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Abstract 33 

Background: Although epidemiological studies have reported associations between 34 

mortality and both ambient air pollution and air temperature, it remains uncertain whether the 35 

mortality effects of air pollution are modified by temperature and vice versa. Moreover, little 36 

is known on the interactions between ultrafine particles (diameter ≤ 100 nm, UFP) and 37 

temperature. 38 

Objective: We investigated whether the short-term associations of particle number 39 

concentration (PNC in the ultrafine range (≤ 100 nm) or total PNC ≤3000 nm, as a proxy for 40 

UFP), particulate matter ≤ 2.5 μm (PM2.5) and ≤ 10 µm (PM10), and ozone with daily total 41 

natural and cardiovascular mortality were modified by air temperature and whether air 42 

pollution levels affected the temperature-mortality associations in eight European urban areas 43 

during 1999-2013.  44 

Methods: We first analyzed air temperature-stratified associations between air pollution and 45 

total natural (nonaccidental) and cardiovascular mortality as well as air pollution-stratified 46 

temperature-mortality associations using city-specific over-dispersed Poisson additive models 47 

with a distributed lag nonlinear temperature term in each city. All models were adjusted for 48 

long-term and seasonal trend, day of the week, influenza epidemics, and population dynamics 49 

due to summer vacation and holidays. City-specific effect estimates were then pooled using 50 

random-effects meta-analysis. 51 

Results: Pooled associations between air pollutants and total and cardiovascular mortality 52 

were overall positive and generally stronger at high relatively compared to low air 53 

temperatures. For example, on days with high air temperatures (>75th percentile), an increase 54 

of 10,000 particles/cm3 in PNC corresponded to a 2.51% (95% CI: 0.39%, 4.67%) increase in 55 

cardiovascular mortality, which was significantly higher than that on days with low air 56 
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temperatures (<25th percentile) [-0.18% (95% CI: -0.97%, 0.62%)]. On days with high air 57 

pollution (>50th percentile), both heat- and cold-related mortality risks increased. 58 

Conclusion: Our findings showed that high temperature could modify the effects of air 59 

pollution on daily mortality and high air pollution might enhance the air temperature effects.  60 

 61 

Keywords:  62 

Ultrafine particles; particulate matter; ozone; air temperature; mortality; effect modification 63 

 64 

Highlights: 65 

 High air temperature enhanced the mortality effects of UFP, PM2.5, PM10, and O3 66 

 Heat-related mortality risks were higher at high levels of PM2.5, PM10, and O3  67 

 Cold effects on mortality were stronger when PNC was high 68 

 First study to investigate the interaction between UFP and temperature on mortality 69 

  70 
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1. Introduction 71 

Exposure to ambient air pollution has been identified as a leading contributor to the global 72 

disease burden which caused 4.5 million deaths in 2015 (Cohen et al. 2017). Meanwhile, a 73 

large number of epidemiological studies has shown adverse impacts of exposure to both high 74 

and low ambient air temperatures on mortality (Basu and Samet 2002; Curriero et al. 2002; 75 

Guo et al. 2014; Ma et al. 2014). Given the increasing concern regarding the health impacts 76 

of climate change, interest has grown recently in estimating the joint effects of air pollution 77 

and air temperature on health. However, little is known about the potential interaction 78 

between air temperature and air pollution, which is crucial for estimating their joint health 79 

effects.  80 

Meteorological conditions affect surface air quality by influencing emissions, 81 

atmospheric chemistry, and pollutant transport (Fiore et al. 2015). Especially, ground-level 82 

ozone (O3) is formed by chemical reactions between nitrogen oxides and volatile organic 83 

compounds in the presence of sunlight and high temperature (Crutzen 1974; Sillman 1999). 84 

Thus, air pollution can be influenced by air temperature. In studies assessing air pollution 85 

health effects, air temperature is usually controlled for as a confounder rather than a modifier 86 

(Chen et al. 2013; Li et al. 2017). The potential effect modification of air pollution on 87 

mortality by air temperature has been largely neglected, until recently, in epidemiological 88 

studies (Stafoggia et al. 2008). On the other hand, air pollution may amplify people’s 89 

vulnerability to the adverse effects of temperature (Gordon 2003) and could act as an effect 90 

modifier in the short-term effects of air temperature on mortality (Breitner et al. 2014; Ren et 91 

al. 2006). This effect modification of temperature health effects by air pollution may be of 92 

great importance to public health benefits because air temperature is expected to continue to 93 

rise over the 21st century under all emission scenarios (IPCC 2013), whereas air pollution 94 

can be reduced in a few decades to yield measurable improvements in public health (Breitner 95 
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et al. 2009; Pope III et al. 2009). Thus, both directions of effect modification, hence the two-96 

way effect modifications, matter for public health under a warming climate and changing air 97 

quality. 98 

Although a few studies have examined the modifying effect by air temperature on 99 

particulate matter (PM)- and O3-associated mortality, results are inconsistent regarding: (1) 100 

the direction of the interaction: most studies reported stronger PM or O3 effects on days with 101 

high air temperatures (Jhun et al. 2014; Kim et al. 2015; Li et al. 2011; Qian et al. 2008; Ren 102 

et al. 2008a; Stafoggia et al. 2008), whereas few also reported stronger air pollution effects on 103 

days with low air temperatures (Chen et al. 2013; Cheng and Kan 2012; Sun et al. 2015); (2) 104 

the significance of interaction: among 12 studies of PM effects on daily total nonaccidental 105 

mortality, only six found statistically significant interactions, five observed nonsignificant 106 

interactions, and one reported significance only in Southern Chinese cities (Li et al. 2017; 107 

Meng et al. 2012). In contrast, only a limited number of studies have evaluated the modifying 108 

effect of air pollution on air temperature-related mortality (Breitner et al. 2014; Li et al. 2015; 109 

