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HIGHLIGHTS  

• We constructed land use regression models for annual averages of ultrafine particles and 

ozone  

• Models for ultrafine particles and ozone performed very well for Augsburg, Germany 

• Models for PM10, PM2.5, soot and nitrogen oxides also performed well  

• PNC was moderately correlated with PM2.5 and ozone, but highly correlated with NOx  
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ABSTRACT  

Important health relevance has been suggested for ultrafine particles (UFP) and ozone, but studies 

on long-term effects are scarce, mainly due to the lack of appropriate spatial exposure models. We 

designed a measurement campaign to developed land use regression (LUR) models to predict the 

spatial variability focusing on particle number concentration (PNC) as indicator for UFP, ozone and 

several other air pollutants in the Augsburg region, Southern Germany. Three bi-weekly 

measurements of PNC, ozone, particulate matter (PM10, PM2.5), soot (PM2.5abs) and nitrogen oxides 

(NOx, NO2) were performed at 20 sites in 2014/15. Annual average concentration were calculated 

and temporally adjusted by measurements from a continuous background station. As geographic 

predictors we offered several traffic and land use variables, altitude, population and building density. 

Models were validated using leave-one-out cross-validation. Adjusted model explained variance (R²) 

was high for PNC and ozone (0.89 and 0.88). Cross-validation adjusted R² was slightly lower (0.82 and 

0.81) but still indicated a very good fit. LUR models for other pollutants performed well with adjusted 

R2 between 0.68 (PMcoarse) and 0.94 (NO2). Contrary to previous studies, ozone showed a moderate 

correlation with NO2 (Pearson’s r=-0.26). PNC was moderately correlated with ozone and PM2.5, but 

highly correlated with NOx (r=0.91). For PNC and NOx, LUR models comprised similar predictors and 

future epidemiological analyses evaluating health effects need to consider these similarities.  
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1. INTRODUCTION 

Ultrafine particles (UFP), a subset of particulate matter (PM) with a diameter <100 nm, contribute 

only slightly to PM mass concentration but may cause health effects independently of larger particles 

as they can penetrate deeper into the lung and even translocate into the blood stream.1 However, 

the literature on spatial models for particle number concentration (PNC) as indicator for UFP is 

limited.2-12 As longer term measurement of UFP over several days or weeks are extremely cost- and 

labor-intensive, most of these studies used mobile or short-term monitoring campaigns. With these, 

a very good spatial coverage can be obtained which is essential for UFP due to their in general quite 

heterogeneous spatial distribution. However, the ability to predict the true long-term exposure is 

limited as measurements are usually performed for certain periods of the day and are often 

restricted to weekdays. So far, only one study from Switzerland4 conducted repeated longer term 

UFP measurements. Regarding epidemiological analyses, only one study from California assessed the 

health effects of long-term UFP exposure so far.13 The authors used a chemical transport model with 

a resolution of 4 km to estimate the spatial variation of UFP mass concentration and components and 

observed significant positive associations between ischemic heart disease mortality and UFP species. 

Ozone is a secondary pollutant which can be reduced by nitric oxide in fresh motor vehicle exhaust, 

but which can also be regenerated during transport. Therefore, ozone concentrations are usually 

higher in suburban and rural areas downwind of the sources than in urban areas.14 Several modeling 

attempts have been made using interpolation15-17, Bayesian maximum entropy methods18 and 

chemical transport models.14 However, the resolution of these methods is generally quite coarse and 

models were mainly developed for large geographical regions. Thus, they are less suitable to assess 

small scale urban variability which is fundamental for ozone exposure.14 Only a few land use 

regression (LUR) models have been developed so far: one European model using a 1 km grid19 and 

two fine scale models from Sweden20 and the Netherlands.21 Epidemiological studies investigating 

health effects of long-term ozone exposure are still limited and evidence is not equally conclusive on 
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detrimental effects as short-term studies though there is some suggestion of a causal relationship 

from animal toxicological studies.14  

LUR is a useful tool to model spatial variability of long-term outdoor air pollution and has become 

more and more popular in the last decade.22, 23 Multiple regression models are built on the basis of 

air pollution measurements at several monitoring sites and potential predictor variables in the 

vicinity of these sites like traffic, land use, topography and population data. Within the multi-center 

ESCAPE (European Study of Cohorts for Air Pollution Effects) project, a standardized method has 

been applied to develop local LUR models for 36 European regions for NOx, nitrogen dioxide (NO2)24 

and for 20 regions for PM <10µm (PM10), 2.5-10µm (PMcoarse), <2.5µm (PM2.5), and the reflectance of 

PM2.5 (PM2.5abs)25 as well as one European-wide LUR model.26 These models are also available for 

the Augsburg-Munich region, however, they are mainly based on measurements conducted in 

Munich located approximately 80 km east of Augsburg. We therefore set up a new measurement 

campaign with a much denser network of monitoring sites in Augsburg specifically designed to model 

long-term exposure to ultrafine particles, ozone and other pollutants. 

The specific objectives of this study were 1) to develop LUR models for PNC and ozone, 2) to refine 

and update the LUR models for PM10, PMcoarse, PM2.5, PM2.5abs, NO2, and NOx  for the Augsburg 

region based on measurements conducted in 2014/15, and 3) to explore the correlation between the 

pollutants. The models will later be applied to the residential addresses of the Cooperative Health 

Research in the Region of Augsburg (KORA) cohort27 to assess the health effects of long-term 

exposure to these pollutants.  

 

2. METHODS 

The study region consisted of the city of Augsburg (280,000 inhabitants) and the two adjacent rather 

rural counties (372,000 inhabitants) covering an area of 147 km² and 1,854 km², respectively. Air 

pollution measurements and LUR modeling was based on the standardized ESCAPE approach24, 25 but 



6 
 

extended by further air pollutants (PNC and ozone) as well as predictor variables (building number 

and area). We conducted an intensive measurement campaign to determine annual average 

concentrations of PNC, ozone, PM10, PM2.5, PM2.5abs, NOx, and NO2. Predictor variables were 

gathered from European-wide and local Geographic Information System (GIS) databases.  

