain a more holistic 

understanding of heterogeneity.  
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STAR	METHODS	

CONTACT	FOR	REAGENT	AND	RESOURCE	SHARING	

Further information and requests for software and algorithms should be directed to the Lead 

Contact Jan Hasenauer (jan.hasenauer@helmholtz-muenchen.de). 

EXPERIMENTAL	MODEL	AND	SUBJECT	

Antibodies	

The following antibodies were used in this study: chicken polyclonal antibody against UCHL1 

(1:4000; Novus, #NB110-58872), mouse monoclonal antibody against UCHL1 (1:1000, 

MorphoSys, #7863-2004), rabbit monoclonal antibody against phospho-Erk1/2 (1:250, Cell 

Signaling, #4370L), mouse monoclonal antibody against ERK1/2 (1:500, Cell Signaling, cat#4696 

S), goat polyclonal antibody against TrkA (1:500, R&D Systems, #AF1056), and highly cross 

adsorbed Alexa Fluor 488, Alexa Fluor 568, Alexa Fluor 594-, and Alexa Fluor 488-conjugated 

secondary antibodies (Invitrogen).  

Reagents	

NGF (50 !g/ml in 0.1% BSA), GDNF (20 !g/ml in 0.1% BSA), U0126 (50 mM in DMSO) were 

purchased from Alomone labs (#N-240), PeproTech (cat#450-51), and Calbiochem (#662005), 

respectively, and were prepared as indicated. The concentrations used are indicated in the text or 

figure legends. Collagen type I (Cell Systems, #5056-A) and poly-D-lysine (Sigma, #P6407-5MG) 

were diluted in 1xPBS to final concentrations of 3.4 !g/ml and 10 !g/ml.  

Animals	

Male Sprague Dawley rats (200250 g, 8-10 weeks old) were obtained from Harlan Laboratories. 



All experiments were performed in accordance with the German animal welfare law with 

permission of the District Government for Nature and Environment, NRW (LANUV NRW, license 

84-02.05.20.13.045). Rats were sacrificed by CO2 intoxication for tissue isolation.  

Coating	

96-well imaging plates (Greiner) were coated with 50 !l volume of matrix protein dilutions per well 

for 3 h at 37 C Wells were washed one time with 1xPBS for 10 min PDL coatings were dried and 
washing solution of Col I treated wells was removed immediately before cell seeding.  

Primary	sensory	neuron	culture	

L1-L6 dorsal root ganglia (DRG) were isolated, desheathed, pooled and incubated in Neurobasal-

A (NB) medium supplemented with collagenase P for for 1 h in 5% CO2 atmosphere at 37°C. 

Neurons were dissociated by trituration with fire-polished siliconated Pasteur pipettes and axonal 

debris and disrupted cells were removed by a 14% BSA gradient centrifugation (120 g, 8 min). 

Cells were resuspended in NB medium supplemented with B27 medium, L-Glutamine, L-

Glutamate and Penicillin-Streptomycin. Subsequently, they were plated on pre-coated 96-well 

imaging plates and incubated overnight in a 5% CO2 atmosphere at 37°C. 	

Stimulation	and	fication	of	neuronal	cultures	

Neuronal cultures were stimulated 15 h after isolation by removal of 50 !l culture medium, mixing 

with the compound and returning to the corresponding culture well. Solvent controls were treated 

alike. Stimulation was performed with automated eight-channel pipettes (Eppendorf) on pre-

warmed heating blocks (37°C), and stimulated cells were placed back into the incubator. Neurons 

were fixed by adding 8% PFA (final concentration 4% PFA) for 10 min at RT and subsequently 

washed three times with 1xPBS for 10 min. Kinetic experiments involved time courses of 0, 1, 5, 

15, 30, 60 and 120 min NGF stimulation (20 ng/ml), whereas dose response curves were 

obtained by NGF stimulations with the following NGF concentrations for 1 h: 0.16, 0.8, 4, 20, 100, 

500 ng/ml.  

Immunocytochemistry	

Cells were blocked and permeabilized with 2% normal goat serum or 2% normal donkey serum 

supplemented with 1% BSA, 0.1% Triton X-100, 0.05% Tween 20 for 1 h at RT. Primary 

antibodies were added in 1% BSA in 1xPBS and cells were incubated overnight at 4°C. After 

three washes with 1xPBS for 10 min at RT, cells were incubated with secondary antibodies 

diluted in 1xPBS for 1 h at RT. Plates were stored at 4°C after three additional washes with 



1xPBS (10 min, RT) until scanning.  

Quantitative	microscopy	

Immunofluorescently labelled neurons were imaged via the Cellomics ArrayScan microscope 

using a 10x objective as described previously (Isensee et al., 2014). Images of 512 x 512 pixels 

were analyzed using the Cellomics software package. Briefly, images of all channels were 

background corrected (low pass filter), objects were identified using fixed thresholding (intensity 

900) and segmentation by shape (parameter 15). Neurons were validated by the following object 

selection parameters: size: 1657500  !m2; circularity (perimeter2/4!  area): 12; length-to-width 

ratio: 12.67; average intensity: 90012.000; total intensity: 2×10! to 5×10!. The image masks 

were then used to quantify signals in other channels. Raw values of three to four independent 

experiments were further processed via the R software. Raw fluorescence data was 

compensated and normalized. In brief, three controls were prepared for a triple staining: 1. 

UCHL1 alone, 2. UCHL1 + antibody 1, and 3. UCHL1 + antibody 2. Raw fluorescence data of the 

controls were used to calculate the bleed-through between fluorescence channels. The slope of 

best fit straight lines were determined by linear regression and used to compensate bleed through 

as described previously (Roederer, 2002). Compensated data were scaled to a mean value of 

1000 for the unstimulated cells of the poly-D-lysine control to adjust for variability between 

experimental days.  

METHOD	DETAILS	

Models	for	individual	subpopulations	

The hierarchical modeling approach introduced in this manuscript describes the population 

dynamics based on the dynamics of individual subpopulations. In this section, we introduce the 

modeling approaches at the subpopulation level that are used in our study.  

First, we considered the simple case that only the mean of a subpopulation is modeled 

mechanistically, whereas the variance and higher order moments are not linked to the underlying 

biochemical reaction network. For this, the reaction rate equation (RRE) was used  

!!
!" = !! !,!, ! , ! 0 =  !! ! , 
! = !! !,!, ! . 

(3) 

Here, ! = (!!, . . . , !!)! denotes the biochemical species, ! = (!!, . . . , !!)! the observables of the 

system, and ! the parameters, such as reaction rates, protein abundances, or initial conditions. 

This follows the method introduced in Hasenauer et al., 2014.  



The RRE is based on the assumption that the subpopulations are homogeneous. However, many 

cellular processes exhibit substantial intrinsic or extrinsic cell-to-cell variability. To account for this 

variability, we considered models accounting for random parameters and stochastic reaction 

kinetics.  