Ren et al. 2006). PM was found as a significant effect modifier in the association between 110 

temperature and total and cardiovascular mortality in Brisbane, Australia (Ren et al. 2006) 111 

and Guangzhou, China (Li et al. 2015), but not in three cities of Bavaria, Germany (Breitner 112 

et al. 2014). However, these studies have important limitations in characterizing the complex 113 

interaction between air temperature and air pollution: first, their analyses were based on a 114 

single city analysis; second, they assumed a linear effect, a single lag, or a moving average 115 

lag structure for temperature, therefore simplifying to a great extent the nonlinear and delayed 116 

temperature-mortality dependencies (Gasparrini et al. 2015b).  117 

Epidemiological evidence on whether air temperature modifies the effect of ultrafine 118 

particles (UFP) and vice versa is lacking, mostly due to the unavailability of routinely 119 

collected relevant data. UFP are hypothesized to have a high and independent toxic potential 120 
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due to their small size (<100nm), large active surface area, and their ability to penetrate into 121 

the pulmonary alveoli and to translocate in the circulation (Brook et al. 2010; HEI Review 122 

Panel on Ultrafine Particles 2013). Few epidemiological studies have reported a (weak) 123 

positive association between short-term UFP exposure and mortality (Atkinson et al. 2010; 124 

Breitner et al. 2011; Breitner et al. 2009; Lanzinger et al. 2016; Stafoggia et al. 2017).  125 

In the present study, we aimed to investigate the two-way effect modifications of air 126 

pollution (UFP, PM, and O3) and air temperature on total (nonaccidental) and cardiovascular 127 

mortality in eight European urban areas. This study is the result of a collaborative effort 128 

among the Ultrafine Particles and Health (UF&HEALTH) Study Group in Europe (Stafoggia 129 

et al. 2017). The UF&HEALTH Study aimed to gather available data on UFP measures and 130 

mortality over a relatively long time period from cities across Europe to enlarge statistical 131 

power to detect weak associations (Samoli et al. 2016). 132 

2. Methods 133 

2.1 Data collection  134 

Daily  mortality, air pollution, and air temperature data during 1999-2013 were collected 135 

from eight European urban areas: Athens (Greece), Augsburg (Germany), Barcelona (Spain), 136 

Copenhagen (Denmark), Helsinki (Finland), Rome (Italy), Ruhr area (three adjacent cities 137 

including Essen, Mülheim, and Oberhausen, Germany), and Stockholm (Sweden) 138 

(Supplemental Information, Fig.S1). Detailed description of the study areas, including main 139 

sources of air pollution, are reported in the Supplemental Information, Text S1. 140 

Daily death counts of urban residents were provided by each participating center of the 141 

UF&HEALTH Study Group. Mortality data were classified into the following categories 142 

using the International Classification of Diseases, 9th revision (ICD-9) and the International 143 

Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10):  144 

deaths from total natural (ICD-9 1-799 and ICD-10 A00-R99) and cardiovascular (ICD-9 145 
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390-459 and ICD-10 I00-I99) causes. Respiratory mortality was not investigated because our 146 

previous study did not found associations of UFP and PM with respiratory mortality 147 

(Stafoggia et al. 2017). For total natural mortality, daily counts were also stratified by sex and 148 

age (0-74 years and 75 and above years).  The two age groups (nonelderly vs. elderly) were 149 

used for analysis as previous studies suggested that the elderly are more vulnerable to the 150 

mortality risks of air pollution and air temperature (Anderson and Bell 2009; Bell et al. 2005; 151 

Hajat et al. 2007; Samoli et al. 2008). 152 

Daily mean particle number concentration (PNC, as a surrogate for UFP (HEI Review 153 

Panel on Ultrafine Particles 2013)) was obtained from independent monitoring campaigns in 154 

each city. In all cities, one urban or suburban background PNC monitoring site was used, 155 

except for a traffic site in Rome. Due to different monitoring instruments used in different 156 

cities, PNC was measured in slightly different size ranges (Supplemental Information, Table 157 

S1). For Athens, Copenhagen, and Helsinki, PNC was available in the ultrafine range (≤100 158 

nm), in the other cities total PNC (≤3000 nm) was used as it is often assumed that particles in 159 

the ultrafine range dominated PNC (HEI Review Panel on Ultrafine Particles 2013). In each 160 

city, we further collected daily 24-h average PM with an aerodynamic diameter ≤ 2.5 µm 161 

(PM2.5) and ≤ 10 µm (PM10) and daily maximum 8-h average O3 concentrations from multiple 162 

stations of the local air quality monitoring networks. Daily concentrations were averaged 163 

from all valid monitoring stations in each city, which had at least 75% of the daily data for 164 

the study period. For details with regard to air pollution data collection we refer to the 165 

preceding publication (Stafoggia et al. 2017). As in previous studies, daily mean air 166 

temperature was used as the metric for temperature (Chen et al. 2016; Gasparrini et al. 167 

2015b). Data on daily mean air temperature were collected from local meteorological 168 

services or airport meteorological networks. Relative humidity was not collected since 169 

previous studies showed robust air temperature effects on daily mortality when additionally 170 
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adjusting for relative humidity (Breitner et al. 2014; Gasparrini et al. 2015b; Guo et al. 2014). 171 

Influenza epidemics (a dummy variable denoting days with particularly high influenza 172 

episodes) were identified from national surveillance systems and hospitalization records.  173 