 

2.1. Sampling campaign 

Air pollutants were measured at 20 locations within the study region (Figure 1). Of these, 12 sites 

were located in the city of Augsburg and 8 sites in the two adjacent counties. The site selection was 

based on the spatial variation of air pollution at residential addresses of the KORA participants and 

included a mixture of urban traffic (n=6), urban background (n=5), regional traffic (n=4) and regional 

background (n=4) monitoring sites and one industrial site. As several of the KORA participants were 

residing in predominantly rural areas of the counties, we placed one of the regional background sites 

in the countryside to enhance the performance of the model prediction also in the lower 

concentration range. 

The measurements were carried out at the 20 monitoring sites between March 2014 and April 2015. 

Four sets of instruments were measuring at four sites for two weeks until moving to the next four 

sites. Thus, it took ten weeks to complete one measurement round. Overall, we had three complete 

measurement rounds intended to cover the warm, cold and intermediate seasons. In addition, 

measurements were carried out continuously at one urban background site (reference site) over the 

whole study period to adjust the discontinuous site measurements to the long-term average.  

PNC was measured by three GRIMM ultrafine particle counters (model EDM 465 UFPC, GRIMM 

aerosol, Ainring, Germany) measuring total PNC with a cut-off at 7 nm and one NanoScan SMPS 

Nanoparticle Sizer (model 3910, TSI, Shoreview, MN, USA) measuring PNC in 13 size channels in the 

size range from 10 to 420 nm until July 18th, 2014. A diffusion dryer was used in the sheath air loop 

of the Nanoscan-SPMS in order to minimize the influence of particle growth under conditions of high 
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Figure 1 (2-column fitting image). Location of the 20 monitoring sites (circles) and the reference 

station (pentagon). The colors of the circles indicate the measured annual average concentrations of 

particle number concentrations (PNC, top) and ozone (bottom) at the monitoring sites. 
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relative humidity. From August 21st, 2014 on, a fourth GRIMM UFP counter replaced the NanoScan 

which broke down due to water damage. At the fixed urban background reference site PNC was 

measured continuously throughout the whole measurement period in the size range from 3 nm to 10 

µm by use of a combination of custom-made Twin Differential Mobility Particle Spectrometry 

(TDMPS, size range 3 to 800 nm) based on Birmili et al28 and an aerodynamic particle sizer (APS, 

Model 3321, TSI Inc., U.S., size range 0.8 to 10 μm). For more details please see Pitz et al.29  

 Comparisons of all instruments conducted every two weeks showed in general a very good 

correlation between the collocated instruments with R² ranging from 0.97 to 0.98 (mean of Pearson 

r: 0.99). Also, PNC levels measured by all devices were very similar with differences below 5%. Only 

one Grimm device had to be corrected for the last seven bi-weekly measurements by factors ranging 

from 1.1 to 1.3. Ozone and NOx were measured with Ogawa passive samplers (Ogawa&Co. USA Inc.) 

following the Ogawa protocol.30 A detailed description of the ozone analysis has been published 

recently.21 The sampling rate for the Ogawa passive sampler given in the Ogawa protocol was used as 

a constant of 21.8 mL min-1.30 PM10 and PM2.5 were sampled using Harvard Impactors and PMcoarse 

was later calculated as their difference. Reflectance was measured on both PM10 and PM2.5 filters 

and transformed into absorbance. The limit of detection was determined as three times the standard 

deviation of the blanks (ozone: 0.85 μg/m3; PM10: 0.60 μg/m3; PM2.5abs: 0.068 10-5 m-1; NOx: 6.52 

μg/m3; NO2: 1.33 μg/m3).  Coefficients of variance based on duplicate measurements were 

determined following Eeftens et al31 and ranged from 1.9% for ozone to 8.4% for NOx. As the 

correlation between PM10abs and PM2.5abs was extremely high with Pearson r = 0.98 and the 

concentration levels were similar, we decided to restrict the LUR model building to PM2.5abs.  

The temporal adjustment of the discontinuous site measurements was conducted by correcting each 

measurement period at each site by the difference between the average concentration for each 

period at the reference site and the annual mean at the reference site. To account for the higher 

variability of PNC, we performed the correction procedure for each day of the measurements 
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accordingly. All data shown in this paper are temporally adjusted and are representative for the long-

term average concentrations. 

As Global Positioning System (GPS) coordinates showed some variations between the site visits, we 

manually determined the geographic coordinates of the sampling sites in GIS to ensure the accurate 

position. 

 

2.2. GIS predictor data for LUR models 

All potential predictor variables are summarized in Table 1, together with the a priori choices 

concerning buffer sizes, variable transformations and anticipated direction of effects. As secondary 

pollutant, ozone is involved in many chemical reactions and the expected directions of predictor 

effects were not as clear as for the other pollutants. Ozone concentrations are generally higher in 

rural and sub-urban regions as nitric oxides reduce the concentrations in urban areas and especially 

near major roads. Therefore, we specified the opposite direction for the land use predictors, altitude 
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Table 1: Description of potential predictor variables. 

GIS dataset Predictor variable Variable name Unit Buffer size (radius of buffer in 

metre) 

Direction of 

effect 

Background variables        Alla O3
b 

Local land use Residential land hldres % area in buffer 25, 50, 100, 300, 500, 1000, 5000 + - 

Industrial, commercial and transport units industry % area in buffer 25, 50, 100, 300, 500, 1000, 5000 + - 

Artificial surfaces (without urbgreen) tot_built % area in buffer 25, 50, 100, 300, 500, 1000, 5000 + - 

Urban green urbgreen % area in buffer 25, 50, 100, 300, 500, 1000, 5000 - + 

Forest and seminatural areas seminat % area in buffer 25, 50, 100, 300, 500, 1000, 5000 - + 

Sum of urbgreen and seminat green % area in buffer 25, 50, 100, 300, 500, 1000, 5000 - + 

Water bodies water % area in buffer 25, 50, 100, 300, 500, 1000, 5000 - + 

Building density Area/number of buildings abld, nbld m²/N 25, 50, 100, 300, 500, 1000, 5000 + +/- 

Population density Number of inhabitants pop N 100, 300, 500, 1000, 5000 + +/- 

Household density Number of households hhold N 100, 300, 500, 1000, 5000 + +/- 

Topography Square root of altitude elev_sqrt m NA - + 

Coordinates Coordinate variables xcoord, ycoord m NA +/- +/- 

Traffic variables           

Road network 

 

 

