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Abstract 
Flexible polypeptides such as unfolded proteins may access an astronomical number of 

conformations. The most advanced simulations of such states usually comprise tens of 

thousands of individual structures. In principle, a comparison of parameters predicted from 

such ensembles to experimental data provides a measure for their quality. In practice, analyses 

that go beyond the comparison of unbiased average data have been impossible to carry out on 

the entirety of such very large ensembles and have therefore been restricted to much smaller 

subensembles and/or non-deterministic algorithms. Here, we show that such very large 

ensembles on the order of 104 to 105 conformations can be analyzed in full by a Maximum 

Entropy fit to experimental average data. Maximizing the entropy of the population weights of 

individual conformations under experimental χ2
 constraints is a convex optimization problem, 

which can be solved in a very efficient and robust manner to a unique global solution even for 

very large ensembles. Since the population weights can be determined reliably, the reweighted 

full ensemble presents the best model of the combined information of simulation and 

experiment. Furthermore, since the reduction of entropy due to the experimental constraints is 

well defined, its value provides a robust measure of the information content of the 

experimental data relative to the simulated ensemble and an indication for the density of the 

sampling of conformational space. The method is applied to the reweighting of a 35000-frame 

molecular dynamics trajectory of the nonapeptide EGAAWAASS by extensive NMR 3J-

coupling and RDC data. The analysis shows that RDCs provide significantly more information 

than 3J-couplings and that a discontinuity in the RDC pattern at the central tryptophan is caused 

by a cluster of helical conformations. Reweighting factors are moderate and consistent with 

errors in MD force fields of less than 3 kT. The required reweighting is larger for an ensemble 

derived from a statistical coil model, consistent with its coarser nature. We call the method 

COPER for Convex OPtimization for Ensemble Reweighting. Similar advantages of large-

scale efficiency and robustness can be obtained for other ensemble analysis methods with 

convex targets and constraints such as constrained χ2 minimization and the Maximum 

Occurrence method. 
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Introduction 
Proteins exist as ensembles of interchanging conformations. Obviously, unfolded 

polypeptide chains, such as chemically or physically denatured proteins and intrinsically 

disordered proteins (IDPs), can access extremely large numbers of conformations.1 A 

comprehensive description of their structural preferences is a prerequisite for understanding 

protein folding and the function of IDPs in health and disease.2 However, also native, folded 

proteins usually adopt many conformations close to the global free energy minimum,3 and their 

interchange is a hallmark of protein function such as catalysis4 or signal transduction.5 

A detailed experimental determination of individual structures in such protein ensembles 

becomes impossible as soon as their number exceeds a few, since the number of 

conformational degrees of freedom quickly outpaces the number of measurable parameters.6 

To make progress, often ensembles containing tens of thousands of conformers are simulated 

and compared to experimental data. Simulated ensembles can be obtained by many methods, 

e.g. the simulation of a random chain according to the coil model of the unfolded state,7-9 

coarse-grained simulations of protein domain motions10,11 or all-atom molecular dynamics 

(MD) simulations with varying degrees of complexity.12-16 The quantitative analysis of such 

very large ensembles presents a formidable challenge. An initial analysis needs to establish the 

accuracy and information content of the predicted ensemble relative to any experimental 

knowledge, and if necessary refine the ensemble to reproduce the experimental data. Only then, 

more detailed predictions of not observed parameters are warranted. Due to the very large size, 

so far analyses of entire large ensembles have been limited to the comparison of unbiased 

averages over the ensemble to measured experimental average values. Thus e.g. unbiased 

averages derived from even the most advanced MD force fields still fail to accurately predict 

the experimental data without further adjustments.15 

Due to computational intractability, more detailed analyses of simulated ensembles have 

been restricted to much smaller size ensembles, i.e. typically on the order of at most several 

hundred conformers. Procedures such as Sample-And-Select (SAS),17 the Ensemble 

Optimization Method (EOM),18 ASTEROIDS,19 and Sparse Ensemble Selection (SES)20 select 

smaller subsets by various strategies from initially created large ensembles that satisfy the 

measured parameters. Similarly, Maximum Entropy (ME) reweighting of individual 

conformers,11,21 Bayesian estimation of individual conformer weights,22 and Maximum 

Occurrence (MO),10 which estimates the maximal possible occurrence of a conformer within an 

ensemble, have been used only on smaller selected subsets or clusters, but not on entire very 
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large ensembles. Minimal-size ensembles compatible with experimental data may also be 

generated by constrained ensemble structure calculations.6 Besides the recently proposed 

SES,20 all proposed methods use stochastic mathematical procedures such as genetic algorithms 

or simulated annealing and their solutions are not guaranteed to be optimal and unique. 

Here, we show that very large ensembles can be analyzed in full and very efficiently by a 

Maximum Entropy approach that reweights all individual populations in the ensemble such 

that the average over the ensemble reproduces the experimental data within the experimental 

error (χ2 ≤ 1). This constrained search for the maximum entropy Smax falls into the class of 

convex optimization problems, which can be solved in a very efficient and deterministic 

manner even for very large data sets. As the population weights are calculated in a robust 

manner on the entire ensemble, the reweighted large ensemble represents the most accurate 

representation of the combination of simulation and experiment in an information-theoretical 

sense. Furthermore, since Smax is a well-defined parameter, its reduction relative to an 

unconstrained ensemble presents the true measure of the information content of experimental 

data relative to the simulated ensemble. We call the method COPER for Convex OPtimization 

for Ensemble Reweighting. As example, we analyze an ensemble of 35000 snapshots of a 

700 ns MD trajectory of the nonapeptide EGAAWAASS in water, for which we had previously 

obtained extensive RDC, J-coupling and chemical shift data.23,24 The results show that the 

unconstrained MD simulation overestimates the α-helical content. However, reweighting 

factors are moderate, corresponding to free energy changes of 2.6 kT, which are within the 

expected inaccuracy of MD force fields. A very strong discontinuity observed in the RDCs 

around the central tryptophan residue can be explained by a cluster of helical conformations of 

the central residues.24 Not surprisingly, reweighting of a 35000-member ensemble generated 

from a random coil model of the unfolded state by the program Flexible-Meccano8 requires a 

larger free energy change of 3.7 kT, consistent with its coarser nature of approximation. In 

contrast, a similar analysis carried out for the nonapeptide EGAAIAASS indicates largely 

extended conformations and much smaller necessary reweighting factors for its MD trajectory. 

As a corollary we show that also reweighting populations for χ2 minimization and the 

Maximum Occurrence method10 are convex optimization problems that can be solved in an 

equally efficient, deterministic manner. 
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Theory 
Maximum entropy reweighting as a convex optimization problem 

We consider an ensemble of N members with populations pi ( 0 ≤ pi ≤1, pi =1i∑ , i =1,...,N ). 