2.2 Statistical Analysis.  174 

2.2.1 Basic confounder model 175 

We used Poisson additive models with over-dispersion to estimate the city-specific 176 

associations between mortality and air pollutants or air temperature. Several confounders 177 

were included in the city-specific models: (1) natural cubic spline with eight degrees of 178 

freedom (df) per year to control for long-term and seasonal trend, (2) indicator variables for 179 

day of the week, (3) an indicator variable for influenza epidemics, (4) an indicator variable 180 

for population dynamics due to summer vacation and holidays  (Stafoggia et al. 2017), and (5) 181 

a penalized distributed lag nonlinear temperature term using marginal P-spline smoothers 182 

with dimension 7 for both exposure and lag spaces and a maximum lag of 21 days. The 183 

penalized distributed lag nonlinear temperature term was characterized as a cross-basis 184 

matrix, which had 42 (7×6) parameters for the bi-dimensional space of the exposure and lags. 185 

Penalization was implemented through a double varying penalty with a second-order 186 

difference penalty and a ridge penalty (Gasparrini et al. 2017). Because of the different lag 187 

periods for heat effect (within a few days) and cold effect (up to 3 or 4 weeks) (Anderson and 188 

Bell 2009; Gasparrini et al. 2015b), we applied a maximum of 21 lag days for temperature. 189 

2.2.2 Air pollution effects stratified by air temperature 190 

To examine effect modification by air temperature in each city, we categorized air 191 

temperature into three levels: high (>75th city-specific percentile), medium (25th-75th city-192 

specific percentile), and low (<25th city-specific percentile). Consistent with prior studies 193 

(Chen et al. 2013; Jhun et al. 2014; Ren et al. 2008a), the 25th and 75th percentiles were used 194 

as temperature cut-offs. In addition, compared with other percentile cut-offs (5th and 95th, 10th 195 
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and 90th, 15th and 95th, 20th and 80th), this percentile cut-offs could yield similar estimates but 196 

with narrower confidence intervals due to increased sample size in the low and high 197 

temperature levels (Chen et al. 2013; Jhun et al. 2014). After defining the basic confounder 198 

model, we introduced the interaction terms between air pollutant (PNC, PM2.5, PM10, and O3 199 

in turn) and categorized air temperature at the same lag structure. Due to the multiple missing 200 

data in many of the air pollution series (Supplemental Information, Table S2), we could not 201 

compute averages over multiple days for air pollution. Based on our previous analysis 202 

(Stafoggia et al. 2017), we chose lag 6 for PNC and lag 1 for other pollutants. Heterogeneity 203 

among city-specific air pollution effects was assessed by the I2 statistic from Cochran's Q test. 204 

Heterogeneity was considered to be significant if I2 > 0.5, moderately significant if 0.25 < I2 205 

≤ 0.5, and nonsignificant if I2 ≤ 0.25 (Higgins et al. 2003). 206 

2.2.3 Air temperature effects stratified by air pollution concentrations  207 

For each city, we introduced an interaction term between the above mentioned penalized 208 

distributed lag nonlinear temperature term and an air pollutant strata indicator in the basic 209 

confounder model. To examine effect modification by air pollutants, we divided the air 210 

pollutants (PNC at lag 6, PM2.5, PM10, and O3 at lag 1) into two levels: high (> city-specific 211 

median value) and low (≤ city-specific median value). Air pollution was categorized into two 212 

levels rather than three levels in order to ensure enough statistical power for the parameters in 213 

the cross-basis matrix of temperature and its interaction term with air pollution strata 214 

indicator. As the short-term effects of air pollutants are generally within several days (Bell et 215 

al. 2005; Samoli et al. 2008), we did not used the same cumulative lag structure (lag0-21) for 216 

air pollution and air pollution categories. To adjust for potential residual confounding, the air 217 

pollutant was also included as a linear continuous term in the model. The overall cumulative 218 

exposure-response curves for temperature and mortality were estimated along percentiles of 219 

the average temperature distribution in the eight European urban areas under study, with a 220 
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minimum mortality temperature percentile between the first and the 99th percentiles as the 221 

reference temperature (Gasparrini et al. 2015b). Relative, city-specific temperature 222 

percentiles were used to characterize differences in temperature distributions and population 223 

acclimatization to temperature changes in cities with different climate conditions (Guo et al. 224 

2014; Jhun et al. 2014). Because the average temperature distributions were similar in 225 

different strata of PNC and PM but different in different strata of O3 (Supplemental 226 

Information, Table S3), we constructed overall cumulative exposure-response relationships 227 

for each strata of air pollutants and represented these curves on a relative scale, along 228 

percentiles of the overall average temperature distribution. In addition, we calculated heat 229 

effects as cumulative mortality risk at the 99th percentile relative to the 90th percentile and 230 

cold effects as cumulative mortality risk at the 1st percentile relative to the 10th percentile. 231 

Since the 99th percentile (25.6 °C) is larger than the maximum value of temperature in low 232 

ozone levels, we calculated the heat effects in low ozone levels by comparing its maximum 233 

value (24.4 °C) with the 90th percentile (21.5 °C). The overall lag-response relationships for 234 

heat and cold effects across the lag period (0-21) were estimated separately. 235 

City-specific effect estimates were pooled using univariate random-effects meta-analyses 236 

(Gasparrini et al. 2012). For temperature effects, city-specific coefficients for the cross-basis 237 

term were first pooled and then the pooled coefficients were used to reconstruct overall 238 

cumulative exposure-response associations on a relative scale using average temperature 239 

distribution percentiles (Gasparrini et al. 2015a). We tested the statistical significance of 240 

differences between the pooled estimates of the temperature or air pollutant strata by 241 

calculating the 95% confidence interval (CI) as (𝑄̂1 − 𝑄̂2) ± 1.96√(𝑆𝐸̂1)
2
+ (𝑆𝐸̂2)

2
, where 242 

𝑄̂1and 𝑄̂2 are the estimates, and 𝑆𝐸̂1and 𝑆𝐸̂2 are their respective standard errors (Zeka et al. 243 