Road length of all (major) roads in a buffer roadl, roadlm m 25, 50, 100, 300, 500, 1000 + - 

Total traffic load of all (major) roads in a buffer (sum 

of (traffic intensity*length of all segments)) 

trafload, trafloadm Veh. day-1 m 25, 50, 100, 300, 500, 1000 + - 

Total heavy-duty traffic load of all (major) roads heavytrafload, 

heavytrafloadm 

Veh. day-1 m 25, 50, 100, 300, 500, 1000 + - 
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Traffic intensity on nearest (major) road intnear, intnearm Veh. day-1 NA + - 

Inverse distance and inverse distance squared to the 

nearest (major) road 

distnearinv, 

distnearminv 

m-1, m-2 NA + - 

distnearinv2, 

distnearminv2 
    

Product of traffic intensity on nearest (major) road 

and inverse distance to the nearest (major) road and 

distance squared 

intdistnearinv, 

intdistnearminv 

Veh. day-1 m-1 NA + - 

intdistnearinv2, 

intdistnearminv2 

Veh. day-1 m-2    

Heavy-duty traffic intensity on nearest (major) road Heavyintnear, 

heavyintnearm 

Veh. day-1 NA + - 

Product of heavy-duty traffic intensity heavyintdistnearinv Veh. day-1 m-1 NA + - 

on nearest road and inverse of distance to the 

nearest road and distance squared 

heavyintdistnearinv2 Veh. day-1 m-2     

aAll air pollutants except ozone. 
bO3: ozone 
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and traffic compared to the other pollutants. However, for building, population and household 

density the expected direction was not as clear and we thus let it open. We used GIS to extract the 

predictor information at the monitoring sites out of the following GIS source data: 

Digital road network 

We used a local road network which is based on the basic digital landscape model for road traffic for 

2009 with an accuracy <5m from the Bavarian Survey Office. We linked the roads with traffic counts 

routinely collected by the South Bavarian Street Directorate for regional major roads, and by the 

Augsburg Municipal works service and the Augsburg Environmental Agency for urban streets. Missing 

traffic counts were estimated based on the 5th percentile of the observed values for the 

corresponding street type. Major roads were defined as roads with more than 5,000 motor vehicles 

per 24 hours. Total traffic load in vehicles*metres was calculated as the length of a road 

segment*the traffic intensity on that road segment. We computed road length, total traffic load and 

total heavy traffic load of all roads and all major roads for buffers of 25, 50, 100, 300, 500, and 1,000 

m. In addition, we calculated the (heavy-duty) traffic intensity on the nearest road and on the 

nearest major road and the (inverse/inverse squared) distance to these roads as well as products of 

the (heavy-duty) traffic intensity on the nearest (major) road and the inverse distances to that roads. 

Land use data 

Local Bavarian land use data with a resolution<5m were obtained from the Bavarian Survey Office for 

the year 2009. Land use categories were compiled in accordance to the CORINE nomenclature32 and 

reclassified on the basis of the APMOSPHERE33 and ESCAPE24, 25 projects and adjusted to the local 

conditions. We computed the percentage of surface area of several land use categories in buffers of 

25, 50, 100, 300, 500, 1,000, and 5,000 m including residential land, industry, built-up area, urban 

green, forest and seminatural areas, and water bodies. 

Building density data 
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Footprints of buildings were available from the Bavarian Survey Office with an accuracy <5m for the 

year 2015. We calculated the area and the number of buildings in buffers of 25, 50, 100, 300, 500, 

1,000, and 5,000 m. 

Population density data 

Population and household density information were gathered at a 125m*125m grid from a private 

company (WiGeoGIS) for the year 2008 as no official data were available in a high spatial resolution 

due to data protection issues. The number of inhabitants and number of households was calculated 

for buffers of 100, 300, 500, 1,000, and 5,000 m. 

Altitude 

Digital elevation data (SRTM 30 m) were obtained through the Shuttle Radar Topographic Mission, 

and available globally from CGIAR-CSI GeoPortal34. The data have a resolution of 1 arc second 

(approximately 30 m at the equator and 23 m in the study area).  

 

2.3. Pre-selection of predictor variables 

Following the strategy of Eeftens and colleagues4 we tried to improve the stability of the LUR models 

by including only predictor variables where at least five sites exhibited differing values and the 

minimum or maximum value lay within the threefold of the 10th to 90th percentile range below or 

above the 10th and 90th percentile. In this way, the selection of specific predictors which included 

mainly zeros (e.g. major roads within 25 m) or extreme outliers was prevented aiming to avoid 

unstable coefficients reflected by large differences between the model R² and cross-validated R². 

 

2.4. LUR model building and evaluation 

The development of the LUR models mainly followed the standardized ESCAPE approach using a 

supervised stepwise selection procedure24, 25. For each pollutant separately, we conducted linear 
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regression models with the average concentration at the monitoring sites as outcome and the 

potential predictor variables as explaining covariates. First, we ran a univariate regression model for 

all potential predictors and chose the predictor with the highest R². Then, we added step by step 

further predictor variables which maximized the adjusted R² if i) the increase in adjusted R² was more 

than 1%, ii) the direction of the effect was as expected, iii) there was no change in the direction of 

other predictor estimates and iv) the variance inflation factor was below 3 to avoid multicollinearity. 

In the final step, we sequentially removed variables with a p-value above 0.1 starting with the least 

significant one. In addition, we examined influential observations identified by Cook’s D above 1. If 

changes in the model coefficients, p-values or model R² were large after rerunning the model 

without the corresponding site, we excluded the variable from the set of eligible predictors for the 

specific pollutant and repeated the whole model development. We also examined heteroscedasticity 

(visual inspection of residuals plotted against fitted values), normality (visual inspection of normal Q-

Q plots) and spatial autocorrelation (Moran’s I) of residuals to assess the independence assumption.  

We evaluated the model performance by leave-one-out cross-validation (LOOCV). Sequentially, each 

site was left out and the model was refitted with the same predictors potentially leading to changes 

in the parameter estimates. The model was then used to predict the concentrations at the left-out 

sites and the R² between these predicted concentrations and the actually measured ones was 

calculated.  

GIS analyses were conducted with QGIS version 2.6.1. Statistical analyses were conducted using R 

version 3.2.2. 