Its entropy S in the sense of Shannon25 is given as 

 S = − pi
i=1

N

∑ ln pi  (1) 

Let djexp  be one of M measured experimental parameters (1 ≤ j ≤ M) and di, jpred  its predicted 

value for the i-th member of the ensemble. Its predicted weighted average djpred  over the 

ensemble is then given as 

 dj
pred = pi

i=1

N

∑ di, j
pred  (2) 

Eq. 2 holds for cases where each conformation can be treated individually and the 

experimental parameter is a population-weighted average. Many NMR parameters such as 

chemical shifts, residual dipolar couplings, paramagnetic relaxation enhancements and J-

couplings fulfill this condition. Assuming that the experimental system is ergodic, the 

ensemble average also equals the time average of an individual member. We apply this here to 

the prediction of NMR parameters from the average over the time frames from a MD 

trajectory, for which we assume that it is long enough for convergence. 

The quality of the agreement between predicted average and the experimental data is 

judged by χ2 

 χ 2 =
1
M

dj
pred − dj

exp

σ j

"
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&
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j=1

M

∑
2

 (3) 

where χ2 ≤ 1 signifies agreement within the error limits σ j . The error σ j  for the parameter j in 

Eq. 3 presents the total error, e.g. composed of the error of the measurement σ j,expt  and the error 

of the model σ j,model , i.e. σ j = σ 2
j,expt +σ

2
j,model . 

The maximum entropy search problem can now be formulated as the following 

optimization problem 

 Maximize S(p)    (4a) 

 Subject to χ 2 (p) ≤1  (4b) 
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  0 ≤ pi ≤1, i =1,...,N  (4c) 

  pi
i=1

N

∑ =1  (4d) 

Here the vector p = (p1,..., pN )  is the optimization variable of the problem. An optimal solution 

pS−max  is found when the object function S(p)  has its maximal value among all vectors p  that 

satisfy the inequality constraints (4b and 4c) and the equality constraint (4d). 

A convex optimization problem is one where both the objective function and the inequality 

constraint functions are convex, whereas the equality constraint functions are affine.26 A 

function f is convex when its epigraph, epi f (the set of points above or on the graph of f, 

epi f = {(x, t) | x ∈ dom f , f (x) ≤ t} ) is a convex set. A set is convex, if for any two points of the set, 

the connecting straight line segment between the two points is also in the set (Figure 1A). Thus 

the convex inequality constraints define convex sets of feasible points. Similarly, the affine 

equality constraints define affine sets. A set is affine, if for any two points of the set, their 

entire connecting straight line is also in the set. Since intersections of convex and affine sets 

are convex, the combined conditions imposed by convex inequality and affine equality 

constraints define a set of feasible points, which is also convex26 (Figure 1B). Convex 

optimization problems can be solved very efficiently by interior point (IP) methods.26,27 Figure 

1B illustrates how the optimal solution can be reached from an interior point within the 

intersection of the feasible regions of all constraints. Starting from the interior point, the search 

follows the gradient of the objective function until the boundary of the set of feasible points is 

reached, from where the search continues along the boundary until the optimal solution is 

attained. If the optimum is located at an interior point, the problem reduces to an unconstrained 

optimization. The convex nature of the objective function ensures that the solution is unique in 

both cases. 

It is easy to show that the negative of the entropy -S(p) (Eq. 4a) and the constraining 

functions of the inequality constraints (Eq. 4b,c) are convex since their Hessians are positive 

semi-definite. 

 ∂2

∂pa∂pb
− S(p) = δab

pa
≥ 0  (5a) 

 ∂2

∂pa∂pb
χ 2 (p) = 2

M
da, j
pred

σ j

db, j
pred

σ jj=1

M

∑  (5b) 

where δab  is the Kronecker delta. 
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We also note that the constrained χ2
 minimization problem 

 Minimize χ 2 (p)  (6a) 

 Subject to 0 ≤ pi ≤1, i =1,...,N  (6b) 

  pi
i=1

N

∑ =1  (6c) 

is a convex optimization problem, and hence can be solved very efficiently. 

In order to find the maximum entropy according to Eq. 4 by interior point methods, we use 

the following two-step procedure: 

1. search for the population vector pχ 2 -min  that minimizes χ2  under the constraints of Eq. 

6b-c starting from an interior point such as piequal =1/ N . If χ 2 (pχ
2 -min ) ≤1, pχ 2 -min  is an interior 

point for the constrained maximum entropy problem Eq. 4, otherwise it has no solution.  

2. search for the population vector pS -max  that maximizes the entropy under the constraints 

of Eq. 4b-d starting from the interior point pχ 2 -min . 

Change of entropy and free energy under reweighting 
When no experimental information is present, i.e. the chi-square condition (4b) is dropped 

from the optimization problem of Eq. 4, the maximum entropy is achieved when all 

populations are equal and piequal =1/ N . In this situation, the entropy takes the value

S(pequal ) = ln(N ) . The change in population weights due to the experimental information under 

maximum entropy principle leads to a decrease in entropy ΔS  from this value 

 ΔS = S(pS -max )− S(pequal ) = − pi
S -max

i=1

N

∑ ln pi
S -max − ln(N )  (7) 

This decrease in entropy coincides with the definition of the relative entropy (Kullback-

Leibler divergence)28 ΔSAB  of two populations pA  and pB  

 ΔSAB = − pi
A

i=1

N

∑ ln pi
A

pi
B

$

%
&

'

(
)  (8) 

for the case piB = piequal =1/ N . The negative of the relative entropy ΔSAB  presents the mean 

information I(A:B) for discrimination in favor of pA  against pB . Thus −ΔS  in Eq. 7 is the 

information content of experimental data for discrimination against an equal population.  