2006). We also tested the statistical significance of differences between the overall 244 

temperature-mortality associations at low and high air pollution levels using a multivariate 245 
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Wald test based on the pooled reduced coefficients of the cross-basis matrix of temperature 246 

(Gasparrini et al. 2015a). 247 

2.3 Sensitivity analyses 248 

We performed several sensitivity analyses by changing the df (6-10 per year) for time 249 

trend and using alternative maximum lag days for temperature (14 and 28 days). In addition, 250 

when analyzing modifications of the air pollution effects by air temperature, different cutoffs 251 

(20th/80th, 15th/85th, and 10th/90th) and lag days (lag 0 to lag 6) for temperature categories 252 

were also explored. Moreover, we fitted two-pollutant models by adding other co-pollutants 253 

one at a time to account for potential confounding from multiple exposures. Additionally, we 254 

explored whether differences in city-specific characteristics such as average temperature, 255 

temperature range, average air pollution level, and total number of population were 256 

associated with the estimated temperature-stratified air pollution effects. Using potential city-257 

specific characteristics as additional meta-predictors, we then performed sensitivity analyses 258 

to pool the city-specific results using multivariate meta-regression models (Gasparrini et al. 259 

2012). Furthermore, we tested effect modification by sex and age group performing gender- 260 

and age-specific subgroup analyses. Besides, we compared the results of using UFP (3-100 261 

nm) with using total PNC (10-2000 nm) in Augsburg during 2004-2009.  Finally, as Rome 262 

was previously found to dominate the pooled effects of PNC on mortality (Stafoggia et al. 263 

2017), we also checked the influence of Rome on the modification of air pollution effects by 264 

air temperature through removing it from the meta-analyses.  265 

All analyses were performed with R software, version 3.2.1 (R Foundation for Statistical 266 

Computing, Vienna, Austria), using the packages mgcv (Wood 2011), dlnm (Gasparrini 267 

2011), and mvmeta (Gasparrini et al. 2012).  268 

3. Results 269 

3.1. Descriptive statistics 270 
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Table 1 summarizes daily mortality counts and cutoffs for air pollution and temperature 271 

strata in the eight European cities. Different research periods with available data on UFP 272 

measurements and mortality were investigated across different cities. During the study period, 273 

there were overall 742,526 total natural deaths in the eight cities, among which 39.3% were 274 

cardiovascular deaths. Daily total and cardiovascular mortality were highest in Athens and 275 

lowest in Augsburg. Median values of daily PNC ranged from 4,685 particles/cm3 in 276 

Copenhagen to 29,168 particles/cm3 in Rome. Cutoffs for both air pollutants and air 277 

temperature were generally higher in the Southern cities. The correlations of PNC with PM, 278 

ozone, and air temperature, and correlations between PM and temperature were weak to 279 

moderate in each city (Supplemental Information, Fig.S2). On the contrary, ozone was 280 

moderately to strongly positively correlated with air temperature.  281 

3.2. Air pollution effects modified by temperature 282 

Table 2 shows that the pooled effects of PNC, PM, and ozone on daily mortality varied by 283 

temperature levels. Associations between increases in air pollutants and mortality were 284 

generally stronger at high compared to low air temperatures. For example, a 10,000 285 

particles/cm3 increase in PNC at lag 6 was associated with percent increases in cardiovascular 286 

mortality of -0.18% (95% CI: -0.97%, 0.62%), 0.81% (95% CI: -1.92%, 0.32%), and 2.51% 287 

(95% CI: 0.39%, 4.67%) at low, medium, and high air temperatures, respectively. The 288 

corresponding effect estimates on total mortality at each temperature level for a 10 μg/m3 289 

increase in PM2.5 were -0.46% (95% CI: -1.02%, 0.12%), 0.84% (95% CI: 0.05%, 1.63%), 290 

and 2.36% (95% CI: 0.11%, 4.65%). Nonsignificant or moderately significant heterogeneity 291 

(I2 ≤ 0.5) across different cities was observed for associations between mortality and PNC, 292 

PM10, and O3, whereas significant heterogeneity (I2 > 0.5) was found for associations 293 

between mortality and PM2.5 at high temperatures (Table 2 and Supplemental Information, 294 

Fig.S3-S6). 295 
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3.3. Air temperature effects modified by air pollutants 296 

In the basic confounder model, the pooled air temperature-mortality associations were U-297 

shaped and significant for both total natural and cardiovascular mortality (Fig.1). The lag-298 

response relationships showed that heat effects were limited within the first week while cold 299 

effects lasted two to three weeks. No harvesting effect (deaths advanced by a few days) or 300 

mortality displacement was observed for both heat and cold effects. 301 

Fig.2 shows the pooled estimates of the exposure-response relationship between air 302 

temperature and total and cardiovascular mortality at low and high air pollution levels. 303 

Associations between high temperatures and mortality were generally stronger at high PNC, 304 

PM, and O3 levels. Estimates for low temperatures and mortality were much stronger at high 305 

PNC levels compared to low PNC levels, while were similar at PM and O3 strata, with 306 

overlapping CIs. The results of the multivariate Wald test indicated evidence (p < 0.05) of 307 

significant differences in the exposure-response curves for total natural mortality stratified by 308 

PM and O3 levels. 309 

Table 3 reports the overall cumulative mortality risk of heat exposure (99th percentile 310 

relative to 90th percentile of air temperature) and cold exposure (1st percentile relative to 10th 311 

percentile of air temperature) by air pollutant strata. In general, both heat and cold effects on 312 

total and cardiovascular mortality were stronger at high air pollution levels. For example, 313 

heat exposure was associated with an increase in cardiovascular mortality by 19.02% (95% 314 

CI: -13.24%, 46.68%) at high PNC levels and 3.75% (95% CI: 0.29%, 7.33%) at low PNC 315 

levels. Cold-related cardiovascular mortality risk was also higher at high PNC levels (16.23%; 316 