Sigma-point approximation In this study, we modeled extrinsic variability by heterogeneity in ! 

parameters of the parameter vector ! ∈ ℝ!! of individual cells. The parameters !  were assumed 
to follow a probability distribution !!(!). This distribution in the parameters !!(!) is mapped to a 

distribution of cell states and observables of the subpopulation, which need to be computed for 
the parameter estimation. A detailed analysis of this image requires sampling from !!(!) and 

subsequent evaluation of the state and observable vectors by simulation. This procedure is, 

however, computationally demanding. We employed the sigma-point approximation (van der 

Merwe, 2004) to obtain an approximation of the statistical moments of the image, mean and 

covariance and their dynamics in time, using a small number of simulations. The sigma-point 

approximation uses only the image of 2! + 1 deterministically chosen parameter vectors. These 

parameter vectors, the so called sigma-points, are chosen to represent the mean ! and the 
covariance  ! of !! . For the parameters that were considered to be homogeneous, i.e., not 

variable across the cells, it was assumed that !! = !! and !!! = !!"  =  0,∀!.  

Following van der Merwe (2004), the sigma-points !! ,!!  are defined as  

!! = !, !!(!) =  !!
! + !!

, for ! =  0 

!! = ! + ! + !! ! !
, !!

(!) =  !!
! + !!

 + 1 − !!! + !!, for ! =  1, . . . , ! 

!! = ! − ! + !! ! !
, !!

(!) = !!
(!) =  1

2(! + !!)
, for ! =  ! + 1, . . . ,2!. 

We used !! = 2 and !! = !!!(! + !!) − !, with !! = 0.7 and !! = 0  as proposed by van der 

Merwe (2004). The superscripts for !! indicate whether it is used for the calculation of the 

mean (!) or the covariance (!).  

For the examples and applications presented in the manuscript, we assumed that the variability 

between cells is completely explained by differences in the model parameters. For a set of given 

parameters, the dynamics of individual cells were described by the RRE (3). Accordingly, the 

images of the sigma-points in the state and the observation space, !! and !!, were computed as  

!!!  !" = !! !!  ,!! , ! , ! = 0, . . . ,2! 

!! = !! !!  ,!! , ! . (4) 

The mean and covariances of the species were computed as  



!! ≈ !!
(!)

!!

!!!
!! , 

!! ≈ !!
(!)

!!

!!!
(!! −!!)(!! −!!)! . 

The mean and covariances of the observables read  

!! ≈ !!
(!)

!!

!!!
!! , 

!!" ≈ !!
(!)

!!

!!!
(!! −!!)(!! −!!)! . 

(5) 

In our MATLAB SPToolbox, the parametrization of ! was implemented by either a diagonal 

matrix logarithm or a matrix logarithm (Williams, 1999), in case of correlations between 

parameters. For our study, we assumed a log-normal distribution of the parameters, i.e., ! and ! 

described the median and scale matrix of the corresponding log-normal distribution and the 

exponent of !!  was used in (4).  

Moment-closure approximation In this study, we also considered intrinsic variability of 

biochemical reactions as introduced by discreteness and stochasticity of biochemical reactions. 

The single-cell dynamics are described by continuous time discrete state Markov chains 

(CTMCs). We approximated the time-dependent moments of this process using the moment-

closure approximation (Engblom, 2006; Lee et al., 2009). This method provided equations for the 

temporal evolution of moments of the species, i.e., the mean  

!!,!(!) = !!! !, ! , ! = 1, . . . , !
!∈!

 

of species !!, and higher order moments such as the covariance  

!!,!"(!) = (!! −!!,!(!))((!! −!!,!(!)), !, ! = 1, . . . , !
!∈!

 

between species !!  and !! . Here, ! !, !  denotes the chemical master equation, Ω the set of 

possible states, and ! the number of species. Given the moments of the species, we calculated 

the moments of the observables by  

!!,!(!) = !!,!(!)! !, !
!∈!

 

!!,!"(!) = !!,!(!) −!!,!(!))(!!,!(!) −!!,!(!))! !, ! .
!∈!

 
(6) 

For the automatic generation of the moment-closure approximation and the corresponding 



simulation files, we employed the MATLAB toolbox CERENA (Kazeroonian et al., 2016). In 

addition, this toolbox provided the equations for the system size expansion, which can also be 

incorporated into our modeling framework as an alternative to the moment equations.  

Mechanistic	hierarchical	population	model 

For the hierarchical population model, the mechanistic description of individual subpopulations, 

as introduced in the previous section, is combined with mixture models to describe the entire cell 

population.  

Hierarchical model and its approximations We considered heterogeneous cell populations 

consisting of multiple subpopulations, ! = 1, . . . ,!. Assuming independence, the distribution of the 

states and observables in the overall population is the weighted sum of the distribution of the 

states and observables in the subpopulations, !!(!|!) and !!(!|!). The weights !!(!) are the 

relative populations sizes, with ∀!: !!(!) = 1! . This yields the hierarchical population model  

!(!|!) = !!(!)!!(!|!),
!

 

!(!|!) = !!(!)!!(!|!).
!

 

The distribution of states and observables in the subpopulations originate according to the single 

cell properties. As the measurements !  are in general noise corrupted, !~!(!|!)  we also 

considered the distribution  

! ! ! =  ! ! ! ! ! ! !! 

= !!(!) !(!|!)!!(!|!)!!
!:!!(!|!)

.
!

 

To ensure computational efficiency, the probability distributions !!(!|!), !!(!|!) and !!(!|!) were 

approximated using the statistical moments. For the measured observables, the computed 

statistical moments were encoded in !!, yielding  

!(!|!) = !!(!)!(!|!!(!))
!

 

with parametric probability distribution !. In this study, we employed the multivariate normal 

distribution 

!(!|!!,!!) = !

(!!)
!
!!"#(!!)

!
!
!!

!
!(!!!!)

!(!!)!!(!!!!),  (7) 



and multivariate log-normal distribution  

log!(!|!!,!!) = !

(!!)
!
!!"#(!!)

!
!( !!"!

!!! )
!!

!
!(!"#(!)!!!)

!(!!)!!(!"#(!)!!!), (8) 

with distribution parameters  !! = (!!,!!). For example, for the multivariate normal distribution 
and no measurement noise, the distributions parameters were obtained by !! = !!,!  and 

!! = !!,!. 

Likelihood function The parameters of the hierarchical population model !  comprise the 

means/medians of the cell parameters !,!! as well as the entries of the scale matrices !,!!, the 

mixture weights !! , and measurement noise ! . These parameters were estimated using 

maximum likelihood estimation. The likelihood function for multivariate measurement data 

!!,!,! ∈ ℝ! is given by  

ℒ ! = !!! !! ,!
!

! !!,!,!|!!!( !! ,!, !!
!,!,!

 

with !!! = !(!!! , !!, !!), !!!(0)  =  !!!(!!(!), !!) 
!!!  =  ℎ(!!! , !!(!), !!) 

(9) 

with means and covariances !!! = (!!! ,!!!)!  of species ! . The means and covariances are 

provided by some map ! , e.g., the sigma-point approximation or the moment-closure 

approximation. The subpopulation parameters !! = (!!,!!)  are given by  

!!,! =

!!  
!!
!!,!  
!!,!

 

homogeneous 

cell-to-cell variable 

subpopulation variable 

inter- and intra-subpopulation variable 

!!,!! =

0
!!!
0 
!!,!!

 

homogeneous 

cell-to-cell variable 

subpopulation variable 

inter- and intra-subpopulation variable 

The mapping ℎ  links the computed moments to the moments of the measurand including 
measurement noise, which are denoted by !! = (!!,!, . . . ,!!,!)! and !! and can be calculated 

as described, e.g., in (5) and (6). For a mixture of normal distributions (7), the means and 

covariances were linked to the parameters of the normal distribution  

 !!! = !!,!! ,  !!! = !!,!! + !, 

including additive normally distributed measurement noise parametrized by  



! = Γ!,! !,!!!,...,! =  
!!,!"#$%!  0 0
0 ⋱ 0

0 0 !!,!"#$%!
 . 