- 8 - 

To quantify the reweighting of individual populations under the experimental constraints 

and the maximum entropy principle, we define the reweighting factor ri  and its associated free 

energy change ΔGi  

 ri = pi
S -max / pi

equal   (9a) 

 ΔGi = −kT ln(ri )   (9b) 

where k is the Boltzmann constant and T the absolute temperature. Using Eqs. 7-9, it is 

obvious that kTΔS  presents the mean free energy change ΔG  

 ΔG = pi
S-maxΔGi

i=1

N

∑ = −kT pi
S-max

i=1

N

∑ ln pi
S-max

pi
equal

$

%
&

'

(
)= kTΔS  (10) 

Results and discussion 
Experimental NMR data and MD simulations on the EGAAWAASS nonapeptide 

Previously, we had systematically investigated the influence of single amino acid 

substitutions X on the conformation of unfolded model peptides EGAAXAASS as monitored 

by 1DNH and 1DCαHα RDCs, 3JHNHα scalar couplings, and 13Cα secondary shifts.23 Homogeneous 

RDC, chemical shift and J-coupling values along the peptide sequence indicated extended 

peptide conformations for most amino acid types X. However, substitutions by the aromatic 

amino acids tryptophan and tyrosine led to a kink in the center of the peptide as evident from a 

discontinuity in the NMR data. The original NMR data were obtained on peptides at natural 

abundance of 13C and 15N. To obtain access to further NMR parameters, the tryptophan-

substituted EGAAWAASS peptide was 13C- and 15N-isotope labeled in a bacterial expression 

system.29 Figure 2 shows sequential RDC (1DNH, 1DCαHα, 1DCαC’) and J-coupling (3JHNHα, 3JHα

N) data acquired on this isotope-labeled EGAAWAASS peptide (a complete list of 

experimental data is provided in Supporting Information Table S1). The discontinuity is 

evident in the sequence profile of the 1DNH and 1DCαHα RDCs. Whereas they are negative and 

positive, respectively, for almost all amino acids consistent with an extended conformation of 

the peptide in horizontally compressed polyacrylamide gels,30 they change sign at the central 

residues A6 (1DNH) and W5 (1DCαHα) indicative of a kink. Figure 2 also shows experimental 

statistical error estimates for the J-coupling and RDC values (Supporting Information Table 

S1). The error estimates for the 3JHNHα, 3JHαN couplings are very close to RMSD values found 

previously between experimental data and data predicted from structural knowledge by the 

respective Karplus parameters.31,32 For the RDC data, a true error estimate is much harder to 
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establish due to the lack of detailed knowledge on the interactions of the peptide with the 

alignment medium and possible induced conformational changes during this interaction. We 

have previously observed a similar discontinuity in the RDC pattern with a different alignment 

medium (Pf1 phages),23 which indicates that the kink in the peptide is not induced by 

interactions with the medium. Nevertheless, the RDC model error is unknown for flexible 

peptides. Since better estimates are not available, the total RDC error was taken as the 

experimental error. 

To identify the structural reason for the kink in the peptide, we have carried out a total of 

seven, 100-ns MD simulations on the EGAAWAASS peptide under full hydration. Theoretical 

RDCs and J-couplings were then calculated for every 20-ps frame using a steric exclusion 

model6 and available Karplus parameters.31,32 Figure 2 shows the equally weighted averages of 

the different observables over the total of 35000 conformations (green solid lines). Clearly, the 

unbiased averages do not reproduce the experimental data (blue) within the indicated error, 

which is particularly noticeable for the kinks observed in the experimental RDC data in the 

region around residues W5 and A6. These deviations lead to a total χ2 value (Eq. 3) of 116. 

COPER procedure: χ2-minimization followed by entropy maximization 
The COPER procedure was then applied to reweight the individual conformations. In 

practice, using a single total (χ2 ≤ 1) constraint for all different data types in the Maximum 

Entropy search led to a very uneven distribution of deviations among the different RDC and J-

coupling data types. Therefore we rather used individual χα
2 ≤1  constraints for each of the 

different data types α (RDC or J-coupling). To find a feasible inner point for this Maximum 

Entropy search, the initial χ2 minimization was then carried out on the sum χα
2

α

∑ , which differs 

from the original χ2 definition in Eq. 3 only by reweighting via the number of data points Mα 

in the individual data sets. Minimization of χα
2

α

∑  within the usual constraints on population 

weights (Eq. 6b-c) of the 35000 conformations led to very good agreement of the average data 

predicted from the minimizing population vector pχ 2 -min with the experimental data (Figure 2, 

dashed magenta lines). As compared to the equal population entropy S(pequal ) = ln(35000) =10.46 , 

the entropy for the pχ 2 -min  vector is significantly reduced to a value S(pχ 2 -min ) = 5.59  (ΔS = −4.87 , 

Table 1). 

The minimized χα
2

α

∑ value of 0.37 (Table 1) guarantees that also the individual χα
2 values 

are smaller than 1, and hence pχ 2 -min presents a feasible starting point for the Maximum Entropy 
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search within the χ2 and population constraints (Eq. 4b-d). The subsequent Maximum Entropy 

search then yielded average predicted data that agree less well to the experimental data than the 

minimal χ2 prediction, but are still within the error limits (Figure 2, red lines). Consequently 

the entropy is again increased to a value S(pS -max ) = 7.95 , but still reduced relative to the equal 

population situation by ΔS = −2.51 . This reduction in entropy corresponds to the minimal 

restriction of the accessible conformational space needed to satisfy the experimental 

information. In the simplest case, it may be pictured as making certain conformations 

completely inaccessible, whereas the accessible conformations remain equally likely. In this 

situation, S(pS -max )  would correspond to the logarithm of the number of accessible 

conformations, and hence e−ΔS  (12.3 for the current case) to the factor by which the number of 

accessible conformations is reduced due to the experimental information. 

Due to the efficiency of the inner point method, the entire COPER procedure of 

constrained χ2 minimization followed by constrained entropy maximization took only about 9 

minutes to complete on a single core of a 2.6-GHz Intel Xeon CPU for the 35000-member 

EGAAWAASS peptide ensemble. Tests with different ensemble sizes showed that this time 

increased approximately linearly with ensemble size for ensembles of up to 70000 members. 

Robustness test, effect of error uncertainty, and information content of individual data types 
To estimate the information content of different types of NMR constraints on the MD 

ensemble, we systematically determined the entropy loss induced by these constraints via 

COPER fitting relative to the equilibrium population. Table 1 lists these losses for different 

combinations of scalar and dipolar couplings. In order to estimate the errors and robustness of 

the method, the set of 35000 conformations from the MD trajectory was further subdivided into 

two randomly chosen subsets of 17500 conformations, for which the COPER fit procedure was 

repeated and the entropy calculated. Table 1 lists the average and standard deviations of the 

resulting entropy reductions for the two subpopulations relative to their equal population 

entropy S(pequal ) = ln(17500) = 9.77 . It is obvious that the entropy losses are highly reproducible, 

with relative standard deviations of less than 7 %, and very close to the losses calculated for 

the 35000 conformation data set. This indicates that the sampling of the conformational space 

is dense, since significant variations of the entropy reduction would be expected for a too low 

sampling of conformational space. In this manner, the comparison of the entropy reduction 

within different subsets of an ensemble provides both a test for the robustness of the 

reweighting and for the density of sampling. 
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To assess the effect of the used errors on the total entropy reduction, we have also varied 

the limits for χα
2  from 0.25 to 4, corresponding to a scaling of the errors by factors between 0.5 

and 2 (Supporting Information Figure S2A). Consistent with the expectation that weaker 

constraints allow larger conformational entropy and with previous findings by Hummer and 

colleagues,11 the entropy reduction decreases monotonously with increasing χα
2  limits. A limit 

of χα
2 ≤ 4  decreases the entropy reduction to 1.75 from its value of 2.51 for χα

2 ≤1 . Thus a 

twofold increase of the error size has an effect of less than 1 kT-unit on the free energy change.  