95% CI: 3.80%, 30.14%), compared to low PNC levels (2.00%; 95% CI: 0.16%, 3.88%).  317 

3.4. Subgroup and sensitivity analyses 318 

In population subgroup analyses, we did not find substantially different interactions 319 

between air temperature and PNC, PM, and O3 on total natural mortality across age groups 320 
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and sex (data not shown). Sensitivity analyses indicated that our results were robust when we 321 

changed df for time-trend (Supplemental Information, Fig.S7 and Fig.S8), used different 322 

percentile cutoffs of air temperature categories, and different lag periods for the air 323 

temperature effect (data not shown). Choosing different lag days for air temperature 324 

categories did not materially change the temperature-stratified air pollution effects on 325 

mortality (Supplemental Information, Fig.S9). After adjustment for co-pollutants, the pattern 326 

of effect modification on air pollution-related mortality by air temperature did not change 327 

substantially (Supplemental Information, Fig.S10). The effects of PNC on mortality across air 328 

temperature levels decreased after adjustment for PM2.5 but remained similar when 329 

controlling for PM10 and ozone. Estimates of PM-related mortality across air temperature 330 

levels were robust when we controlled for PNC and ozone. Effect modification of ozone-331 

related mortality by air temperature persisted after adjustment for PNC and PM. When we 332 

considered potential predictors (average temperature, temperature range, and population) of 333 

the city-specific risk estimates (Supplemental Information, Fig.S11), we found similar 334 

temperature-stratified air pollution effects (Supplemental Information, Fig.S12) and air 335 

pollution-stratified temperature effects (Supplemental Information, Fig.S13). Using UFP 336 

instead of total PNC generated similar results in Augsburg (Supplemental Information, 337 

Fig.S14). When we excluded Rome from the meta-analyses, the pooled effect modification of 338 

PNC- and PM-related cardiovascular mortality risks by high temperatures became 339 

nonsignificant, whereas effect modification of PM2.5-related total natural mortality by high 340 

temperatures remained statistically significant (data not shown). 341 

4. Discussion 342 

To the best of our knowledge, this is the first time-series study to examine the interactions 343 

between UFP and air temperature on total natural and cardiovascular mortality. Our multi-344 

city analyses in eight European urban areas showed that high temperatures could significantly 345 
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enhance the effect of PNC on cardiovascular mortality, the effects of PM2.5 and PM10 on total 346 

natural and cardiovascular mortality, and the effects of O3 on total natural mortality. 347 

Furthermore, our results showed that the air temperature effects on mortality were greater at 348 

high air pollution levels. Significant effect modification was found on heat-related total 349 

natural mortality by PM2.5, PM10, and O3, and on cold-related total natural and cardiovascular 350 

mortality by PNC. 351 

4.1 Effect modification of air pollution effects by temperature 352 

We found stronger PM effects on mortality on days with high air temperatures. Similarly, 353 

high temperatures were found to enhance the acute effect of PM on mortality in Australia 354 

(Ren and Tong 2006), China (Li et al. 2011; Meng et al. 2012; Qian et al. 2008; Qin et al. 355 

2017), South Korea (Kim et al. 2015), and Europe (Katsouyanni et al. 2001; Pascal et al. 356 

2014; Shaposhnikov et al. 2014; Stafoggia et al. 2008). In the present analysis, an increase of 357 

10 μg/m3 in PM10 was associated with 0.03% (95% CI: -0.32%, 0.38%), 0.28% (95% CI: 358 

0.01%, 0.55%), and 0.93% (95% CI: 0.31%, 1.55%) increase of total natural mortality at low, 359 

medium, and high temperatures. Our results were consistent with a recent meta-analysis, 360 

which reported a 0.19% (95% CI: −0.01%, 0.40%), 0.31% (95% CI: 0.21%, 0.42%) and 0.78% 361 

(95% CI: 0.44%, 1.11%) increase in total natural mortality per 10 μg/m3 increase in PM10 at 362 

study-specific low, medium, and high temperatures (Li et al. 2017). Moreover, in our study 363 

we observed a high heterogeneity of the PM2.5 effects between the cities and therefore our 364 

results should be regarded with caution. 365 

In accordance with our PM analysis, we also found stronger UFP effects on daily 366 

mortality on days with high temperatures. However, the effect modification was only 367 

significant for cardiovascular mortality. Evidence from very few studies on the seasonal 368 

association between PNC and mortality indicate that UFP effects may be larger in the warm 369 

season (Meng et al. 2013; Stafoggia et al. 2017), which provides support for our findings. 370 
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Effect estimates were robust after adjustment for PM10 and O3, but weaker after adjustment 371 

for PM2.5. In contrast, the temperature-stratified PM2.5 effects on mortality remained robust 372 

after adjustment of co-pollutants, which suggests independent effects of PM2.5. This 373 

contrasting effects indicates some residual confounding in PNC effects due to co-exposure to 374 

PM2.5. However, the contrasting results between PNC and PM2.5 should be interpreted with 375 

caution due to different size fractions of PNC measured in different cities. Except for Athens, 376 

Copenhagen, and Helsinki, total PNC (≤ 3000 nm) rather than PNC at ultrafine range (≤ 100 377 

nm) was measured (Supplemental Information, Table S1). In previous studies measuring UFP 378 

at ultrafine range (≤ 100 nm), the mortality effects of UFP remained similar when adjusting 379 

for PM2.5 (Lanzinger et al. 2016) or mass concentration metrics (Breitner et al. 2011). 380 

City-specific effect modification of PNC effects by temperature showed different patterns, 381 

where largest effects occurring at high temperatures were observed in Athens, Augsburg, 382 

Barcelona, Helsinki, and Rome, but not in Copenhagen, Ruhr area, and Stockholm 383 