For the log-normal distribution (8), the distribution parameters were directly simulated with the 

sigma-point approximation for the logarithm of the observable, yielding the relation 

 !!! = !!,!"#(!)
! , !!! = !!,!"#(!)! + !, 

accounting for multiplicative log-normally distributed measurement noise. Alternatively, the mean 

of the simulation was linked to the mean of the log-normal distribution by  

!!,!! = log(!!,!,!
! ) − 12 Σ!,!!

! , 

Σ!,!!! = log !!,!,!!

!!,!,!
! !!,!,!

! + 1 + Γ!" . 

In principle also other distributions can be incorporated in the presented modeling framework. 

Due to numerical reasons, we used the log-likelihood function (Loos et al., 2016).  

Gradient of likelihood function To promote efficiency of the numerical optimization and robust 

convergence, we derived the gradient of the log-likelihood function. For this, the gradient of the 

corre- sponding mixture ditribution ! with respect to ! was calculated using  

!
!"! !!,!,!|!!!(!!),!!! !! = − !

!! !!,!,!|!!!(!!),!!! !! Tr !!! !!
!! !!!! !!

!" + !!!(!!) −

!!,!,! ! !!! !!
!! !!!! !!

!"
!
+ !!!! !!

!"
!
!!! !!

!! !!!(!!) − !!,!,! +

!!!(!!) − !!,!,! ! ! !!! !!
!!

!"  !!! !! − !!,!,! , 

and the relation 

log!(!!,!,!|!!!(!!),!!! !! ) = ! log(!!,!,!)|!!!(!!),!!! !! !!!,!,!
!

!!!

!!
. 

Additionally, the sensitivities of the distribution parameters !!!
!

!"
  and !!!

!

!"  were required, which were 

obtained by simulating the sensitivity equation for the sigma-point or the moment-closure 

approximation and mapping it to the distribution parameters using ℎ.  

Comparison	with	existing	models 

A comparison of the hierarchical population model with existing methods is given in the following:  



method 
mechanistic description of 

subpopulatons multivariate 
data reference 

dynamics variabliity 

mixture model   ✓ ✓ e.g., Hastie et al. (2009) 

moment-closure 

approximation 
✓ ✓  ✓ e.g., Zechner et al. (2012) 

ODE-constrained 

mixture model 
✓  ✓  Hasenauer et al. (2014) 

hierarchical 

population model 
✓ ✓ ✓ ✓ this manuscript 

	

Parameter	estimation	

For parameter estimation, we used the MATLAB toolbox PESTO (Stapor et al., 2018), which 

employs the function fmincon.m for local optimization. We used the interior-point algorithm and 

provided the analytic gradient of the log-likelihood function. Due to numerical better properties, 

we estimated the log10-transformed parameters. To explore the full parameter space, we 

performed multi-start optimization which has shown to outperform global optimization methods 

(Raue et al., 2013; Hross and Hasenauer, 2016). For this, randomly drawn initial parameter 

values were used for the optimization. For the uncertainty analysis, we calculated profile 

likelihoods (Raue et al., 2009) and the confidence intervals using the corresponding PESTO 

functions. We used the maximum likelihood estimates as initial values for the sampling of the 

posterior distribution with parallel tempering.  

	

	

Calibration	of	single-cell	model	

The calibrated hierarchical population model provides estimates for !!,!, and !!,!! which can then 

be used as prior information for the single-cell parameters !! of cell !: 

!(!!!) =

!(!!! − !!) 
!(!! ,!!!)
!!!(!!! − !!,!)!

!!!(!!,! ,!!,!!)
!

 

homogeneous 

cell-to-cell variable 

subpopulation variable 

inter- and intra-subpopulation variable 

in which ! denotes the Dirac delta distribution. The posterior distribution for the parameters of cell 



!, !!, is given by  

!(!!|!! , !) ∝ !(!!|!! , !)!(!!) 

in which !(!!|!! , !)  denotes the likelihood of the single-cell measurement !!  for single-cell 

parameters !!  and noise parameters ! . The likelihood is !(!!|!! , !) = N(!!|!! , !)  for additive 

normally distributed measurement noise and is !(!!|!! , !) = logN(!!|!! , !) for multiplicative log-

normally distributed measurement noise.  

Conversion	process	

In the manuscript, we considered a model of a conversion process. In the following, we provide a 

detailed description of the data generation and data analysis. We first introduce the single-cell 

model of the conversion process. Afterwards, we present the results for the model accounting for 

the mean, and the hierarchical model accounting for the mean and covariances.  

Single-cell model The conversion process is described by the following reactions  

!!: A → B, rate = !!![A], 
!!: A → B, rate = !![A], 
!!: B → A, rate = !![B]. 

Reaction !!  describes the stimulus-dependend conversion, whereas reaction !!  models the 

basal conversion from A to B. The conversion from B to A, reaction !! , does not depend on 

stimulus ! (Hasenauer et al., 2014). The concentrations of the species A and B are denoted by 

[A] and [B]. The RRE for (!!, !!) = ([A], [B]) is given by  

!!!
!" = !!!! − (!!! + !!)!!, 
!!!
!" = (!!! + !!)!! − !!!!, 

with initial conditions 

!!(0) =
!!
!!
, !!(0) = 1 − !!!!

, 

accounting for mass conservation [A] + [B] = 1  and the assumption that the system was in 

steady state before the stimulus was added at 0 min. We assumed the conversion from B to A to 

be cell-to-cell variable,  

!! ∽ logN(!!! ,!!!! ),  (10) 



yielding cell-to-cell variable initial conditions. The parameter !! was considered to differ between 
subpopulations and therefore was parametrized by !!,! and !!,!. The weight !! indicated the 

proportion of the low responsive subpopulation. We generated artificial data for the parameters  

!!"#$ = !!,!, !!,!, !!,!!! ,!!! ,!!"#$%,!!
!
 

= 10!!.!, 10!.!, 10!!.!", 10!!.!, 10!!, 10!!.!, 0.7 ! . 

We observed the concentration of B, i.e., y = !!. The data was created including 1000 cells at 5 

time points for ! = 1  by sampling from the distribution for !!  (10) and simulating the 

corresponding RREs. Of the 1000 cells, 700 cells belonged to subpopulation 1 with low response 

to stimulation and 300 cells to the high responsive subpopulation 2. Additionally, the 

measurements of both subpopulations were assumed to be subject to logarithmic multiplicative 

measurement noise parameterized by !!"#$%. We assumed the parameters ! to be unknown and 

estimated them from the data with  

(i) the approach introduced by Hasenauer et al. (2014) using the means (obtained by the 

RRE) and   

(ii) hierarchical population model describing the means and covariances (obtained by the 

sigma-point approximation). 

For both approaches, the underlying subpopulation structure was given, i.e., subpopulation 

variability of !!.  

Hierarchical model using RREs We considered a hierarchical model with subpopulation means 

that were described by the RRE. The distribution of the observables was assumed to be log-

normal and the scale parameters were estimated from the data. We distinguished the following 

scenarios:  

• one scale parameter that is shared across time points and subpopulations,  

• one scale parameter for every subpopulations, which is shared between time points,  

• 10 scale parameters that differ for each subpopulation and time-point.  