The entropy reduction induced by the experimental constraints may range from zero, for 

which the reweighted population is identical to the equally populated state, to ln(N ) , for which 

the constrained ensemble reduces to a single conformation (equivalent to a final entropy value 

of zero). The entropy losses due to 3JHNHα (φ-angle) or 3JHαN (ψ-angle) constraints are 0.05 

and 0.22, respectively (Table 1). Thus the 3JHNHα data carry three times less information than 

the 3JHαN data. This is in agreement with the fact that among the different conformations 

accessible to the polypeptide, i.e. helical vs. extended, variations in φ-angle are much smaller 

than in ψ-angle. The entropy losses for individual 1DNH, 1DCαHα, and 1DCαC’ constraints are 

0.67, 0.54, and 0.46 respectively, which indicates a significantly higher information content of 

the dipolar couplings relative to the scalar couplings. Combining all three dipolar couplings 

constraints increases the entropy loss to 2.30, which is a more than additive effect on the 

restriction of conformational space. Finally, when both dipolar and scalar coupling constraints 

are applied simultaneously, the total entropy loss of 2.51 approximately equals the sum of their 

individual contributions. This shows that the dipolar and scalar coupling constraints each 

contain information not captured by the other data type. Since the entropy loss times the 

thermal energy kT represents the mean free energy change (Eq. 10), an adjustment of the MD 

force field by 2.51 kT-units would be necessary to bring the ensemble in agreement with the 

experiment. 

Comparison to Flexible-Meccano random coil ensemble 
The entropy reduction presents a measure of the accuracy of the model ensemble. This can 

be used to quantitatively compare different types of ensembles. For this, we created a 35000-

conformation ensemble based on a random coil model of the unfolded with residue-specific   

φ/ψ propensities using the program Flexible-Meccano.8 Reweighting its populations by 

COPER using the same backbone J-coupling and RDC constraints as for the MD ensemble 

caused an entropy reduction by 3.61 (Table 1), which is more than the corresponding value of 
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2.51 for the MD ensemble and consistent with the considerably coarser nature of 

approximation used in Flexible-Meccano. 

It is interesting to note that the χα
2∑  difference between the experimental and back-

calculated data for the MD ensemble before reweighting amounts to 968 and is therefore only 

slightly smaller than the corresponding χα
2∑  value of 1158 for the Flexible-Meccano ensemble 

(Table 1). However, the minimized χα
2∑  drops to 0.37 for the MD, but only to 0.98 for the 

Flexible-Meccano ensemble. Thus, the MD ensemble contains conformations, which as 

population-weighted combinations better represent the experimental data than the Flexible-

Meccano ensemble. Since the χα
2∑  minimum is lower for the MD ensemble, it is expected that 

the χα
2 ≤1  conditions lead to a larger allowed space for the population weights and in 

consequence to less reduction in entropy. 

Cross-validation of COPER ME populations 
Cross-validation of ME-derived populations with additional, independent experimental 

data is problematic, since the ME solution is per definition underdetermined. If the predictions 

agree with the additional data, their information is redundant and they would not have 

constrained the original fit. In contrast, if the additional data deviate from the predictions of the 

original fit, they contain independent information. Using COPER, the information content of 

the additional data can be estimated from the entropy reduction that results from including 

these data in the fit. 

Using this quantitative concept, populations of the 35000-frame MD data set obtained by 

the COPER ME fit of the 1DNH, 1DCαHα, 1DCαC’, 3JHNHα, 3JHαN couplings (Figure 2) were cross-

validated by experimentally determined χ1-angle populations of the W5 side chain. Assuming 

staggered conformers, the χ1-angle populations were derived by a simple linear transformation 

(linear least squares fit) from experimental 3JNCγ  and 3JC’Cγ  couplings33,34 (Supporting 

Information Table S1), which had not been used as constraints (Figure 3). These experimental 

populations of the χ1 +60˚, +180˚ and -60˚ rotamers are 22, 46, and 31 %, respectively. The χ1 

populations from the MD simulation (58, 34, 6 %) deviate strongly, but get closer (44, 45, 

12 %) to the experimental values after COPER reweighting by the 1DNH, 1DCαHα, 1DCαC’, 3JHNHα

, and 3JHαN data, thereby confirming the correct trend of the independent fit. Obviously, 

including the 3JNCγ and 3JC’Cγ scalar couplings in the COPER procedure leads to the best 



- 13 - 

agreeing χ1 populations (31, 40, 28 %) at a cost of reducing the entropy by 2.63 relative to the 

equal population situation (Table 1). However, this reduction is only 0.12 larger than for the fit 

without the side chain 3JNCγ and 3JC’Cγ scalar couplings. Therefore, their additional information 

content is rather small and reduces the conformational space only by an additional 11 %. 

Structural interpretation by φ/ψ cluster analysis 
To obtain structural insights into the effects of the ME reweighting, the 35000 

conformations were clustered into 20 clusters based on the similarity of the φ and ψ torsion 

angles of the central five residues (A3-A7) using a hierarchical clustering algorithm. The 

clusters were ordered according to the size of their populations in the original MD trajectory. 

Figure 4A shows the φ/ψ angle distributions of the four most highly populated clusters 

accounting for 66 % of all conformations. The largest cluster 1 has α-helical conformations 

for residues A4 to A6 and partially α-helical conformations for residue A3 and A7, whereas 

the other clusters contain more extended conformations. A representative set of conformations 

of cluster 1 is shown in Figure 4B. It is obvious that residues A3 to A7 form a turn with 

backbone hydrogen bond contacts. These contacts are protected from the water by the bulky 

aromatic side chain of residue W5 as shown in a recent analysis24 of the full MD trajectory, 

which explains the tendency of the aromatic groups to induce kinks in the unfolded peptide 

chain. 

Figure 5A shows the 20 cluster populations before and after reweighting by the 1DNH, 1DCα

Hα, 1DCαC’, 3JHNHα, 3JHαN COPER fit. Before reweighting, cluster 1 has a population of about 

33 %, whereas the other clusters have populations of less than 12 %. After reweighting, the 

population of cluster 1 decreases significantly to about 15 %, the population of cluster 2 

decreases and those of 3 and 4 increase. The rest of the cluster populations remain below 10 %. 