(Supplemental Information, Fig.S3). This difference may be due to different source 384 

contributions to UFP in different cities. A previous study evidenced that in Northern and 385 

Central EU cities PNC and black carbon (BC) had a similar hourly pattern, whereas in 386 

Southern EU cities, maximum PNC occurred at midday with minimum BC levels due to 387 

midday nucleation episodes (Reche et al. 2011). To quantify the sources and processes 388 

contributing to UFP, it can be segregated into two components based on the high correlation 389 

between BC and PNC: N1, the primary emission of vehicle exhaust, and N2, the newly 390 

formed secondary origin from mostly nucleation processes and other low BC-bearing UFPs 391 

from different sources (Brines et al. 2015; Cheung et al. 2011; Rodríguez and Cuevas 2007). 392 

Short-term effects of UFP on daily mortality are affected by different origins of UFP. A 393 

recent study in three Spanish cities found an association of daily mortality with N1 but not 394 

with N2 in Barcelona and Santa Cruz de Tenerife, which were influenced by traffic emissions, 395 
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whereas an association with N2 was observed in an industrial city Huelva (Tobías et al. 2018). 396 

Thus, different source contributions of UFP in our eight EU cities may lead to different 397 

effects of PNC on daily mortality. Further studies with both PNC and BC measurements are 398 

need to differentiate modification effects of primary and secondary UFP on health by air 399 

temperature. Furthermore, city-specific modified PNC effects by temperature on total 400 

mortality were not fully explained by those effects on cardiovascular mortality. This suggests 401 

that PNC may have effects on other causes of deaths. 402 

A small number of studies have examined the modifying effect of air temperature on 403 

ozone-related mortality and the results are inconsistent (Li et al. 2017). In line with our 404 

findings, significant effect modifications of the association between O3 and mortality with 405 

stronger effects on warmer days were found in the U.S. (Jhun et al. 2014; Ren et al. 2008a) 406 

and France (Pascal et al. 2012). On the contrary, stronger O3 effects on colder days were 407 

observed in several cities in China (Chen et al. 2013; Cheng and Kan 2012; Liu et al. 2013).  408 

This difference may be likely due to inadequate control of cold effects in these studies by 409 

using short lags for temperature in the ozone-mortality association. A previous study in 21 410 

East Asia cities demonstrated that adjusting only for short lags of temperature could result in 411 

higher ozone effect estimates in winter than in summer (Chen et al. 2014).  412 

4.2 Effect modification of temperature effects by air pollution 413 

Effect modification by air pollution on air temperature-mortality relationships has been 414 

barely investigated. We observed higher heat- and cold-related mortality risks at high air 415 

pollution levels, with significant effect modification by PM2.5, PM10, and O3 on heat-related 416 

mortality risks and by PNC on cold-related mortality risks (Table 3). Similar findings on 417 

PM10 and O3 were obtained by time-series studies conducted in Guangdong, China (Li et al. 418 

2015), Brisbane, Australia (Ren et al. 2006), 95 U.S. communities (Ren et al. 2008b), Berlin, 419 

Germany, and Lisbon, Portugal (Burkart et al. 2013), and three cities of Bavaria, Germany 420 
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(Breitner et al. 2014). Another study using a case-crossover design also reported larger heat 421 

effects on mortality at high PM10 concentrations in Rotterdam, The Netherlands (Willers et al. 422 

2016). No prior investigations have assessed the modifying effect of short-term exposure to 423 

PNC and PM2.5 on temperature-mortality associations.  424 

4.3 Plausible biological mechanism 425 

Although the underlying biological mechanism of effect modification of air pollution and 426 

temperature on mortality is not fully understood, several hypotheses have been proposed. 427 

Firstly, PM, O3, and air temperature may have synergistic effects on cardiovascular system as 428 

they have common pathophysiological pathways. Air temperature changes (higher or lower) 429 

are associated with increased blood viscosity and coagulability, elevated cholesterol levels, 430 

and inflammatory responses (Keatinge et al. 1986; Schneider et al. 2008). Increased UFP and 431 

PM can also cause increased blood pressure and platelet aggregation, systemic oxidative 432 

stress and inflammation (Brook et al. 2010; Rückerl et al. 2011). In addition, both airborne 433 

particles and temperature were associated with changes in heart rate and repolarization 434 

parameters among myocardial infarction survivors (Hampel et al. 2010). On the other hand, 435 

ozone at high temperatures may impair fibrinolysis, thus reducing the efficiency of 436 

preventing clot formation and clearance (Kahle et al. 2015). Second, high temperatures could 437 

increase thermoregulatory stress and alter the physiological response to toxicants, leading to a 438 

higher susceptibility to air pollution effects (Gordon 2003). Third, population exposures to air 439 

pollution might increase during the warm season (Meng et al. 2013) as people tend to go 440 

more outside and to keep windows open and at the same time the chemical composition of 441 

UFP (Kim et al. 2002) and PM (Bell et al. 2007) could vary by season. In addition, secondary 442 

UFPs formed from mostly nucleation events contributed as a major component of UFP in 443 

Australian and European cities (Brines et al. 2015; Salma et al. 2014). Because nucleation 444 

events generally occurred at midday with high temperature and low levels of nitrogen oxides 445 
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(Brines et al. 2015), source contribution of UFP may greatly differ at low and high 446 

temperatures. Seasonal variations in both chemical composition and source contribution of 447 

UFP may affect its toxicity, which was observed to be higher in the summer (Baldauf et al. 448 

2016).  449 

4.4 Strengths and limitations 450 

The eight European cities with PNC measurements offer advantages for the study of the 451 

interactions between UFP and air temperature on daily mortality for the first time to our 452 

knowledge. Furthermore, this study benefits from analyses on different particle sizes (UFP, 453 