These scale parameters were estimated along with !!,!, !!,!, !!,!!! , and !! for this setting, which 

corresponds to the ODE constrained mixture modeling described by Hasenauer et al. (2014). For 

optimization, the kinetic parameters !! were assumed to be in the interval [10!!, 10!], the weight 

!! in [0,1], and the scale parameters for the log-normal distribution were restricted to the interval 

[10!!, 10!]. For each model we performed 50 multi-starts at randomly drawn initial points. The fits 

corresponding to the optimal parameter values are shown in Figure S1A.  



Hierarchical model using sigma-point approximations For the hierarchical population model, 

the parameter vector for subpopulation ! was given by !! = (!!,!!) with  

!! =

!!,!
!!
!!!  
!!"#$%

 

subpopulation variable  

homogeneous  

cell-to-cell variable 

homogeneous 

and  

!!,!" =
!!!!  
0 

 

 

for ! = ! = 3 

otherwise. 

To describe the introduced cell-to-cell variability in !! (10) we used the sigma-point approximation 

for the log-parameters.  

To assess whether the true source of heterogeneity can be detected, we tested all possible 
combinations of additional cell-to-cell variability in !!,! , !! , or !! . For this, the sigma-point 

approximation was applied to the logarithm of the observable, to link the mean and variance of 

the simulation directly to the distribution parameters of the log-normal distribution. The case of no 

additional cell-to-cell variability corresponds to the RRE models and is therefore not covered 

here.  

For optimization, the kinetic parameters or their means (in case of cell-to-cell variability) were 
assumed to be in the interval [10!!, 10!], the scale parameters !!! and measurement noise !!"#$% 
in [10!!, 10!] and the weight !! in [0,1]. As for the RRE model, we performed 50 multi-starts. The 

fits corresponding to the optimal parameter values for each model are shown in Figure S1.  

To evaluate how the method scales with the number of measured cells, we generated datasets 
with !! = 10!, 10!, 10!, 10!, 10!  measured cells per time point. The average computation time for 

three replicates for 10 optimization starts for the varying number of data points is shown in Figure 

S2. The contribution of the evaluation of the density !(!|!!) increased linearly with the number 

of data points. However, the simulation time was almost constant for increasing number of data 

points, since the simulation did not depend on the number of measured cells. The slight increase 

can be explained by the increased number of iterations needed for optimization, which might 

have occurred due to different effective optimizer tolerances that were not comparable for varying 

number of data points.  

Bayesian parameter estimation and model selection In the main manuscript, we used profile 

likelihoods for parameter uncertainty analysis and the BIC for model selection. We compared 

these approaches with their fully Bayesian counterparts. To facilitate this comparison, we 



considered uniform prior distributions.  

In a first step, we evaluated the confidence intervals obtained using profile likelihoods. Therefore, 

we sampled the posterior distribution of the ground truth model using the parallel tempering 

algorithm implemented in the parameter estimation toolbox PESTO. The chains were initialized at 

the maximum likelihood estimates and their convergence was assessed using the Geweke test 

(Geweke, 1992). The comparison of the marginal posterior distributions and the profile likelihoods 

revealed an excellent agreement (Figure S1B). We note that the initialization of the parallel 

tempering algorithm using a sample from the prior instead of using the pre-computed maximum 

likelihood estimates, yielded substantially longer computation times and often did not result in a 

converged chain for 2×10! iterations (corresponding to roughly 4 CPU hours). This indicates that 

for this problem, optimization is an important step. In a second step, we evaluated the ranking 

obtained with the BIC to the ranking obtained by fully Bayesian approaches. Therefore, we 

computed the log marginal likelihood as well as the log pointwise predictive density (Gelman et 

al., 2014) for each model. The log marginal likelihood was determined using thermodynamic 

integration with the Simpsons rule (Hug et al., 2016) (Figure S1C). The log pointwise predictive 

density was determined by sampling the posterior distribution for a subset of the data, for the 

measurements for all but one time point, and computing the average log-likelihood on the 

remaining data. The comparison of BIC values, log marginal likelihoods, and log pointwise 

predictive densities revealed a good agreement. The Spearman’s rank correlation coefficient 

between BICs and log marginal likelihoods is ! =  0.98, and ! =  0.83 between BICs and log 

pointwise predictive densities. Furthermore, all criteria suggest the rejection of the models which 

include only the mechanistic description of the mean but not the variance. For the remaining 

models the methods provide a sightly different ordering, but all of them indicate the importance of 

the variability of !!. Interestingly, model complexity seems to be more penalized by the BIC.  As 

the model selection did not reject all models but the ground truth model, we evaluated the 

contribution of the variability of individual parameters to the variability of the observable. 

Therefore, we evaluated the reduction of the variability of the observable achieved by removing 

the variability in the parameter of interest. This analysis was performed for samples from the 

posterior distribution (Figure S1D). We performed this analysis for the models which can not be 

rejected based on a Bayes factor cutoff of 100 (Kass and Raftery, 1995) and found that clearly 

the main contribution to the variability comes from variability in !!. This means that even for 

plausible models which account for variability in !! or !!, the main source of variability is !!. To 

confirm this further, we computed the BIC weights, also known as Schwarz weights, for a certain 

variability by summing the BIC weights  

!"# !!.!!"#!
!"# !!.!!"#!!

  (11) 



for all models accounting for this variability. To detect the source of variability, we took the models 

for all possible combinations into account. Similarly, we calculated the evidence of a variability 

based on the computed marginal likelihoods. Both approaches agree in the presence of variability 

in !!, confirming the agreement of the results. The BIC weights for the parameters !! and !! are 

higher than the evidences computed from the log marginal likelihoods, which, however, does not 

have a big contribution to the overall variability (Figure S1D&E).  

Differential	protein	expression	

In the main manuscript, we investigated multivariate measurements of differential protein 

expression. Here, we provide the detailed description of the data generation and the data 

analysis using the hierarchical model for the full and the marginal distributions.  

Single-cell model The simple model of differential protein expression considers six reactions  

!!: ∅ → A, rate = !!, 
!!: ∅ → B, rate = λ!, 
!!: ∅ → A, rate = λ!!, 
!!: ∅ → B, rate = !!!, 
!!: A → ∅, rate = ![A], 
!!: B → ∅, rate = γ[B], 

comprising the basal expression with rate !! , degradation with rate !  and stimulus-induced 

expression, depending on ! , with rate !! and !!  for protein A  and B , respectively. The 

corresponding ODE system for the temporal evolution of (!!, !!)  =  ([A], [B]) is  

!!!
!" = !! +  !!! − !!!, 
!!!
!" = !! +  !!! − !!!, 

with initial conditions 

!!(0) = !!(0) =
!!
! , 

obtained by assuming that the system was in steady state before the stimulus was added at 0 

min. Two subpopulations were assumed, one showing high expression of A while the other 

shows high expression of B after stimulation with !. The degradation rate ! was considered to be 

cell-to-cell variable,  

! ∽ logN(!! ,!!!), (12) 



with median !! and scale !! which were equal between the subpopulations. The measurements 

were exposed to log-normally distributed multiplicative measurement noise parametrized by 

!noise.  

Hierarchical model The hierarchical model accounted for the subpopulation variability of !! and  

!! and the cell-to-cell variability of !. This yielded the subpopulation parameters  

!! =

!! 
!!,!
!!,! 
!!