To test the statistical significance of this result, the cluster populations after reweighting were 

also determined for the two randomly selected subsets of 17500 conformations. Figure 5A also 

shows their averages and standard deviations. The maximal standard deviation of populations 

in the 17500-conformation sets is only 3 %, and their averages agree within this limit to the 

results from 35000-conformation set. Thus the reproducibility of the COPER-derived 

populations is very high. 

We have also assessed the effect of the used errors on the cluster populations by varying 

the limits for χα
2  from 0.25 to 4 (Supporting Information Figure S2B). Again as for the induced 

entropy changes, the cluster populations vary monotonously with the χα
2  limits. This is a 
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further indication of the robustness of the results. For a change of the χα
2  limits from 1 to 4, the 

populations for most clusters vary by less than twofold, with cluster 1 always remaining the 

dominant cluster. 

The reduction of the population of cluster 1 caused by the COPER reweighting with 

experimental data indicates an overestimation of helical content by the AMBER03 force field, 

which is in agreement with findings by Best, Lindorff-Larssen and colleagues.15,35 It is noted 

that this reduction of the helical cluster 1 is stronger than reported previously.24 This is caused 

by the 3JHαN couplings not present in the previous study, which increased the content of 

extended conformations. However, even after reweighting by COPER with these additional 

data, the helical cluster 1 remains the most highly populated cluster, albeit closely followed by 

clusters 3 and 4 (Figure 5A). 

The relative changes in the cluster populations due to the COPER reweighting are shown 

in Figure 5B as ln(pCOPER/pequal), where pequal and pCOPER represent the cluster populations before 

and after reweighting, respectively. Values for ln(pCOPER/pequal) range between about -0.9 to 2.4 

corresponding to errors on the order of less than 3 kT in the free energy of the individual 

clusters. 

Results for the EGAAIAASS nonapeptide 
As indicated, in contrast to the kinked form of EGAAXAASS peptides with aromatic 

amino acids X in their center, peptides with other amino acids besides proline and glycine 

showed extended conformations from the sequence profile of their NMR parameters.23 We 

further tested the reweighting of a 10000-conformation trajectory of the prototypical extended 

EGAAIAASS peptide, for which the published 1DNH, 1DCαHα, 3JHNHα values were used as input 

for the COPER ME method. As for the EGAAWAASS the conformations were clustered into 

20 clusters based on the φ and ψ torsion angles of the residues A3-A7. Figure 6A shows the 

φ/ψ distributions of the four most highly populated clusters before reweighting. In this case, 

the most highly populated (18 %) cluster 1 has almost completely extended conformations with 

only a slight admixture of helical conformations for residue A4. Clusters 2-4 have about 10 % 

populations and are mostly extended (cluster 2), mixed extended/helical (cluster 3), and mostly 

helical (cluster 4). COPER reweighting reduced the total χ2 value from 8.8 to 1.0, but changed 

the individual cluster populations by less than 2 % (Figure 6B). Accordingly, the reweighting 

factors ln(pCOPER/pequal) only ranged from about -0.2 to 0.1 (Figure 6C), showing that the free 

energy adjustment is less than 0.2 kT. The total entropy loss due to the reweighting was only 

0.11. Apparently the AMBER03 force field in conjunction with the TIP4P water model 
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reproduced the extended conformations of the EGAAIAASS peptide almost quantitatively, 

whereas it significantly exaggerated the more helical conformations of the EGAAWAASS 

peptide. 

Comparison of COPER with other ensemble reweighting algorithms 
The COPER approach may be compared to the previously proposed Maximum Entropy11,21 

and Bayesian22 ensemble reweighting algorithms. These previous methods all contained non-

deterministic random sampling algorithms and due to computational efficiency had to be 

restricted to smaller subsets (at most several thousand structures) from computed ensembles of 

tens of thousands of structures. In contrast, due to the efficiency of the inner point convex 

optimization method and the use of only gradients of the objective and constraining functions,36 

COPER can calculate globally optimized weights in a very efficient, numerically stable, and 

deterministic manner for very large ensembles of so far up to 70’000 structures. We note that 

this limit is rather dictated by numerical precision and not by computational speed. 

Besides this advantage in efficiency and the well-definedness of the solution, the 

underlying mathematical target of COPER also differs from the previous approaches. The 

described Maximum Entropy approaches11,21 minimize a free energy, in which an entropy term 

was subtracted from χ2. Thus Hummer and colleagues11 use the free energy function 

𝐺 = 𝜒! − 𝛩𝑆 where 𝛩 is a tunable temperature parameter that balances the agreement between 

experimental and back-calculated data with conformational diversity. 𝛩 is then varied until the 

corresponding free energy change matches an expected error in the force field. In COPER, we 

rather define the error of the parameters, i.e. χ2, and obtain as a result the entropy change ΔS 

and the concomitant free energy change ΔG. Thus as shown in Supporting Information Figure 

S2, the relation between ΔS and χ2 can easily be established. This relation can also be used to 

achieve a certain ΔG (=kT ΔS), which matches expected force field errors. Using our error 

estimates, the free energy changes of less than 3-kT were in the range of the expected force 

field errors. 

In contrast to the Maximum Entropy approaches, the Bayesian22 ensemble reweighting 

algorithm determines the population weights from assumed prior distributions of the weights 

and likelihood functions of the parameters based on experimental, theoretical or assumed 

errors. This approach also provides estimates of the uncertainties in the weights, which are not 

easily obtained by other methods. However, the computational cost is rather high and so far it 

has only been applied to small ensembles of hundreds of conformations. 
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Extension of the inner point convex optimization to Maximum Occurrence 
Bertini and colleagues previously have introduced the method of maximum occurrence 

(MO)10 for the analysis of ensembles of flexible macromolecules. The method tries to 

determine the maximum time or occurrence that a molecule can spend in a given conformation 

k such that the weighted average over all conformations of a theoretical ensemble is still 

compatible with the experimental average data. The problem can thus be formulated as 

 Maximize pk  (11a) 

 Subject to χ 2 (p) ≤1  (11b) 

  0 ≤ pi ≤1, i =1,...,N  (11c) 

  pi
i=1

N

∑ =1  (11d) 

where the populations pi and the constraining function χ2 are defined as in Eq. 4. 

Previously, this problem could only be solved by using a non-deterministic, simulated 

annealing procedure on smaller subsets (480 families of 50 members) of a large ensemble 

(56000 structures).10 However, since the target function pk  (Eq. 11a) and the constraints (Eq. 

11b-d) are convex or affine, the entire problem is a convex optimization problem that can be 

solved efficiently by the described inner point method. 