 

3. RESULTS 

Descriptive statistics of the temporally adjusted annual average air pollution concentrations at the 20 

monitoring sites are shown in Table 2. Spatial contrasts were quite substantial for our study region 

for PNC, NOx and NO2 whereas PM2.5 showed only little variation. 
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Table 2: Distribution of PNC, ozone, PM2.5, PM2.5absorbance, PM10, PMcoarse, NO2, and NOx at 20 measurement sites. 

Pollutant   Mean SD Min 10% 25% Median 75% 90% Max 

PNC (particles/cm³)   8,311 2,026 5,489 6,382 6,791 7,818 10,051 10,647 13,232 

Ozone (μg/m³)   38.2 3.1 32.3 33.7 36.5 38.4 40.39 42.4 43.0 

PM10 (μg/m³)  17.4 1.7 14.0 15.3 16.3 17.8 18.5 19.1 21.6 

PMcoarse (μg/m³)  5.7 1.2 2.7 4.6 5.3 5.73 6.1 6.9 8.4 

PM2.5 (μg/m³)  11.8 0.9 10.1 10.3 11.2 11.9 12.6 12.6 13.2 

PM2.5abs (10-5 m-1)  1.2 0.2 0.8 1.0 1.1 1.2 1.38 1.4 1.7 

NO2 (μg/m³)  16.9 5.5 9.1 11.1 12.8 15.9 22.28 24.6 25.9 

NOx (μg/m³)  27.7 9.5 15.5 17.4 19.6 26.1 35.91 37.7 47.8 
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The pre-selection of predictor variables led to the exclusion of eleven predictors: eight variables had 

less than five observations with differing values (industry_25, urbgreen_25, forest_25, water_25, 

industry_50, forest_50, water_50, industry_100), two displayed a maximum above the threefold of 

the 10th to 90th percentile range (heavytrafload_100, heavytrafloadm_100) and one had a minimum 

below this criterion (water_300). The distribution of the finally selected predictor variables can be 

found in Supplementary material Table 1.  

The final LUR models and corresponding performance measures are summarized in Table 3. Model 

adjusted R2 indicated a good fit for all pollutants ranging from 68% for PMcoarse to 94% for NO2. 

Especially the traffic-related air pollutants (PNC, PM2.5abs, NO2, and NOx) and ozone performed well 

with an adjusted LOOCV R² being less than 10% lower than the adjusted R². For the mass fractions, 

the models were not as robust with the adjusted LOOCV R² being 12% (PM10, PM2.5) to 19% (PMcoarse) 

lower than the adjusted R².  

The LUR models consisted of four (PMcoarse, NO2, and  NOx) to seven predictors (PM10) and contained 

at least one traffic predictor in a rather small buffer (25m-100m), industry in the medium to distant 

vicinity (300m to 5km) and one predictor for green areas. The model for PNC included building 

footprints and traffic in the close vicinity (25m and 50m), seminatural and industrial areas in a 100m 

and 300m buffer, respectively, and green area within 500m. Models for the other pollutants tended 

to select rather larger buffers. The ozone model included altitude, traffic load of major roads within 

100m, the X coordinate, number and area of buildings within 500m and 50m, respectively, and the 

population density within 300m. Except for altitude and the building number, the effect direction 

was negative. Altitude was also predictive for PM2.5, however in the negative direction. The X 

coordinate, too, showed a negative association with PMcoarse but a positive association with 

PM2.5abs. 

The site in the countryside (Figure 1, site 4) was identified as an outlier (Cook’s D>1) for the PMcoarse 

model and led to changes in the model coefficient of the traffic predictor. Thus, we excluded this site 

from the model selection for PMcoarse. Similarly, we had to exclude the traffic site 20 east of the city 
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Table 3. Final land use regression models for PNC, ozone, PM10, PM2.5, PM2.5absorbance, NO2, and NOx. 

Pollutant N LUR model R² Adj R² LOOCV 
R² 

LOOCV 
Adj R² 

Moran’s I 
(p-value) 

PNC 20 6845 + 0.0023 * trafloadm_50 +75.88 * industry_300 + 52.99 * seminat_100_neg + 44.86 

* green_500_neg + 2.49 * abld_25 

0.92 0.89 0.83 0.82 -0.05 (0.99) 

Ozone  20 637.4 + 1.30 * elev_sqrt + 0.00000036 * trafloadm_100_neg + 0.00014 * xcoord_neg + 

0.0043 * nbld_500 + 0.0013 * abld_50_neg + 0.00095 * pop_300_neg 

0.92 0.88 0.82 0.81 −0.10 (0.61) 

PM10 20 13.67 + 0.0078 * roadlm_100 + 0.000079 * roadl_1000 + 0.044 *  industry_300 + 0.098 * 

urbgreen_500_neg + 0.0022 * abld_25 + 0.0000016 * trafloadm_25 

0.91 0.87 0.78 0.76 -0.18 (0.15) 

PMcoarse
a 19 168.7 + 0.031 * tot_build_1000 + 0.030 * intdistnearminv2 + 0.025 * industry_300 + 

0.000037 * xcoord_neg  

0.75 0.68 0.57 0.55 -0.11 (0.60) 

PM2.5 20 19.47 + 0.0099 * roadl_50 + 0.041 * seminat_1000_neg + 0.41 * elev_sqrt_neg + 0.0094 

* tot_build_25 + 0.012 * industry_300  

0.84 0.79 0.70 0.69 -0.12 (0.49) 

PM2.5absb 19 −14.07 +0.000000037 * trafload_100 + 0.00047 * abld_25 + 0.0087 * industry_1000 + 

0.000058 * nbld_1000 + 0.040 * water_5000_neg + 0.0000034 * xcoord 

0.93 0.89 0.84 0.83 -0.14 (0.37) 

NO2
b 19 12.57 + 0.22 * industry_5000 + 0.015 * roadlm_100 + 0.10 * seminat_1000_neg + 0.15 * 

industry_1000  

0.95 0.94 0.90 0.89 -0.10 (0.64) 

NOx 20 28.06 + 0.0000084 * trafload_50 + 0.27 * green_1000_neg + 0.20 * industry_300 + 0.25 * 

seminat_100_neg 

0.91 0.89 0.83 0.82 -0.05 (0.94) 

awithout rural site 4 (see Figure 1).  
bwithout traffic site 20 (see Figure 1).  
See Table 1 for a detailed explanation of the variable names. Variables with _X (e.g. trafload_50) are buffers with _X indicating the radius of the buffer in 
meters. The suffix ”_neg” indicates predictors with a negative sign 
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(where maximum PM2.5abs concentration was measured) for the PM2.5abs and the NO2 model 

development as it led to large changes in R² and the p-values, respectively. Moran’s I value indicated 

spatial autocorrelation in the residuals for PM10. As the number of predictors was quite large we 

decided to leave out the last included predictor (traffic intensity on nearest road) which reduced the 

spatial autocorrelation but obviously also the model performance with an adjusted LOOCV R² of 76% 

compared to 83%. The scatter plots of measured and predicted values together with linear 

regression lines generally showed a good agreement (Supplementary material Figure 1). 