!!"#$%

 

homogeneous 

cell-to-cell variable 

subpopulation variable 

inter- and intra-subpopulation variable 

homogeneous 

!!,!" =
!!! 
0 

 

 

for ! = ! = 4 

otherwise. 

As before, the sigma-point approximation was applied to the log-transformed parameters 

accounting for the log-normal distribution of !. We performed 100 starts using as data either the 

full or the marginal distribution of A and B. The parameters and corresponding boundaries are:  

symbol description !!" !!" !!"#$ 

!! basal protein expression 10!! 10! 10!.! 

!!,! induced protein expression of A in subpop. 1 10!! 10! 10!.! 
!!,! induced protein expression of A in subpop. 2 10!! 10! 10! 
!!,! induced protein expression of B in subpop. 1 10!! 10! 10! 
!!,! induced protein expression of B in subpop. 2 10!! 10! 10!.! 
!! median of protein degradation 10!! 10! 10!! 
!! variability of protein degradation 10!! 10! 10!! 

!!"#$%	 measurement noise 10!! 10! 10!! 
!!	 weight of subpop.1 0 1 0.5 

Using a statistical approach to obtain the number of converged starts (Hross and Hasenauer, 

2016), we found that 84/100 starts converged for the full distribution and 91/100 for the marginal 

distributions.  

NGF-induced	Erk1/2	signaling	

Here, we provide details for the analysis of NGF-induced Erk1/2 signaling. We employed the 

model proposed by Hasenauer et al. (2014), which comprises the reactions 	

!!: TrkA + NGF →  TrkA:NGF, rate = !![TrkA:NGF], 
!!: TrkA:NGF →  TrkA + NGF, rate = !![TrkA][NGF], 



!!: Erk →  pErk, rate = !![TrkA:NGF][Erk], 
!!: pErk →  Erk, rate = !![Erk], 
!!: pErk →  Erk, rate = !![pErk]. 

Conservation of mass yields  

 [TrkA]  +  [TrkA:NGF]  =  [TrkA]! , 
[NGF]  +  [TrkA:NGF]  =  [NGF]!, 

[Erk]  +  [pErk]  =  [Erk]!. 

To eliminate structurally non-identifiable parameters, the model was reparametrized to  

!!!
!" = !![NGF]!(!![TrkA]! − !!) − !!!!, !!(0) = 0 
!!!
!" = (!! + !!)(!![Erk]! − !!) − !!!!, !!(0) =

!!!![Erk]!
(!! + !!)

,  

(13) 

with !!  =  !![TrkA:NGF] and !! =  !![pErk]!. The observables for the considered experimental 

conditions are  

!! =
!!![pErk]! + !!! , ! = 1,2,

(!!![pErk]! + !!! , !![TrkA]! + !!)!, ! = 3,
(!!![pErk]! + !!! , !![Erk]! + !!)!, ! = 4,

 

 

(pErk1/2 kinetics and dose responses), 
r
e
p
o
s
n
s
e
)
,
) 

(pErk1/2 and TrkA dose responses), 

(pErk1/2 and Erk1/2 dose responses), 

to compare the subpopulations on poly-D-lysine (PDL) and  

!! =
!!![pErk]! + !!! , ! = 1, . . . ,4,

(!!![pErk]! + !!! , !![TrkA]! + !!)!, ! = 5,6,
(!!![pErk]! + !!! , !![Erk]! + !!)!, ! = 7,8,

 

 

(pErk1/2 kinetics and dose responses), 
r
e
p
o
s
n
s
e
)
,
) 

(pErk1/2 and TrkA dose responses), 

(pErk1/2 and Erk1/2 dose responses), 

to study the effects of the extracellular scaffolds PDL and collagen type I (Col I) on the neurons 

(PDL: ! = 1,3,5,7, Col I: ! = 2,4,6,8).  

The pErk1/2, TrkA and Erk1/2 levels could only be measured up to some scaling constants 

denoted by !! , !!, and !! , respectively, and with some offsets denoted by !! , !! , and !! . Each 

observable was assumed to be subject to multiplicative log-normally distributed measurement 
noise parameterized by !!,!"#$%!

 
,!!,!"#$%,  and !!,!"#$% . For the comparison of the extracellular 

scaffold, the same scaling, offset, and measurement noise parameters were used for PDL and 

Col I. For each subpopulation, we used the sigma- point approximation accounting for cell-to-cell 

variability in cellular TrkA activity and Erk1/2 levels. The covariance between TrkA activity and 

relative Erk1/2 expression was parametrized, accounting for correlations, with the matrix 

logarithm parametrization !(!! ,!! ,!!") ∈ ℝ!×!. All other entries of !! were assumed to be 0.  



Data pre-processing For our analysis, we scaled each replicate such that the quadratic 

difference of the log-transformed fluorescence mean intensities across replicates is minimal (see 

getScalingFactors.m). The scaled intensities of the cells of each replicate were then pooled and 

analyzed together.  

Subpopulation differences We accounted for all possible combinations of subpopulation 

variability of !!, !!, !!, !!, !![TrkA]!, and !!![Erk]! . This yielded in total 2! = 64 models that were 

tested, ranging from !! = 26 parameters, for the model assuming no subpopulations at all, to 

!! = 33 parameters, assuming that the subpopulations differ in all parameters. To take into 

account all hierarchical models, we considered the BIC weights for individual differences as in 

(11).  

We compared the results of model selection by BIC and log pointwise posterior density. This was 

done for the models accounting for no or one difference between the subpopulations (Figure 

S4B). We considered this reduced set of models for the comparison, as the sampling for the 

calculation of the log pointwise predictive density and the calculation of the Bayes factors took (on 

average 780 CPU hours per model for the Bayes factors). The BIC values, the log pointwise 

posterior density, and the Bayes factors strongly prefer the model accounting for differing TrkA 

levels over all other models (∆BIC >  7×10!). We found that the log pointwise posterior density 

highly depends on the splitting of the data set, with smaller test and training data sets preferring 

less complex models. The results in Figure S4B are shown for splitting the data set in two parts, 

which gave a rank correlation of ! =  0.61. The Bayes factors even yielded a rank correlation of 

! =  1, indicating that the Bayes factors are indeed well approximated by the BIC for these 

models.  

Dephosphorylation rates To validate, whether the two subpopulations differ in their 

dephosphorylation/phosphotase activity (parameterized by !!), we inhibited cells with the Mek-

inhibitor U0126 (10 !M). NGF binds to the TrkA+ subpopulation and activates pErk1/2 signaling, 

whereas GDNF binds to the Ret receptor on the opposing subpopulation (TrkA-) and yields 

pErk1/2 signaling in this neuronal subgroup. Cells were pre-stimulated for 1 h with the combined 

stimuli NGF (20 ng/ml) and GDNF (100 ng/ml) to obtain responses in both subpopulations. We 

measured pErk1/2 levels to obtain the dynamics of the dephosphorylation as well as TrkA levels 

to distinguish the two subpopulations. Cells were considered to belong to the TrkA+ 

subpopulation if their intensity was above 670 and to the TrkA- subpopulation if their intensity was 

below 630. The measurements were taken at 0, 1, 4, 7, 10, 13, 16, 18, 22, 25, 28, 31, 34, and 37 

min and collected for four replicates.  

To obtain the de-phosphorylation rate !!, we normalized the values of pErk1/2 to 1 at ! = 0 min 

and 0 at !!"#  = 37 min. We fitted an exponential decay  



!(!) = !!exp(−!!!) + !!, 

to the scaled data of the four replicates. The scaling !! and offset !! could be determined from 

the boundary conditions  

!! = 1 and !(!!"#) = 0. 