While it is beyond the scope of the present work to perform a detailed analysis of the 

EGAAWAASS peptide conformations by the MO method, we have tested the efficiency of this 

inner point solution to the MO problem on ensembles of random conformations generated for 

this peptide by the program Flexible-Meccano.8 The ensembles ranged in size from 10000 to 

70000 members and were subjected to the MO optimization using the experimental RDC and 

J-coupling backbone constraints described in Figure 2. The CPU time necessary to calculate 

one MO population increased approximately linearly with the ensemble size and amounted to 

850 seconds on a single core of a 2.6-GHz Intel Xeon CPU for the 70000-member ensemble. 

This compares very favorable with the 6 hours reported previously for subsets of a 56000-

member ensemble.10 

Conclusions 
We have presented the ME method COPER using inner point convex optimization to 

reweight large simulated conformational data sets by average experimental data. Compared to 
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previous methods, COPER can analyze full, very large ensembles of 104 to 105 conformers and 

not only smaller subsets thereof in a deterministic, fast, and robust manner. The convex 

optimization guarantees a global unique optimal solution, and hence a reliable determination of 

the final population weights for the full ensembles. Hence, such reweighted ensembles 

constitute the best representation of the information contained in both the simulated ensemble 

and the experimental data. Since the final entropy is determined reliably, its loss relative to the 

unconstrained ensemble can be used as a quantitative measure of the information content of 

experimental data relative to the theoretical ensemble. A large reduction in entropy will 

indicate that the theoretical ensemble is not a good representative of the real-world situation 

and hence the simulation needs to be improved. However, the measure can also be used to 

judge the information content of individual data types, e.g. a comparison of the entropy 

reduction induced by the different NMR data types clearly revealed the much higher 

information content of RDCs relative to three-bond J-couplings. Furthermore, the 

reproducibility of the entropy reduction on different subsets of the large ensembles provides an 

estimate for its density of sampling of the conformational space. Thus if the reproducibility 

becomes low, a larger number of structures needs to be generated in the initial ensemble to 

cover the space adequately. 

The application to the reweighting of the MD trajectories of small peptides by NMR data 

showed that the AMBER03 force field overestimated the helical content for the turn-forming 

EGAAWAASS peptide, but not for the extended EGAAIAASS peptide. The reduction in 

entropy was in all cases smaller than 3, indicating that adjustments of the force field of less 

than 3 kT-units would be needed to bring the MD trajectory into agreement with the 

experimental data. An ensemble created by the Flexible-Meccano statistical coil model of the 

EGAAWAASS peptide needed stronger reweighting than the MD-derived ensemble to fit the 

experimental data, consistent with the cruder nature of this model. Eventually, such COPER-

reweighted populations may be used via projection onto some essential coordinates to improve 

existing MD force fields by free energy perturbation methods.37 Compared to pure χ2 

minimization for force field optimization,38,39 this may have the advantage to reduce the risk of 

overfitting,40 since the entropy is maximized. 

While the application of COPER was shown here for average NMR data, in fact it is 

applicable to any experimental average data that can be predicted from a set of molecular 

conformations, such as small-angle X-ray scattering41 or Förster resonance energy transfer42 

data. Furthermore, convex optimization can provide similar advantages of well-defined, robust 
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solutions and large-scale efficiency for other ensemble analysis methods with convex target 

functions and constraints such as constrained χ2 minimization and MO.10 

Materials and Methods 
Sample preparation 

Uniformly 15N/13C-labeled peptide EGAAWAASS was prepared by expression in E. coli 

as a C-terminal fusion with the immunoglobulin-binding domain of streptococcal protein G as 

described previously.43 The peptide was cleaved bluntly from the fusion by factor Xa. NMR 

samples were prepared as 1 mM (0.25 mM) peptide, 25 mM acetate, pH 4.5 in 5/95 % 

D2O/H2O for measurement under isotropic (anisotropic) conditions. Residual alignment of 

peptides was achieved by introducing the peptide solutions into 10 % (w/v) polyacrylamide 

gels and horizontal compression.44,45 

NMR experiments 
All NMR experiments were carried out at 298 K on a Bruker Advance III 600 MHz 

spectrometer equipped with a TXI probe. Spectra were processed using NMRPipe.46 3JNHα 

couplings were obtained from a quantitative-J version of the 3JNHβ-HNHB experiment using a 

27 ms 15N-1Hα
 dephasing delay.

34,47 The resonance line shapes were fitted with the NLINLS 

program contained in NMRPipe and 3JNHα coupling constants were determined from the ratios 

of cross and reference peak heights as described.34 The 3JHNHα values were taken from the work 

by Dames et al.23 3JNCγ and 3JC’Cγ scalar couplings of the central W5 residue were determined by 

quantitative-J 2D constant-time 15N-{13C γ } and 13C’-{13C γ } spin-echo difference 

experiments.33 Error estimates for the quantitative-J measurements were obtained from the 

noise of the spectra. 

1DCαC’ RDCs were calculated as the difference in 13C’-13Cα doublet splittings observed 

under anisotropic and isotropic conditions, which had been measured with a modified version 

of HNCO experiment, in which the 180-degree Cα decoupling pulse in the C’ evolution was 

removed. Similarly, 1H-15N RDCs were obtained from 1H-15N HSQCs without 1H decoupling 

during the 15N evolution. A modified version of the HN(CO)CA experiment without 1H 

decoupling in the 13Cα evolution period was used to detect 1Hα-13Cα RDCs. Each RDC 

experiment was carried out twice, and the reported values and the error estimates refer to mean 

and standard deviations derived from such repeated experiments. 
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MD simulations 
MD simulations were carried out with the GROMACS simulation package48 using the 

AMBER03 force field.49 Extended input starting structures of the peptides EGAAXAASS were 

generated using MOLMOL50 and solvated in a dodecahedron box containing about 8700 TIP4P 

water molecules, three sodium ions and two chloride ions. The energy of the system was first 

minimized by the steepest descent method, followed by a 500-ps simulation for equilibration of 

solvent molecules with the position of the peptide kept fixed. Electrostatic interactions were 

implemented by particle-mesh Ewald (PME) summation with a grid spacing of 0.12 nm,51 

while the Lennard-Jones interactions had a cut-off at 1.4 nm. The integration time step was 2 

fs. Production runs for 100 ns were carried out at a constant temperature of 300 K and pressure 

of 1 bar. 35000 (X=W) or 10000 (X=I) conformations were obtained as 20-ps frames sampled 

uniformly from 7 (X=W) and 2 (X=I) 100-ns trajectories started with different random seeds.  