A comparison of the updated LUR models for PM10, PMcoarse, PM2.5, PM2.5abs, NOx and NO2 based on 

measurements from 2014/15 with the ESCAPE LUR models from 2008/09 can be found in 

Supplementary material Table 2. Except for PMcoarse, the adjusted R²s were similar or higher for the 

new models compared to the ESCAPE models with increases between 0% for PM2.5abs and 11% for 

NO2. 

Pearson correlation coefficients are presented in Table 4 for the annual averages and the LUR 

predicted concentrations. In general, the discrepancy between the measured and predicted 

correlation coefficients was comparably low (difference in r < 28%). PNC and NOx were extremely 

highly correlated (r > 0.9). While measured PNC concentration was highly correlated (r > 0.8) with 

PM2.5abs, NO2 and NOx, the predicted PNC concentration was highly correlated only with NOx. 

Measured and predicted ozone showed a low to moderate negative correlation with the other 

pollutants except for PMcoarse which was not correlated at all.
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Table 4: Pearson correlations between annual air pollution concentrations using measured (lower half) and predicted (upper half) concentrations at 20 

measurement sites. Coefficients above 0.80 are marked in italic, coefficients above 0.90 are marked in bold. 

                     Predicted 

Measured  

PNC Ozone PM10 PMcoarse PM2.5 PM2.5abs NO2 NOx 

PNCmean (particles/cm³)   -0.47 0.75 0.71 0.58 0.61 0.71 0.91 

Ozone (μg/m³) -0.46  -0.18 0.08 -0.51 -0.42 -0.26 -0.34 

PM10 0.71 -0.17   0.84 0.69 0.76 0.68 0.74 

PMcoarse 0.52 0.10 0.86   0.33 0.52 0.75 0.77 

PM2.5 (μg/m3) 0.64 -0.45 0.74 0.30   0.79 0.49 0.55 

PM2.5abs (10-5 m-1) 0.81 -0.39 0.75 0.49 0.77   0.57 0.55 

NO2 (μg/m³) 0.88 -0.32 0.76 0.64 0.58 0.65   0.88 

NOx (μg/m³) 0.91 -0.28 0.78 0.65 0.63 0.76 0.95   

 



20 
 

4. DISCUSSION 

We developed LUR models for PNC, ozone, PM10, PMcoarse, PM2.5, PM2.5abs, NOx, and NO2 based on 

measurements conducted in the Augsburg region in 2014/15. In general, all LUR models performed well 

with the adjusted R2 ranging from 68% (PMcoarse) to 94% (NO2). However, models for traffic-related air 

pollutants (PNC, PM2.5abs, NO2, and NOx) and ozone performed better with an adjusted LOOCV R² between 

82% and 89% compared to models for the different size fractions of PM mass concentration (PM2.5, PM10, 

PMcoarse) with an adjusted LOOCV R² between 55% and 76%.  

 

4.1. Comparison with previous LUR models for PNC 

Only one study from Switzerland4 measured PNC repeatedly over a longer period comparable to our 

campaign and used a similar modelling approach. Their PNC model is based on measurements from 67 sites 

located in four different regions and performed similarly well with an adjusted R² of 85% and a LOOCV R² of 

82% compared to 89% and 83% for PNC in our study. A study from Amsterdam, the Netherlands measuring 

seven days at 50 sites yielded adjusted R² of 65% and LOOCV R² of 57%.3 In our study, measured annual 

average PNC ranged from 5,489 to 13,232 particles/cm3 similar to the spatial contrasts observed by the 

German Ultrafine Aerosol Network which involves rural, urban background and traffic sites across Germany 

and therefore should reflect the typical range between less polluted rural sites and heavy polluted traffic 

sites in Germany.35 The multi-annual mean of hourly PNC (20-800 nm) measured at 17 monitoring sites 

from 2009 to 2014 (data coverage two to six years) ranged between 3,000 to 5,500 particles/cm³ at rural 

sites and 9,000 to 10,500 particles/cm³ at urban traffic sites. Our concentrations lay also within the range of 

the Swiss study (3,361 to 22,896 particles/cm3) which covered with four areas a much larger and very 

heterogeneous study region.  The concentrations of the Dutch study were substantially higher ranging from 

12,248 to 86,902 particles/cm3 with an annual mean concentration of 19,272 particles/cm3 at the urban 

background reference site. However, the study region was much smaller covering only an urban area 

(Amsterdam) and the single weekly measurements, although temporally adjusted, might have inflated the 

annual average concentrations.  
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Main sources for UFP are in general traffic-related combustion processes, but also industrial sources, home 

heating and biomass burning play a role.1  Of these, UFP are either emitted directly or formed secondarily 

through chemical processes in the atmosphere. For the city of Augsburg, we identified seven sources of 

particles by positive matrix factorization based on particle size distribution in a previous study.36 However, 

only three sources contributed significantly to PNC: fresh traffic emissions (24.9%), aged traffic emissions 

(40.3%), and stationary combustion (26.1%). As shown in a further study from the area,37 traffic-related 

particles were rather heterogeneously distributed over the city area compared to combustion-related 

particles (mean coefficient of divergence for the traffic source was 0.62 compared to 0.31 for the 

combustion source). In fact, traffic load of major roads within 50m was selected as the first predictor to 

enter our LUR model for PNC reflecting the major impact of traffic in the close vicinity. Likewise, the two 

previous models comprised nearby traffic predictors (Switzerland: traffic load within 250m, road length 

within 100m and  major road length within 50m; Amsterdam: traffic intensity*inverse distance to the 

nearest road squared). Neither ours nor the previous LUR models included heavy duty traffic predictors 

which might have been expected to contribute through diesel UFP emissions. But also industrial processes 

(e.g. from stationary combustion sources) within the medium surrounding (300m) seemed to play an 

important role for increased PNC in our study region entering as the second predictor which however was 

not selected in the previous models. Forest, seminatural and green areas in the medium surrounding (100-

500m) decreased the concentrations in Augsburg as was the case for Switzerland (urban green within 1km) 

but not for Amsterdam. Our model additionally included building density in the close vicinity (25m), 

whereas the Amsterdam model comprised address density within 300m as well as ports within 3 km. The 

Swiss multi-site model was mainly dominated by area indicators. 