This yielded the four values for the de-phosphorylation in the TrkA+ subpopulation and in the 

TrkA-subpopulation shown in Figure S3. A two-sample t-test with Welch’s correction gave a p-

value of 0.6163, indicating that the dephosphorylation rates in the two subpopulations were not 

significantly different.  

Final model The final model accounted for subpopulation differences in cellular TrkA activity 

(Figure S4A) and also took into account differences in the variance of TrkA activity between the 

subpopulations. The fits for the data, which are not shown in the main manuscript are visualized 

in Figure S4C for the multivariate measurements of pErk1/2 and TrkA, and in Figure S4D for the 

measurements of pErk1/2 and Erk1/2. Using the final calibrated model, we predicted the relation 

between pErk1/2 levels at 0 and 120 min by drawing parameters from the inferred single-cell 

parameter distribution and simulating the ODE model (Figure S4E).  

Differences mediated by extracellular scaffolds For the mechanistic comparison of the 

influence of the extracellular scaffolds, we used the model which assumes subpopulation 

differences in TrkA levels. The differences between the extracellular scaffolds were 

parameterized as  

!!! , !!! , !!! , !!! , !!!![!"#$]! , !!![!"#]! , !! 

and the parameters were related by  

!!,!"#$ = !!,!"#10!!! . 

Accounting for these 7 potential differences, we defined 128 hierarchical models. Each model 

was fitted to the data with multi-start local optimization using at least 20 starts. We sorted the 

models with respect to their BIC value, for which a low value indicates a good trade-off between 

model complexity and goodness of fit. The BIC weights for the differences were computed by 

summing over the BIC weights (11) of the models accounting for the corresponding differences. 

We found that the best model comprised differences in Erk1/2 expression, Erk1/2 

dephosphorylation and cellular TrkA activity. The least suitable model was the model which did 

not allow differences between the extracellular scaffolds at all. This model was directly followed 

by the model only accounting for differences in the subpopulation weighting. The fit for the model 



accounting for differences in Erk1/2 expression, Erk1/2 dephosphorylation and cellular TrkA 

activity is shown in Figure 6 and Figure S5. The estimated parameters, their boundaries and the 

95% confidence interval based on the profiles are  

symbol description !!" !!" ! 95% confidence interval 

!! binding affinity  10!! 10! 1.514 [1.114, 2.179] 

!! release of NGF  10!! 10! 0.091 [0.067, 0.131] 

!! basal Erk1/2 phosphorylation  10!! 10! 0.014 [0.012, 0.017] 

!! Erk1/2 de-phosphorylation  10!! 10! 0.177 [0.141, 0.222] 

!!![!"#$]!,!  median of cellular TrkA activity in subpop. 1 10!! 10! 1.9×10! [1.51×10!!, 2.41×10!!] 

!!![!"#$]!,!  median of cellular TrkA activity in subpop. 2 10!! 10! 0.141 [0.107, 0.185] 

!!!!,![!"#]!  median of relative Erk1/2 expression  10!! 10! 1.04×10! [8.989×10!, 1.256×10!] 

!!,! TrkA variability in subpop. 1  10!! 10! 5.366 [4.742, 6.121] 

!!,! TrkA variability in subpop. 2 10!! 10! 0.303 [0.277, 0.330] 

!!  Erk1/2 variability 10!! 10! 0.250 [0.230, 0.271] 

!!"  correlation of TrkA and Erk1/2 10!! 10! 2.263 [2.162, 2.373] 

!!!,! offset pErk1/2 (! =  1, 2)  10!! 10! 8.064×10!! [0, 4.994] 

!!/!! scaling TrkA 10!! 10! 1.735×10! [1.318×10!, 2.296×10!] 

!! offset TrkA 10!! 10! 239.7 [234.3, 245.2] 

!!/!!!,! scaling Erk1/2 10!! 10! 0.040 [0.032, 0.049] 

!!  offset Erk1/2 10!! 10! 592.2 [549.8, 631.9] 

!!!,! scaling pErk1/2 (! =  3,4)  10!! 10! 0.495 [0.478, 0.511] 

!!!,! offset pErk1/2 (! =  3,4)  10!! 10! 175.4 [159.8, 190.5] 

!!!,! scaling pErk1/2 (! =  5,6)  10!! 10! 0.810 [0.783, 0.837] 

!!!,! offset pErk1/2 (! =  5,6)  10!! 10! 292.1 [266.2, 317.3] 

!!!,! scaling pErk1/2 (! =  7, 8)  10!! 10! 1.029 [0.997, 1.061] 

!!!,! offset pErk1/2 (! =  7, 8)  10!! 10! 49.91 [21.91, 76.90] 

!!,!"#$%!,!  measurement noise pErk1/2 (! =  1, 2) 10!! 10! 0.335 [0.306, 0.361] 

!!,!"#$%!,!  measurement noise pErk1/2 (! =  3,4) 10!! 10! 0.370 [0.354, 0.385] 

!!,!"#$% measurement noise TrkA 10!! 10! 0.433 [0.418, 0.448] 

!!,!"#$%!,!  measurement noise pErk1/2 (! =  5,6) 10!! 10! 0.462 [0.450, 0.473] 



!! ,!"#$% measurement noise Erk1/2 10!! 10! 0.257 [0.251, 0.263] 

!!,!"#$%!,!  measurement noise pErk1/2 (! =  7,8) 10!! 10! 0.267 [0.241, 0.299] 

!! weight of subpopulation 1 10!! 1 0.294 [0.289, 0.298] 

!!!  diff. between extracellular scaffold in !! 10!! 10! 
 

1.257 [1.221, 1.297] 

!!!![!"#$]!  diff. between extracellular scaffold in TrkA 10!! 10! 1.043 [1.019, 1.068] 

!!!!!,![!"#]!  diff. between extracellular scaffold in Erk1/2 10!! 10! 1.393 [1.357, 1.433] 

	

Accounting	for	intrinsic	noise	

To study the possibility of accounting for intrinsic noise in the hierarchical population model, we 

generated artificial data of a two stage gene expression (Figure S6A) using Gillespie’s stochastic 

simulation algorithm (Gillespie, 1977) incorporated in the MATLAB Toolbox CERENA 

(Kazeroonian et al., 2016). The system comprises the following reactions  

!!: ∅ → mA, rate = !!, 
!!: ∅ → mA, rate = !!!, 
!!: mA → ∅, rate = !![mA], 
!!: mA → A, rate = !![mA], 
!!: A → ∅,             rate = !! A . 

Here, mA denotes the mRNA and A the protein and we assumed that only A could be observed. 
The two subpopulations differed in their response to stimulus ! yielding different rates !!,! and 

!!,! . For this setting, we only accounted for homogeneous and subpopulation variable 

parameters. However, the intrinsic variability of the births and deaths of individual molecules gave 

cell-to-cell variability in the cellular states. Cell-to-cell variability in parameters can also be 

incorporated using the moment-closure approximation.  

The ODEs for the temporal evolution of the means and covariances were provided by the toolbox 

CERENA. In particular, the means !! and !! and the variances !!! and !!! of mRNA mA and 

protein A, respectively, were described as well as the correlation !!" of mA and A. The ODE 

system reads  

!!!
!" = !!