Back-calculation of NMR parameters 
For every snapshot of the MD trajectory, theoretical RDCs were predicted based on a 

steric alignment model using an efficient algorithm described previously.6 The RDC values of 

each conformation were scaled by a constant determined by a least square fit between the 

average RDCs of all conformations and the experimental RDC values of the peptide. 

Theoretical 3J values (in Hz) were calculated using the following Karplus relations: 3JHNHα = 

8.40 cos2(φ - 60˚) -1.36 cos(φ -60˚) + 0.33,31 3JHαN = -1.00 cos2(ψ -120˚) +0.65 cos(ψ -120˚) -

0.15,52 3JNCγ(W5) = 1.29 cos2(χ1) -0.49 cos(χ1) + 0.34 and 3JC’Cγ(W5) = 2.31 cos2(χ1 -120˚) -

0.87 cos(χ1 -120˚) + 0.49.53 

Clustering of MD conformations 
To obtain structural insights, the ensemble of MD conformations for the EGAAXAASS 

peptides were divided into 20 clusters using the hierarchical clustering function of MATLAB 

(MathWorks, Inc) and a φ/ψ angle distance metric d(i,j) between individual conformations i 

and j 

d(i, j) = dang
2 (φres (i),φres ( j)

res
∑ )+ dang

2 (ψres (i),ψres ( j))  

where the summation runs over the central residues A3 to A7 of the peptide to emphasize 

their conformation and the periodic angular distance metric dang is defined as 

dang(α,β) =min α −β ,360°− α −β( ) . 



- 20 - 

The distance between two clusters was defined as the average of all the individual 

distances of their members. 

Implementation of COPER  
COPER was implemented using the IPOPT36 open source software package written in C++ 

for large-scale nonlinear optimization. The IPOPT algorithm utilizes primal-dual interior-point 

methods26 to find local solutions of optimization problems. COPER objective functions, 

constraints and their derivatives, as well as data input and output were coded in C and linked to 

IPOPT. To speed up the search for the maximum entropy solution, the optimization was 

implemented as a minimization of the convex function e-S rather than as a maximization of the 

entropy S. COPER source code and compiled executables for several platforms are available 

from the authors upon request. 

Default tolerances and the maximum numbers of iterations for the chi square minimization 

(entropy maximization) were set to 1×10-3 and 20000 (1×10-5 and 80000), respectively. Using 

these parameters, the total reweighting of the 35000-member EGAAWAASS peptide ensemble 

with 35 constraints took 560 seconds on a single core of a 2.6-GHz Intel Xeon CPU. 
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Figure legends 
Figure 1: Solution of constrained convex optimization problem by interior point method. A) 
Example of a convex and a not convex set. B) Illustration of interior point method. The 
intersection of all convex constraints (constraint 1 (green), constraint 2 (magenta), …) defines 
the convex set of feasible points (yellow). The value of the convex objective function is shown 
by the blue, dashed contour lines. The search starts from an interior point (red circle) within the 
set of feasible points and follows the gradient of the objective function until the boundary of 
the set of feasible points is reached. The search then continues along the boundary following 
the gradient of the objective function until the optimal solution (red circle) is attained (see 
text). 

Figure 2: Comparison of experimental RDCs and backbone scalar couplings obtained on the 
nonapeptide EGAAWAASS to values back-calculated from its 35000-frame MD trajectory. 
Experimental data are shown as blue circles and the unbiased (equal population) average of the 
predicted observables from the trajectory as green lines. The reweighted averages after χ2 
minimization and the COPER entropy maximization are indicated as dashed magenta lines and 
red lines respectively. 

Figure 3: Cross validation of the COPER-reweighted populations by χ1 rotamer populations 
determined independently from 3JNCγ and 3JC’Cγ scalar couplings for the side chain of W5 in the 
EGAAWAASS peptide. Experimentally determined populations are shown in blue, unbiased 
populations from the 35000-frame MD trajectory in green, COPER-reweighted populations 
according to backbone RDCs and J-couplings (1DNH, 1DCαHα, 1DCαC’, 3JHNHα, 3JHαN) in red, and 
COPER-reweighted populations according to backbone and side chain RDCs and J-couplings 
(1DNH, 1DCαHα, 1DCαC’, 3JHNHα, 3JHαN, 3JNCγ, 3JC’Cγ) in magenta. 

Figure 4: Clustering of the 35000 conformations from the MD trajectory of the 
EGAAWAASS peptide according to the φ/ψ angles of its central five residues (A3-A7). A) 
Ramachandran population plots of the four most highly populated clusters are shown with 
contour levels spaced by a factor of 2.5. The most highly populated cluster 1 has α-helical 
conformations for residues A4 to A6 and partially α-helical conformations for residues A3 and 
A7. B) Overlay of 8 representative conformations from cluster 1 where residues A3 to A7 form 
a helical turn. Backbone hydrogen contacts in this turn are shielded from external water by the 
side chain of W5.24 

Figure 5: Reweighting of populations for the 20 clusters from the 35000 MD conformations of 
the EGAAWAASS peptide. A) Populations of the clusters before reweighting are shown in red 
and after COPER-reweighting in blue. For testing the robustness the 35000 conformations 
were split into two 17500-conformation sets. Averages and standard deviations of the cluster 
populations of these two subsets after COPER reweighting are shown in green. B) Reweighting 
factors for the cluster populations indicated as ln(pCOPER/pequal), where pequal and pCOPER represent 
the populations before and after COPER reweighting, respectively. Data for the COPER 
analysis of the 35000 conformations and of the two 17500-conformation subsets are shown in 
blue and green, respectively. 

Figure 6: Analysis of the 10000 conformations from the MD trajectory of the EGAAIAASS 
peptide. The conformations were clustered into 20 subsets according to the φ/ψ angles of its 
central five residues (A3-A7). A) Ramachandran population plots of the four most highly 
populated clusters are shown with contour levels spaced by a factor of 2.5. The most highly 
populated cluster 1 has extended conformations for residues A3 and I5 to A7 and partially α-
helical conformations for residue A4. B) Populations of the 20 clusters before reweighting are 
shown in red and after COPER-reweighting in blue. C) Reweighting factors for the cluster 
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populations indicated as ln(pCOPER/pequal), where pequal and pCOPER represent the populations before 
and after COPER reweighting, respectively. 
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Tables 
Table 1: χ2 and entropy valuesa before reweighting, after χ2 minimization and after entropy 
maximization of the frames of the EGAAWAASS nonapeptide MD trajectory or its Flexible-
Meccano data set using different NMR observables as constraints 