Other previous pure spatial LUR models for PNC were all based on mobile or short-term measurements and 

the performance was comparably lower with R²s between 22% and 53%.7, 9, 11, 12 Several studies also using 

mobile or short-term measurements constructed spatiotemporal LUR models by  incorporating 

meteorological predictors, and thus cannot be compared with our models directly.2, 5-8, 10, 12 The explained 

variance of these studies ranged from 14% to 72%.  
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4.2. Comparison with previous LUR models for ozone 

For ozone, two studies with comparable predictor variables and development procedures have been 

published so far.20, 21  Kerckhoffs et al21 developed a national model for the Netherlands and reported similar 

annual average concentrations of 25.0 to 47.8 µg/m3 compared to our study region with 32.3 to 43.0 

µg/m3. The range was likely higher due to the larger and more heterogeneous area covering coastal and 

very rural areas but also the capital Amsterdam with a population size three times as big as Augsburg. A 

study from Sweden20 observed substantially higher concentrations with 60 to 83 µg/m3 in Malmö and 36 to 

63 µg/m3 in Umeå. However, the levels were calculated as mean concentrations of three weekly 

measurements conducted in April, May/June and August, thus not covering the months with minimum 

concentrations.  

The LUR model of the Dutch study explained 77% of the variability of the annual average concentration 

though 29% was explained by an indicator variable for North. Other included predictors were traffic 

intensity and major road length within 50m, urban green space within 500m and low density residential 

land within 5 km. The authors also predefined the directions of predictor coefficients being negative for 

traffic, industry and residential land and positive for green areas. In addition, they specified a positive 

direction for population density which was, however, not selected. Contrary to the Dutch study and ours, 

the direction of predictor effects was allowed to vary freely for separate models for the two Swedish cities 

resulting in an adjusted R2 of 40% (LOOCV R2=17%) for Malmö and of 67% (48%) for Umeå. The latter 

included similar predictors as the Dutch model except for natural areas within 5km with a negative sign.  

In our study, altitude being generally higher in the rural surrounding of Augsburg and a western location (X 

coordinate with a negative sign) were selected as predictors increasing ozone concentrations. We speculate 

that NOx concentrations are higher in the wind vane of the city leading to reduced ozone concentrations in 

the east. Similarly to the Dutch study, our model contained traffic load of major roads within 100m with a 

negative sign reflecting lower ozone concentrations close to traffic sources. In addition, area of buildings 

within 50m and the population density within 300m were selected decreasing ozone concentrations 

whereas number of buildings within 500m increased the levels. The differing directions are actually not 
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implausible for our study region as population density and area of buildings in the close vicinity are 

generally higher in the urban area with city blocks and apartment houses while the rural area is 

characterized by small detached houses reflected in a higher building density. 

   

 

4.3. Comparison with ESCAPE LUR models 

Our study region was also part of the ESCAPE project and LUR models were already developed for PM10, 

PMcoarse, PM2.5, PM2.5abs, NOx and NO2 based on measurements from 2008/09.24, 25 However, the Augsburg 

area was combined with the Munich region covering a study area of about 27,000 km². Compared to the 

Augsburg region, the Munich area exhibited generally higher air pollutant levels mainly due to a higher 

population and traffic density. Thus with the new measurement campaign, we aimed to refine and update 

the existing LUR models but also to compare the performances of the rather spread and heterogeneous 

ESCAPE models with the denser and homogeneous new models. Except for PMcoarse, the explained variance 

was generally similar or higher for the new models compared to the ESCAPE models. Especially for NO2, the 

adjusted LOOCV R² increased from 66% to 89%. Whereas mainly traffic predictors were included in the 

ESCAPE model (traffic load and road length of all and major roads within 50m and product of traffic 

intensity on nearest major road and inverse distance to the nearest major road), only road length of major 

roads within 100m was selected for the Augsburg model (Supplementary material Table 2). The latter was 

dominated by industry and seminatural areas (negative sign) in the rather distant neighborhood (1-5km) 

which were completely missing in the ESCAPE model. As 75% of the ESCAPE measurement sites were 

located in Munich or its surroundings and only 25% in the Augsburg area, the ESCAPE model was mainly 

dominated by Munich specific predictors. We assume that important predictors for Augsburg were not 

selected in the joint modeling due to the heterogeneous nature of the Munich-Augsburg area with a much 

higher building, population and traffic density in the Munich region leading to this difference in model 

performance. As measurement devices and predictor variables were similar for PMcoarse in the current and 

the ESCAPE project, we suppose that the lower spatial variation ranging from 2.7 to 8.4 μg/m³ in Augsburg 
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compared to 4.9 to 15.9 μg/m³ in the Munich/Augsburg area might be responsible for the poorer fit of the 

LUR model. In general, ESCAPE models included more traffic predictors. For ESCAPE PMcoarse and NO2, 

population density in a 5 km buffer was selected which was, however, not included in the new Augsburg 

models. Building density was not yet available in ESCAPE but was quite prominent in the new models being 

selected for four pollutants (PNC, ozone, PM10, and PM2.5abs). 