Ω +  !"!Ω − !!!!, 
!!!
!" = !!!! − !!!!, 
!!!!
!" = !!

Ω +  !"!Ω! − 2!!!!! +
!!!!
Ω , 



!!!"
!" = !!!!! − !!"(!! + !!), 
!!!!
!" = 2!!"!! − 2!!!!! +

!!!!
Ω + !!!!

Ω , 

with system size ! =  1000. Under the assumption that the system was in steady state before 

stimulation with ! the initial conditions are  

!!(0) =
!!
Ω!!

, 

!!(0) =
!!!!
Ω!!!!

, 

!!!(0) =
!!
Ω!!!

, 

!!"(0) =
!!!!

Ω!!!(!! + !!)
, 

!!(0) =
1
Ω!

!!!!
!! + !!

+ !!!!!
!!!! !! + !!

, 

The true parameters used for the generation of the data were  

!!"#$ = !!, !!,!,, !!,!, !!, !!, !!,!!
!
 

= 10, 10, 20, 1, 5, 0.1, 0.5 ! . 

In this example, we employed mixtures of normal distributions, for which the mean and variance 

were linked to the distribution parameters by !! = !! and !! = !!. First, we compared a model 

accounting for the mean, which was obtained by the RRE (Hasenauer et al., 2014), and a 

hierarchical model accounting for the mean and covariances, which were obtained by the 

moment-closure approximation (MA), both accounting for two subpopulations. For the RRE model 

10 parameters for the parametrization of the variances were introduced, yielding in total !! = 17. 

The model using the MA only comprised !! = 7, since a mechanistic description of the variances 

was incorporated. For parameter estimation, the kinetic parameters were restricted to the interval 
[10!!, 10!]  and the log

10
-transformed parameters were fitted, whereas the weight !!  was 

restricted to [0,1] and fitted linearly. For the RRE model, the parameters for the variance were 
assumed to lie within [10!!, 10!] and also fitted in log

10
-space. We also studied two models that 

incorporate the mechanistic description of the variance by the MA, but did not consider the 

presence of two subpopulations (MA, no subpop.). One of these models, however, accounts for 

cell-to-cell variability of each parameter (MA, cell-to-cell variability, no subpop.), which 

corresponds to the description by Zechner et al. (2012).  

The models not accounting for subpopulation structures did not fit the data at all (Figure S6B). 

Even the included variability in parameters did not improve the fit substantially. In contrast, both 

subpopula- tion models provided a good fit to the data. However, the BIC for the MA model was 



substantially better than for the RRE model (BICRRE-BICMA=79.09). We found that the MA model 

gave the optimal value for 40% of the starts and the optimization for the RRE model ended in the 

optimum for 36% of the starts (Figure S6C). In terms of computation time there was a clear 

benefit using the mechanistic description of the variance (Figure S6D). The time required for one 

optimization start was about two-fold faster when using the MA (median=6.43 sec) instead of 

RREs (median=13.13 sec).  

Furthermore, we studied the uncertainty of the parameter estimates using profile likelihoods 

(Figure S6E). Using the MA with subpopulations, all parameters were identifiable, indicated by a 

narrow profile. This was not the case for RREs, for which some parameters could not be 

identified from the the data and showed a flat profile. For the case of no subpopulations, most of 

the true parameters do not lie within the estimated intervals (Figure S6F-G). This emphasizes the 

importance of taking into account subpopulation structures.  

QUANTIFICATION	AND	STATISTICAL	ANALYSIS	

For the analysis of the differences in pErk1/2 activity in the kinetic and dose responses for PDL 

and Col I, we employed a two-way ANOVA and Sidak’s post-hoc test using GraphPad Prism. For 

assessing the statistical significance of the predicted differences, we applied the two-sample 

Welch’s t-test employed by the MATLAB function ttest2. Significances are indicated as * 

(! < 0.05), ** (! < 0.01), and *** (! < 0.001). Model selection was performed using the BIC. We 

computed confidence intervals based on the profile likelihoods.  

DATA	AND	SOFTWARE	AVAILABILITY	

The toolbox ODE-MM was used to implement the proposed hierarchical modeling framework as 

well as previous versions. This toolbox also provided the likelihood function and analytical 

gradient required for parameter estimation. The simulation of the means and covariance using 

sigma-points was implemented in the SPToolbox. Simulation of the RREs and corresponding 

sensitivity equations was conducted using the toolbox AMICI (Fröhlich et al., 2016). For the 

parameter estimation, we employed the toolbox PESTO (Stapor et al., 2018). All toolboxes and 

the experimental data are available at https://github.com/ICB-DCM. The versions of the toolboxes 

to reproduce the results of this manuscript are available at 

http://doi.org/10.5281/zenodo.1211553. 
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Figure 1: Cell populations exhibiting different levels of heterogeneity. Properties of cells, e.g., receptor levels or reaction rates, indicated by

different gray shades for individual cells, can be (A) homogeneous: the property is the same for the entire cell population; (B) cell-to-cell variable:

the property has a unimodal distribution across the cells; (C) subpopulation variable: the population can be separated into subpopulations, but within

each subpopulation, the property does not vary; (D) inter- and intra-subpopulation variable: the property splits the population into subpopulations

and also varies between cells within a subpopulation.
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Figure 2: Illustration of the dynamics of a heterogeneous cell population and the mechanistic hierarchical population model. (A) Parameter

distribution of a cell population consisting of two subpopulations. The contour lines illustrate the (approximated) parameter density of the cell-to-cell

variable parameter 1 and the inter-and intra-subpopulation variable parameters 2. The heterogeneity of parameters is propagated from the latent pa-

rameter space to the observed measurement space. (B) Heterogeneity in parameters yields heterogeneous observables y = (y1; y2)T that separate

into two subpopulations after stimulation at time point t0. (C) Structure of the single-cell system and approximation by the hierarchical population

model using plate notation. Squares indicate fixed parameters, whereas circles indicate random variables. Gray shading of the circles/squares

indicates a known value, whereas the other values are latent. The upper plate illustrates the variables associated with a cell j . Each of the nj cells

has parameters  j
drawn from a distribution defined by ‰s and w. The states of the species xj , resulting from the single-cell dynamics, yield the

observables ȳj , additionally influenced by measurement noise �. The bottom plate visualizes the statistics of the corresponding cells of a subpop-
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Figure 3: Inference of cell-to-cell variability using mechanistic models. . (A) Model of a conversion between two species A and B comprising

two subpopulations differing in their response to stimulus u. Different colors indicate the variability of the reaction rates. (B) Model selection with the

Bayesian Information Criterion (BIC). The first three models use RREs according to (Hasenauer et al., 2014) and vary in the number of additional

parameters (1, 2, and 10) for the variances of the mixture distribution. The last models use the mean and variance obtained by sigma-points and

differ in their sources of heterogeneity. (C) Data on the conversion process (1000 cells per time point) and fit corresponding to the best and true

underlying model. (D) Confidence intervals for the variability of k3 and the measurement noise (�noise). Horizontal bars show the confidence intervals

corresponding to the 80%, 90%, 95%, and 99% confidence levels, and the vertical lines the maximum likelihood estimates (MLE). (E) Single- cell

trajectories inferred using a single measurement at (E) t=0 min and (F) t=120 min. The inference is regularized using the hierarchical population

model as prior. Shaded areas indicate the confidence intervals which were evaluated for samples of the posterior distribution and the dotted line

indicates the single-cell trajectory from which the measurement point was generated. (G) Correlation of predicted and true level of B at 0, 60 and

120 min. True values were extracted from the (noise-free) simulation. Predictions are obtained using the single-cell data at time t=120 min.
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Figure 5
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Figure 5: Sources of heterogeneity between subpopulations in primary sensory neurons. (A) Pathway model of NGF-induced Erk signaling.