PM2.5, and PM10) and the potential synergistic role of temperatures. Another main strength of 454 

this study is the multi-city design with standardized protocols for health data collection 455 

covering a wide range of locations in Europe with different climates, which can provide 456 

robust results and may avoid potential publication bias that commonly occur in single-city 457 

studies. Moreover, disentangling interactions between the air pollution and air temperature on 458 

health is challenging in part because of their different lag structures and a different shape of 459 

their exposure-response functions (Zanobetti and Peters 2015). In the present analysis on 460 

effect modification by air pollutant, rather than using a linear, single lagged or moving 461 

averaged temperature term, we applied a distributed lag nonlinear temperature term, which 462 

captures the complex non-linear and lagged dependencies in both the exposure-response and 463 

lag-response associations (Gasparrini et al. 2015b). In the interaction term, this distributed lag 464 

nonlinear temperature term was added together with a linear single lagged air pollution strata. 465 

Thus, our models characterizing interactions with different lag structures and different 466 

exposure-response functions may better assess the complex interplay between air pollutants 467 

and air temperature on daily mortality.  468 

Several limitations should be acknowledged in this study. First, there were potential exposure 469 

measurement errors because we used measured air pollution and air temperature at fixed 470 
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outdoor monitoring stations. This measurement error may be especially relevant to UFP as it 471 

is known to have a high spatial variation within cities (HEI Review Panel on Ultrafine 472 

Particles 2013). However, this concern was lessened to some extent as we analyzed the 473 

temporal variations in time-series models and the temporal correlations across different sites 474 

within a city were generally high (Cyrys et al. 2008). Second, different air pollution 475 

measurement instruments were used and slightly different size fractions of PNC were 476 

collected in different cities (Stafoggia et al. 2017), which might limit the direct comparison 477 

among cities and introduce differential exposure measurement errors. Third, the UFP 478 

measurements in Rome were influenced by traffic and had much higher particle number 479 

concentrations, which may increase the statistical power and lead to the dominating role of 480 

Rome in the pooled PNC effects (Stafoggia et al. 2017). Moreover, the multiple missing data 481 

in air pollution measurements prevented us from conducting a sensitivity analysis using the 482 

same cumulative lag structure for air temperature and air pollutants in assessing their 483 

interactions. Furthermore, due to power issue we did not examine whether the observed effect 484 

modifications varied by season. Further study is warranted to investigate the seasonal 485 

interactions between air pollution and air temperature. Another limitation is that by testing 486 

multiple air pollutants, temperature, and total and cardiovascular mortality, the possibility 487 

that some of the observed significant effect modifications might occur by chance cannot be 488 

fully excluded. In addition, our results might not be generalized to health impact assessments 489 

in another region with different basic health status and air pollution compositions 490 

(Krzyzanowski et al. 2002).  491 

5. Conclusion 492 

Overall, our findings showed that the association between daily total natural and 493 

cardiovascular mortality and air pollution (UFP, PM2.5, PM10, and ozone) was modified by air 494 

temperature and vice versa. Results therefore suggest that interactions between air pollution 495 
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and air temperature should be considered to assess their joint health effects. Our findings 496 

point to the importance of understanding and reducing the health burdens attributable to 497 

ambient air pollution and air temperature in the context of climate change. Further studies are 498 

needed to investigate the effect modification of air pollution and air temperature using 499 

morbidity data (i.e. hospitalization, emergency room visits) to get a more comprehensive 500 

knowledge of the air temperature-pollution interaction. 501 
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Figures 744 

 745 

Fig.1. Overall cumulative exposure-response relationships and lag-response relationships 746 

between air temperature and mortality with 95% CIs. The vertical lines in (A) and (B) 747 

represent the 1st, 10th, 90th, and 99th percentiles of the air temperature distribution. The y-748 

axis in (A) and (B) represents the relative risk of air temperature on daily mortality compared 749 

with the minimum mortality temperature; in (C) and (D) represents the relative risk of heat 750 

effect (99th percentile vs. 90th percentile) on daily mortality; and in (E) and (F) represents 751 

the relative risk of cold effect (1st percentile vs. 10th percentile) on daily mortality. 752 

 753 

 754 
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 755 

Fig.2. Modified overall cumulative air temperature-mortality associations by air pollution 756 

with 95% CIs. Blue lines represent for low air pollution level (concentration below median 757 

value) and red lines represent a high air pollution level (concentration above median value). 758 
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The vertical lines represent the 1st, 10th, 90th, and 99th percentiles of the air temperature 759 

distribution. The y-axis represents the relative risk of temperature on daily mortality 760 

compared to the minimum mortality temperature. P value is the result of significance test 761 

between air pollution levels, based on a multivariate Wald test of the pooled reduced 762 

coefficients of the temperature effects at low and high air pollution levels. 763 
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Tables 765 

Table 1. Descriptive statistics for study period, daily deaths, and cutoffs for air pollutants and 766 

air temperature in eight European cities. 767 

 Helsinki Stockholm Copenhagen Ruhr Area Augsburg Rome Barcelona Athens 

Study period 
2001-

2010 

2001-2005, 

2008-2010 

2001-2010 2009-2013 1999-2009 2001-

2010 

2005-2010 2008-

2010 

Daily mortality (mean ± sd) 

  Total natural 18±5 39±7 26±9 32±6 8±3 58±10 41±8 80±12 

  Cardiovascular 7±3 16±4 8±4 12±4 4±2 24±6 13±4 36±7 

Air pollutants percentiles (median) 

  PNC (particles/cm3) 

     Min 793 2113 503 1513 2243 2295 1926 582 

     25th 4658 6210 3285 7523 7184 19384 13807 3775 

     50th 6636 8150 4685 9740 9977 29168 18696 5599 

     75th 9868 10910 6382 12331 13728 44202 24663 8696 

     Max 38761 44170 21260 28905 44755 139640 50929 36024 

  PM2.5 (μg/m3) 