 

4.4. Correlations between the pollutants 

As a general note we would like to highlight that correlations among annual averages of air pollutants are 

expected to be higher than among daily or hourly concentrations since any differing temporal patterns are 

completely averaged. The measured and predicted PNC concentrations were highly correlated with NOx 

both with r = 0.91 indicating common local sources for our study area. Consistently, the predictor variables 

were similar with traffic and industry being the major factors. A recent European multi-center study 

reported that the temporal correlation between PNC and NO/NO2 was high in Augsburg and in general 

higher than in the other cities Dresden, Germany, Prague, Czech Republic, and Ljubljana, Slovenia.38  

For ozone, a highly negative correlation with NO2 with r = -0.87 was reported for measured yearly average 

concentrations in the Netherlands21 whereas for our study region, the correlation was rather low with r = -

0.32. The correlation between measured ozone and PM2.5 was moderately negative with r = -0.45 but 

slightly smaller than within the Dutch study (r = -0.67). A study from California estimated ozone via inverse 

distance weighting interpolation and observed no correlation with NO2 (r = -0.0071) but a moderately 

positive correlation with PM2.5 (r = 0.56) both derived from LUR models.15 However, these results are not 

directly comparable to our study mainly due to the intense photochemical effects on the ozone - NOx 

associations and common processes affecting the formation of background ozone and secondary fine 

particles in California. Moreover, PM10 with PMcoarse and NO2 with NOx were highly spatially correlated in 

our study region. Eeftens and colleagues constructed LUR models for PM10, PMcoarse, PM2.5, PM2.5abs, NO2, 

PNC and lung deposited surface area for Swiss regions and reported generally higher correlations.4 For the 

predicted concentrations, Pearson’s r for PNC ranged between 0.82 for PM2.5 and 0.94 for both PM2.5abs 
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and PMcoarse (0.58, 0.61 and 0.71 in our study, respectively). Even the correlation between PMcoarse and 

PM2.5 was comparably high with r = 0.74 compared to 0.33 in our study. The main reason for the higher 

correlations might be the prominent role of traffic predictors in the Swiss models, but measured 

concentrations were also slightly higher correlated.  

For the subsequent epidemiological analyses it is important to be aware of the high correlation between 

PNC and NOx and similar predictors for the LUR models. It might be necessary to use rather sophisticated 

models to be able to disentangle the health effects of PNC and NOx if possible at all.  

 

4.5. Limitations 

A major limitation is the comparatively few number of 20 monitoring sites which might have inflated the 

predictive ability of our models.39, 40 However, we tried to minimize the risk of over-fitting by strict a priori 

defined inclusion criteria for the predictor variables. We strengthened the ESCAPE approach by additional 

requirements regarding the distribution of the predictor variables to increase the stability of the 

coefficients. In addition, the restriction to the Augsburg region resulted in a smaller and rather 

homogenous study region and a much denser monitoring network compared to ESCAPE. Moreover, the 

performance of our LUR models might have been overestimated by the use of LOOCV as recently 

demonstrated.41 But especially the devices for the PNC measurements were extremely costly which limited 

the number of feasible sites and thus the possibility to conduct the more reliable hold-out or v-fold cross 

validation. We tried to reduce measurement error by conducting parallel measurements before and after 

each bi-weekly measurement round and applied correction factors where necessary. Further limitations 

were the discontinuous and non-concurrent measurements in different periods and the temporal 

adjustment process which usually apply to LUR models in general due to lack of alternatives.  

We could not include wind data as appropriate data were either not available (wind direction) or the spatial 

variation was too small in the available resolution of 1 km (wind speed). However, the thorough 

characterization and inclusion of local and regional wind patterns did not lead to any improvements in LUR 

models for PNC in Vancouver, Canada.11 
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GIS data sources for traffic and land use were based on the year 2009, population density on the year 2008 

and thus somewhat older than our measurement campaign. However, significant spatial transformations in 

the road network, land cover and the population spread were not the case for our study region and usually 

take several decades. 

 

5. CONCLUSIONS 

There is an increasing societal interest concerning health effects of UFP and ozone, especially in urban 

environments. However, reliable data on long-term effects of ambient air UFP and ozone are limited mainly 

due to the lack of exposure models assessing the necessary small scale spatial variability. We were able to 

build LUR models for PNC and ozone which performed very well for our study region. These models will be 

applied to the residential addresses of the KORA cohort to deliver epidemiological evidence of the role of 

long-term exposure to these pollutants on the incidence of chronic diseases and thus, to impact on future 

air quality standards by supporting policy makers to consider UFP for regulation. The refined models for 

PM10, PMcoarse, PM2.5, PM2.5abs, NO2, and NOx performed generally better than the ESCAPE models except 

for PMcoarse. Ozone was only moderately correlated with all pollutants. PNC was moderately correlated with 

PM2.5 and ozone, but highly correlated with NOx (r=0.91). For PNC and NOx, LUR models comprised similar 

predictors and future epidemiological analyses evaluating health effects need to consider these similarities 

and specifically the role of traffic load and road length at the residence of study participants. 
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Supplementary material Table 1: Description of predictor variables included in the final LUR models  

Predictor variable Pollutant Mean SD Min 5% 25% Median 75% 95% Max 
trafload_50 NOx 586,308 841,295 0 0 29,314 91,503 750,055 2,174,623 2,562,487 
trafload_100 PM2.5abs 1,961,176 2,568,870 0 0 249,432 1,218,311 2,477,363 6,714,870 9,777,397 
trafloadm_25 PM10 141,632 289,636 0 0 0 0 62,955 864,620 889,862 
trafloadm_50 PNC 534,408 817,094 0 0 0 0 684,722 2,157,786 2,225,753 
trafloadm_100 O3

a 1,776,468 2,590,972 0 0 0 1,001,735 2,271,340 6,193,628 9,777,397 
roadl_50 PM2.5 114.8 86.1 0 0 58.6 106.3 179.2 214.4 302.4 
roadl_1000 PM10 28,331 13,511 0 1,0528 1,4586 31,139 39,546 44,662 45,706 
roadlm_100 PM10, NO2 137.9 164.5 0 0 0 142.0 197.6 511.5 544.0 
intdistnearminv2 PMcoarse 18.03 28.2 0.02 0.04 0.16 1.9 22.6 82.5 83.9 
abld_25 PNC, PM10, PM2.5abs 198.9 210.5 0.0 0.0 10.0 120.8 336.1 511.5 675.2 
abld_50 O3

 a 1,313.6 903.6 0.0 137.9 550.3 1,422.3 1,735.6 2,379.7 3,750.0 
nbld_500 O3 966.8 462.2 4.0 152.2 749.3 1,117.5 1,262.3 1,543.1 1,677.0 
nbld_1000 PM2.5abs 3,081.9 1,747.0 6.0 390.8 1,686.8 3,482.0 4,175.8 5,341.6 6,625.0 
pop_300 O3

 a 1,098.1 844.0 1.0 30.5 482.3 980.2 1,528.4 2,327.2 3,029.3 
industry_300 PNC, PM10, PMcoarse, 