 before 
reweightingb 

after χ2 
minimization 

after entropy maximization 

constraints Nc χα
2

α

∑ d χα
2

α

∑  ΔSe χα
2

α

∑  ΔSe ΔS 
averagef 

ΔS 
S.D.f 

3JHNHα 7 3.52 0.00 -0.201 1.00 -0.045 -0.044 0.000 
3JHαN 5 4.41 0.00 -0.878 1.00 -0.215 -0.199 0.006 
3JNCγ  1 4.42 0.00 -0.043 0.00 -0.043 -0.008 0.001 
3JC’Cγ 1 11.77  0.00  -0.277  0.98  -0.195  -0.210  0.070 
1DNH 8 498.97 0.00 -1.415 1.00 -0.668 -0.652 0.008 
1DCαHα 7 383.92 0.00 -0.905 1.00 -0.540 -0.540 0.013 
1DCαC’ 8 35.56 0.01 -1.387 1.00 -0.459 -0.459 0.000 
                  
all backbone 3Jg 12 4.41 0.00 -1.037 1.00 -0.206 -0.206 0.006 

all 1Dh 23 959.94 0.31 -4.194 3.01 -2.297 -2.311 0.068 
all 1D + all 
backbone 3Ji 

35 967.87 0.37 -4.870 4.94 -2.512 -2.581 0.158 

all 1D + all 
backbone 3J (FM 
ensemble)j 

34 1158.08 0.98 -5.738 4.94 -3.611 -3.685 0.035 

all 1D + all 3Jk 37 1024.19 0.20 -5.203 6.82 -2.633 -2.656 0.057 
 

a Unless noted otherwise, all values correspond to a calculation of the 35000-frame MD data set. 
b The entropy value of the equal population distribution for the 35000 conformations is 
S(pequal ) = ln(35000) =10.463 . 

c Number of experimental constraints. 
d The values correspond to the sum of individual χ2

 values for the different data types. 
e The entropy difference is calculated as the deviation from S(pequal ) . 
f The 35000 conformation data set was randomly divided into two mutually exclusive data sets, 

each containing 17500 conformations. The calculation was repeated on both data sets and 
entropy differences were calculated as the deviation from S(pequal ) = ln(17500) = 9.770 . ΔS average 
(S.D.) corresponds to the average (standard deviation) of both entropy differences. 

g The constraints consist of the backbone scalar couplings 3JHNHα and 3JHαN.  
h The constraints consist of the RDCs 1DNH, 1DCαHα, and 1DCαC’. 
i The constraints consist of 3JHNHα, 3JHαN, 1DNH, 1DCαHα, and 1DCαC’. 
j The calculation was carried out on a 35000-conformation ensemble generated by Flexible-

Meccano using 3JHNHα, 3JHαN, 1DNH, 1DCαHα, and 1DCαC’ constraints. Due to the nature of the 
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Flexible-Meccano simulation the φ angle of the last residue is fixed and its 3JHNHα constraint is 
not meaningful. 

k The constraints consist of 3JHNHα, 3JHαN, 3JNCγ, 3JC’Cγ, 1DNH, 1DCαHα, and 1DCαC’. 
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A rigorous and efficient method to reweight very large conformational ensembles using 

average experimental data and to determine their relative information content 
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Table S1A: Backbone RDC (1DNH, 1DCαHα, 1DCαC’) and J-coupling (3JHNHα, 3JHαN) data (in Hz) 
of the isotope-labeled EGAAWAASS peptide 
 
Residue 3JHαN Err.a) 3JHαHN Err.b) 1DNH Err. 1DCαHα Err. 1DCαC’ Err. 

E1       12.95 0.46 -0.59 0.11 
G2 -0.49 0.16   -5.4 0.15   -1.55 0.11 
A3   6.05 0.3 -1.26 0.15 11.5 0.46 -0.67 0.11 
A4 -0.54 0.16 5.95 0.3 -5.22 0.15 21.42 0.46 -0.94 0.11 
W5 -0.53 0.16 6.44 0.3 -0.91 0.15 -9.37 0.46 -1.49 0.2 
A6   6.53 0.3 2.33 0.15 10.01 0.46 -0.55 0.11 
A7 -0.39 0.16 5.93 0.3 -2.88 0.15 15.01 0.46 -0.3 0.11 
S8 -0.39 0.16 6.98 0.3 -8.37 0.15 15.73 0.46 -1.44 0.11 
S9   7.16 0.3 -3.78 0.15     

 
a)For comparison, the RMSD between experimental 3JHαN-couplings and values back-
calculated from an x-ray structure was 0.13 Hz using Karplus parameters determined by Löhr 
et al.1 
 
b)For comparison, the RMSD between the experimental 3JHNHα-couplings and values back-
calculated from a structural ensemble is 0.36 Hz using Karplus parameters determined by 
Vögeli et al.2 
 
Table S1B: Side chain 3JNCγ and 3JC’Cγ scalar coupling constants (in Hz) of W5 in the 
EGAAWAASS peptide 
 
 J Err. 

3JC’Cγ 1.59 0.1 
3JNCγ 1.21 0.1 

 

Using these coupling constants and respective Karplus parameters,3 the populations of the χ1 
+60˚, +180˚ and -60˚ rotamers are determined as 0.221, 0.464, and 0.312, respectively. Details 
of this calculation are given in Vajpai et al.4 
 
Table S1C: Chemical shifts (in ppm) determined for the EGAAWAASS peptidea) 
 
 HN N Hα Cα C’ Hβ Cβ 

E1     4.103 55.83 173.15 2.152 29.99 
G2 8.780 111.42 4.034b 45.12 173.46     
A3 8.353 124.31 4.285 52.35 177.72 1.277 19.31 
A4 8.344 123.67 4.287 52.68 177.58 1.361 19.07 
W5 8.008 119.98 4.612 57.37 175.80 3.308b) 29.50 
A6 7.833 126.18 4.224 52.04 176.69 1.247 19.73 
A7 8.055 123.48 4.241 52.49 177.78 1.429 19.37 
S8 8.283 115.37 4.511 58.27 173.82 3.930b 64.13 
S9 8.024 122.84   59.91 178.50     

 

a)Chemical shift assignments were derived from a set of standard HNCO, HNCA, 
CBCACONH, and HBHACONH experiments. 1H, 15N and 13C chemical shifts are referenced 



 

- 3 - 

relative to the frequency of the 2H lock resonance of water. 
b)Methylene resonances overlap. 
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Figure S2 

  
 
Figure S2: Analysis of the 35000 conformations from the MD conformations of the 
EGAAWAASS peptide with different χα

2 -limits. A) The reduction in total entropy ΔS for 
χα
2 -limits of the backbone RDC and J-coupling constraints ranging from 0.25 to 4.0. B) 

Populations of the 20 clusters calculated with χα
2 -limits ranging from 0.25 to 4.0. 
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