     Min 0 1 0 4 1 0 2 5 

     25th 5 5 9 10 10 13 15 16 

     50th 7 7 11 14 15 18 20 20 

     75th 11 9 15 22 21 24 28 26 

     Max 57 37 70 128 126 73 104 63 

  PM10 (μg/m3) 

     Min 1 3 2 4 4 7 4 7 

     25th 10 9 14 14 19 26 23 24 

     50th 13 12 18 19 29 33 32 32 

     75th 19 17 23 28 40 44 43 42 

     Max 116 82 100 131 169 174 190 291 

  O3 (μg/m3) 

     Min 2 5 0 3 3 1 1 10 

     25th 48 51 26 36 45 42 41 49 

     50th 62 64 33 55 67 75 65 71 

     75th 76 78 40 75 93 100 83 91 

     Max 159 129 77 196 190 199 142 138 

Air temperature percentiles (°C) 

     Min -24.2 -17.9 -8.1 -11.0 -12.9 -0.4 0 -1.8 

     1st -18.0 -11.3 -4.5 -4.6 -7.8 2.6 1.7 4.9 

     10th -6.5 -2.9 0.4 1.6 -0.9 6.6 6.4 10.0 

     25th -0.7 1.2 4.3 6.4 3.6 10.2 9.5 13.8 

     50th 5.7 7.0 9.4 11.5 10 15.6 14.7 18.3 

     75th 13.7 13.9 15.2 16.7 16.2 21.9 19.6 25.5 

     90th 17.9 17.7 18.7 19.9 20.2 25.8 22.7 29.3 

     99th 22.8 22.3 22.9 25.2 24.9 28.9 25.7 32.2 

     Max 26.6 25.1 25.5 29.6 27.7 31 28.3 33.6 
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Table 2. Percent increase (95% CI) in daily total natural and cardiovascular mortality 769 

associated with a 10,000 particles/cm3 increase in PNC or a 10 μg/m3 increase in PM2.5, PM10, 770 

and O3 at different temperature levels. 771 

Pollutant Temperature levels a 
Total natural Cardiovascular 

% increase I2 % increase I2 

PNC_lag6 

Low 0.08 (-0.44, 0.61) 7% -0.18 (-0.97, 0.62) 2% 

Medium -0.49 (-1.08, 0.11) 0% -0.81 (-1.92, 0.32) 0% 

High 1.24 (-0.72, 3.24) 28% 2.51 (0.39, 4.67) b,c 0% 

PM2.5_lag1 

Low -0.46 (-1.02, 0.12) 0% -0.03 (-0.91, 0.87) 12% 

Medium 0.84 (0.05, 1.63) b 47% 1.22 (0.35, 2.10) b 0% 

High 2.36 (0.11, 4.65) b 74% 3.58 (0.46, 6.81) b 66% 

PM10_lag1 

Low 0.03 (-0.32, 0.38) 0% 0.23 (-0.43, 0.9) 8% 

Medium 0.28 (0.01, 0.55) 34% 0.25 (-0.16, 0.66) 0% 

High 0.93 (0.31, 1.55) b 0% 1.61 (0.73, 2.50) b,c 0% 

O3_lag1 

Low 0.17 (-0.14, 0.49) 0% 0.44 (-0.05, 0.93) 0% 

Medium 0.24 (-0.08, 0.57) 34% 0.69 (0.07, 1.31) 55% 

High 0.67 (0.36, 0.98) b 0% 0.54 (0.06, 1.02) 0% 

a The 25th and 75th percentiles of daily mean temperature were used as temperature cut-offs.  
b Significantly different from the low temperature level.   
c Significantly different from the medium temperature level.  
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Table 3. Pooled cumulative mortality risks (percent increase and 95% CI) of daily total 773 

natural and cardiovascular mortality associated with heat exposure (99th percentile relative to 774 

90th percentile of air temperature) and cold exposure (1st percentile relative to 10th percentile 775 

of air temperature) by air pollutant strata. 776 

Effect Pollutant Pollutant levels a Total natural Cardiovascular 

Heat 

PNC_lag6 
Low 6.94 (2.76, 11.29) 3.75 (0.29, 7.33) 

High 13.22 (-10.78, 43.67) 19.02 (-13.24, 46.68) 

PM2.5_lag1 
Low 4.53 (0.97, 8.21) 4.99 (-1.15, 7.56) 

High 17.71 (7.98, 28.31) b 16.10 (-1.62, 37.02) 

PM10_lag1 
Low 6.78 (0.53, 13.42) 7.04 (0.51, 9.69) 

High 17.39 (9.95, 25.33) b 13.69 (1.84, 26.91) 

 
O3_lag1 

Low -2.08 (-4.43, 0.32) 3.90 (0.69, 7.22) 

 High 14.61 (8.24, 21.36) b 14.83 (2.35, 28.83) 

Cold 

PNC_lag6 
Low 3.64 (1.00, 6.35) 2.00 (0.16, 3.88) 

High 14.06 (4.45, 24.55) b 16.23 (3.80, 30.14) b 

PM2.5_lag1 
Low 4.00 (1.08, 7.00) 4.85 (1.71, 8.08) 

High 9.39 (-1.71, 21.74) 8.38 (-7.67, 27.21) 

PM10_lag1 
Low 4.32 (1.50, 7.21) 3.71 (0.28, 7.26) 

High 10.53 (0.24, 21.88) 14.18 (0.11, 30.22) 

 
O3_lag1 

Low 6.24 (1.72, 10.96) 6.58 (1.17, 12.29) 

 High 18.39 (-31.1, 103.42) 25.75 (-51.47, 225.85) 
a The median value for each pollutant in each city was used as cut-offs for air pollution levels. 
b Significantly different from the low air pollution levels. 
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