PM2.5, NOx 
8.6 18.9 0.0 0.0 0.0 0.3 5.9 48.7 73.9 

industry_1000 PM2.5abs, NO2 10.5 9.9 0.0 0.0 2.2 8.3 15.4 21.6 41.8 
industry_5000 NO2 8.3 7.0 0.5 0.5 1.7 8.1 15.2 18.6 19.1 
seminat_100_neg PNC, NOx -3.5 8.7 -33.5 -21.6 -0.7 0.0 0.0 0.0 0.0 
seminat_1000_neg PM2.5, NO2 -16.0 16.1 -58.2 -47.7 -22.7 -9.8 -4.6 -2.3 -0.3 
urbgreen_500_neg PM10 -6.2 6.5 -23.6 -16.0 -10.6 -4.2 -1.6 0.0 0.0 
green_500_neg PNC -16.1 11.3 -48.4 -34.0 -20.7 -16.3 -6.5 -3.1 -0.4 
green_1000_neg PNC, NOx -22.6 14.0 -59.3 -50.6 -26.3 -18.9 -12.3 -8.4 -8.1 
water_5000_neg PM2.5abs -1.7 1.0 -3.7 -3.0 -2.3 -2.0 -1.0 -0.1 -0.1 
tot_build_25 PM2.5 85.3 28.8 0.0 30.4 87.8 100.0 100.0 100.0 100.0 
tot_build_1000 PMcoarse 57.5 28.3 0.1 21.5 32.9 68.0 81.7 88.8 91.9 
elev_sqrt_neg PM2.5, O3

 a -21.9 0.8 -23.6 -22.7 -22.3 -22.0 -21.5 -20.3 -20.3 
See Table 1 for a detailed explanation of the variable names. Variables with _X (e.g. trafload_50) are buffers with _X indicating the radius of the buffer in meters. 
The suffix ”_neg” indicates predictors with a negative sign. 
aPredictor variable was multiplied by –1 for the marked pollutant. 
 



Supplementary material Table 2. Comparison between newly developed LUR models for the area of Augsburg for PM10, PMcoarse, PM2.5, PM2.5absorbance, NOx and 
NO2 and ESCAPE models.  
        
Pollutant N LUR model R² Adj R² LOOCV 

R2 
LOOCV 
Adj R2 

Moran’s I 
(p-value) 

PM10 20 13.67 + 0.0078 * roadlm_100 + 0.000079 * roadl_1000 + 0.044 *  industry_300 + 0.098 * 
urbgreen_500_neg + 0.0022 * abld_25 + 0.0000016 * trafloadm_25 

0.91 0.87 0.78 0.76 -0.18 (0.15) 

PM10 ESCAPE 20 18.47 + 0.039 * roadlm_50 + 0.57 * natural_100_negc + 0.021 * roadl_50 0.83 0.80 0.75 0.73 -0.08 (0.82) 

PMcoarse
a 19 168.7 + 0.031 * tot_build_1000 + 0.030 * intdistnearminv2 + 0.025 * industry_300 + 

0.000037 * xcoord_neg 
0.75 0.68 0.57 0.55 -0.11 (0.60) 

PMcoarse ESCAPE 20 4.09 + 0.025 * roadlm_50 + 0.0000042 * pop_5000 + 0.012 * roadl_50 0.81 0.78 0.69 0.67 -0.15 (0.36) 

PM2.5 20 19.47 + 0.0099 * roadl_50 + 0.041 * seminat_1000_neg + 0.41 * elev_sqrt_neg + 0.0094 * 
tot_build_25 + 0.012 * industry_300 

0.84 0.79 0.70 0.69 -0.12 (0.49) 

PM2.5 ESCAPE 20 11.9 + 0.019 * roadlm_50 + 0.000495 * roadl_300 +  0.14 * urbgreen_5000_neg + 
0.0000000074 * trafloadm_1000 

0.78 0.72 0.62 0.60 -0.13 (0.49) 

PM2.5absb 19 −14.07 +0.000000037 * trafload_100 + 0.00047 * abld_25 + 0.0087 * industry_1000 + 
0.000058 * nbld_1000 + 0.040 * water_5000_neg + 0.0000034 * xcoord 

0.93 0.89 0.84 0.83 -0.14 (0.37) 

PM2.5abs ESCAPE 20 1.34 + 0.000000177 * trafload_50 + 0.0018 * roadl_50 + 0.000216 * trafloadm_1000 0.91 0.89 0.82 0.81 -0.19 (0.21) 
NO2

b 19 12.57 + 0.22 * industry_5000 + 0.015 * roadlm_100 + 0.10 * seminat_1000_neg + 0.15 * 
industry_1000 

0.95 0.94 0.90 0.89 -0.10 (0.64) 

NO2 ESCAPE 40 7.432 + 0.0000020 * trafload_50 + 0.0014 * intdistnearminv + 0.024 * roadl_50 + 0.000015 
* pop_5000 + 0.041 * roadlm_50 + 0.098 * hldres_500 

0.86 0.83 0.67 0.66 -0.04 (0.86) 

NOx 20 28.06 + 0.0000084 * trafload_50 + 0.27 * green_1000_neg + 0.20 * industry_300 + 0.25 * 
seminat_100_neg 

0.91 0.89 0.83 0.82 -0.05 (0.94) 

NOx ESCAPE 40 13.34 + 0.0000039 * trafload_50 + 0.0897 * roadlm_50 + 0.0038 * intdistnearminv  + 
0.000000025 * trafload_1000 + 0.051 * roadl_50 + 0.195 * hldres_1000 

0.88 0.85 0.76 0.76 -0.05 (0.65) 

aWithout rural site 4 (see Figure 1).      
bWithout traffic site 20 (see Figure 1). 
cSum of predictors seminat_100 and water_100. 

     

  



Supplementary material Figure 1. Scatter plots of measured and predicted concentrations together with linear regression lines (one monitor excluded for each 
PMcoarse, PM2.5abs and NO2). 
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