(B) Ranking according to the BIC values for the 64 hierarchical models, in which the colored dots indicate those parameters that are assumed to

differ between the subpopulations. The importance of the differences is ranked according to the BIC weights, also known as Schwarz weights. The

black circles indicate the mean rank of the models including the corresponding difference. (C) Data and fit for measurements of pErk1/2 levels

(approximately 1400 cells per time point and 4300 cells per dosage) and multivariate measurements of pErk/TrkA and pErk/Erk levels (approximately

3000 cells per dosage) measured for 60 min under NGF stimulation with indicated concentrations. The measured values are in arbitrary units of

intensity. For the multivariate data, the contour lines of the kernel density estimation of the data and the level sets of the density of the hierarchical

model are shown. Mean and standard deviation of (D) TrkA levels (nr = 4 replicates) (E) Erk1/2 levels (nr = 4) and (F) Erk1/2 dephosphorylation

(nr = 4) of non-responsive (pErk-) and responsive (pErk+) sensory neurons after NGF stimulation with varying concentrations (as indicated in (C)

for 60 min).
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Figure 6: Differences in NGF-induced Erk1/2 phosphorylation mediated by different extracellular scaffolds. Primary sensory neurons were

provided with the two different scaffolds poly-D-lysine (PDL) and collagen type I (Col I) in an overnight culture. (A) Sensory neurons grown on the

Col I substrate showed a significantly higher mean phospho-Erk1/2 response to indicated doses of NGF after 1 h of stimulation. Means and standard

deviations of four replicates are shown. (B) BIC-based ranking for the potential differences between culture conditions. The colored dots indicate

which parameters are assumed to differ between the extracellular scaffolds. (C) Experimental data and fit for measurements of pErk1/2 distributions

from Col I (approximately 2300 cells per dosage) and PDL (approximately 4300 cells per dosage) cultured neurons after treatment with indicated

NGF concentrations for 1 h. (D) Marginal levels for TrkA and Erk1/2, which were assumed to be constant over varying doses and time (approximately

2000 cells in Col I and 2900 in PDL). Mean and standard deviation of (E) TrkA and (F) Erk1/2 levels of NGF dose response curve data, which showed

significant elevations in Col I treated neurons. For this calculation, 24 samples were used (4 replicates for 6 doses).
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Figure S1, related to Figure 3. Analysis of the models for the conversion process.

(A) Fitted models for the conversion process. Upper part: Models accounting only for the means using RREs according to Hasenauer et al. (2014).
Lower part: Models accounting for the means and variances using sigma-point approximations.

(B) Normalized marginal posterior distribution computed from samples of the posterior distribution and likelihood ratio obtained by profile likelihoods
for all parameters.

(C) Model selection criteria and required computation times for all models. Lower values indicate a higher evidence for the corresponding model.
The horizontal dotted lines indicate the cutoff corresponding to a BIC difference of 10 and a Bayes factor of 100.

(D) Contribution to overall cell-to-cell variability of the observable for the models with Bayes factor < 100. The errorbars indicate deviation over time
points.

(E) Evidence for variabilities in parameters computed based on BIC weights (left, purple) and marginal likelihoods (right, yellow).

(F) Predicted single-cell trajectories based on indicated measurements using estimated population parameters as priors. Shaded areas indicate the
standard deviation which was evaluated for samples of the posterior distribution.
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Figure S2, related to Figure 3. Computation time of the method for the conversion process. The overall computation time for 10 starts is
depicted for varying number of measured cells per time point. The circles indicate the mean for three replicates. Different contributions to the overall
computation time needed are shown: The time needed for the evaluation of the values for the cells under the density of the mixture distribution
(yellow) and the time needed for simulation (orange).
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Figure S3, related to Figure 5. Erk1/2 dephosphorylation in TrkA- and TrkA+ subpopulations. Erk1/2 phosphorylation was induced in both
neuronal subgroups TrkA- (blue) and TrkA+ (red) by an 1 h treatment with the combined stimuli NGF (acting on TrkA+ neurons) and GDNF (acting on
TrkA- neurons expressing the GDNF receptor Ret). Subsequent inhibition of Mek by U0126 induced a pErk1/2 decline. Data of four individual exper-
iments are shown with estimated exponential decay fit. The corresponding values k5 for the dephosphorylation are noted for both subpopulations.
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Figure S4, related to Figure 5. Data and fit for NGF-induced Erk1/2 signaling on PDL.

(A) Pathway model with color-coding of the variability of cellular properties.

(B) Comparison of models, which account for one or no difference between subpopulations, using BIC, log pointwise predictive densities, and Bayes
factors.

(C,D) Data and fit for combined measurements of (C) TrkA and pErk1/2 levels and (D) Erk1/2 and pErk1/2 levels. The upper rows illustrate the data
together with a kernel density estimate. The bottom rows visualize the data together with the contour lines of the hierarchical model.

(E) Predicted single-cell trajectories for the optimal parameter values, showing the relation between pErk1/2 levels in steady state (0 min) and after
stimulation with NGF (120 min). The color of the cells indicates the TrkA level, which is assumed to be constant over time.
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Figure S5
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Figure S5, related to Figure 6. NGF-induced Erk1/2 signaling on different extracellular scaffolds.

(A) Mean response to NGF stimulation on Col I compared to PDL. A two-way ANOVA showed significant differences (p < 0:01) between the
extracellular scaffolds for each experiment. Significances for individual time points/doses obtained by Sidak’s multiple comparisons test are indicated
by * (p < 0:05), ** (p < 0:01), and *** (p < 0:001).

(B-D) Data and fit for NGF-induced Erk1/2 signaling on different extracellular scaffolds.

(B) pErk1/2 kinetics and dose responses for PDL (green) and Col I (purple).

(C,D) Multivariate measurements of (C) pErk/TrkA levels and (D) pErk/Erk levels. The upper rows illustrate the data together with a kernel density
estimate. The bottom rows visualize the data together with the contour lines of the hierarchical model, accounting for differences in Erk1/2 levels,
Erk1/2 dephosphorylation, and cellular TrkA activity.



Figure S6
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Figure S6, related to STAR methods, Accounting for intrinsic noise. Analysis of a stochastic two stage gene expression model.

(A) Illustration of the system.

(B) Data and fitted models for the moment-closure approximation (MA), for the case of accounting for subpopulation structures and disregarding
subpopulation structures, and reaction rate eqations (RRE).

(C) Log-likelihood values for 100 optimization starts sorted decreasingly for MA (green) and RRE (blue). The zoom in shows the 60 best optimization
runs.

(D) Boxplot for the CPU time needed for one optimizer start.

(E) Profile likelihoods of the parameters for the models capturing the subpopulation structure.

(F) Profile likelihoods of the parameters for the model using the MA without accounting for subpopulations.

(G) Profile likelihoods of the means rates for the model using the MA, accounting for cell-to-cell variability of all parameters but not for subpopulations.
This corresponds to the method proposed by Zechner et al. (2012). Note that the range in x-direction differs for subplots (E)-(G).


