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Stroke has multiple etiologies but the underlying genes and pathways are largely 359 
unknown. We conducted a multi-ancestry genome-wide association meta-analysis in 360 
521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 novel stroke 361 
risk loci bringing the total to 32. We further found shared genetic variation with related 362 
vascular traits including blood pressure, cardiac traits, and venous thromboembolism at 363 
individual loci (N=18), and using genetic risk scores and LD score regression. Several 364 
loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. 365 
Eleven novel loci point to mechanisms not previously implicated in stroke 366 
pathophysiology, with prioritization of risk variants and genes accomplished through 367 
bioinformatics analyses using extensive functional datasets. Stroke risk loci were 368 
significantly enriched in drug targets for antithrombotic therapy. 369 
 370 
Stroke is the second leading cause of death and disability-adjusted life-years worldwide.

1,2
 371 

Characterized by a neurological deficit of sudden onset, stroke is mostly caused by brain 372 
infarction (ischemic stroke) and, less often, intracerebral hemorrhage (ICH). Common 373 
etiological subtypes of ischemic stroke include large artery atherosclerotic stroke (LAS), 374 
cardioembolic stroke (CES), and stroke caused by small vessel disease (small vessel stroke, 375 
SVS), the latter being also the leading cause of ICH. Previous genome-wide association 376 
studies (GWAS) in predominantly European ancestry groups have identified 10 loci robustly 377 
associated with stroke.

3-12
 In most instances, the association with stroke could be attributed to 378 

individual subtypes of ischemic stroke, such as LAS
5,8,9

, CES
3,4

, and SVS
10,12

 or of ICH
6
 379 

although some loci were associated with two or more stroke subtypes
7,9,11,13

 or with any 380 
stroke.

10
 We hypothesized that combining a substantially enlarged sample size with a 381 

transethnic analytic approach would identify additional risk loci and improve fine mapping of 382 
causal variants. Hence, we combined all available stroke samples with published or 383 
unpublished GWAS data including samples of non-European ancestry that were 384 
underrepresented in previous GWAS. We further hypothesized that stroke shares genetic 385 
influences with vascular risk factors, intermediate phenotypes for stroke (e.g., carotid artery 386 
plaque, cPL), and related phenotypes (e.g., coronary artery disease, CAD) and that a 387 
systematic approach to identify genetic influences shared among these traits would provide 388 
insights into stroke pathophysiology. 389 
  390 
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RESULTS 391 
 392 
We tested ~8 million single nucleotide polymorphisms (SNPs) and InDels with minor allele 393 
frequency (MAF) > 0.01 in up to 67,162 stroke cases and 454,450 controls for association 394 
with stroke. One analysis was of European participants only (40,585 cases; 406,111 controls) 395 
and a second involved participants of European, East-Asian (17,369; 28,195), African (5,541; 396 
15,154), South-Asian (2,437; 6,707), mixed Asian (365; 333), and Latin-American (865; 692) 397 
ancestry (Fig. 1). Participants were drawn from 29 studies with genome-wide genotypes 398 
imputed to 1000 Genomes phase 1v3 or similar

14
 (The MEGASTROKE consortium, 399 

Supplementary Note, Supplementary Tables 1-2). Ancestry-specific meta-analyses were 400 
conducted followed by fixed-effects transethnic meta-analyses and MANTRA transethnic 401 
meta-analyses.

15
 Analyses were performed for any stroke, comprising ischemic stroke, ICH, 402 

and stroke of unknown or undetermined type (any stroke, AS, N=67,162), any ischemic 403 
stroke regardless of subtype (AIS, N=60,341) and ischemic stroke subtypes (LAS, N=6,688; 404 
CES, N=9,006; SVS, N=11,710). 405 
 406 
 407 
Genome-wide association results 408 
 409 
New genome-wide significant stroke loci  410 
We identified 32 genome-wide significant loci, 22 of which were novel (Table 1, Fig. 2, 411 
Supplementary Tables 3-4, Supplementary Fig. 1-7). Of the 22 novel loci, 18 were 412 
identified by transethnic meta-analyses (fixed effects p-value < 5.0x10

-8
 or MANTRA 413 

log10(Bayes factor)[BF] > 6)(Fig. 2 and Supplementary Fig. 1-5) and the remaining 4 were 414 
identified by the ancestry-specific meta-analysis in European samples (fixed effects p < 415 
5.0x10

-8
) (Fig. 2 and Supplementary Fig. 1-5). Apart from 2 novel loci with a MAF between 416 

0.01 and 0.05 and large effect size estimates (odds ratios [ORs] of 2.33 and 1.95), the 417 
remaining 20 novel loci harbored common variants (MAF 0.16-0.48) with observed ORs 418 
between 1.05 and 1.20 (Table 1). Comparison of the 32 loci across Europeans and East-419 
Asians, the two largest ethnic subgroups, demonstrated significant correlations of risk allele 420 
frequencies and ORs between populations (Supplementary Fig. 8), although 6 loci exhibited 421 
population-specific association (defined as p < 5.0x10

-8
 in Europeans and p > 0.05 in East-422 

Asians or MAF in East-Asians < 0.01)(Supplementary Table 5). Estimates for the 423 
phenotypic variance explained by the 32 lead variants ranged between 0.6% and 1.8% 424 
(Supplementary Table 6). 425 
Gene-based tests using VEGAS2

16
 (Supplementary Fig. 9) confirmed the loci identified by 426 

the GWAS analyses above, and yielded a novel significant (p < 2.02x10
-6

, Bonferroni 427 
corrected for the number of genes) association for the neighbouring genes ICA1L and WDR12 428 
with SVS (Supplementary Table 7, Supplementary Fig. 9-10). Prior studies have 429 
demonstrated that variants in this region are associated with white matter hyperintensity 430 
(WMH) burden

17
 a brain magnetic resonance imaging marker of small vessel disease (SVD).  431 

Twenty-one additional loci met a less stringent threshold for suggestive evidence of 432 
association (log10[BF] > 5.0 or p < 1.0x10

-6
 in the transethnic fixed effects 433 

analysis)(Supplementary Table 8), among them three loci previously implicated in 434 
Mendelian stroke (HTRA1

18,19
, COL4A1

20
, and COL4A2

21
). 435 

 436 
 437 
 438 
Associations with etiological stroke subtypes 439 
Eighteen loci (12 novel) reached genome-wide significance for AS, 20 (12 novel) for AIS 440 
(20), 6 (3 novel) for LAS, 4 (2 novel) for CES, and 2 (ICA1L-WDR12 novel, discovered in 441 
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gene-based tests) for SVS (Fig. 2, Table 1, Supplementary Fig. 1-5 & 10). Several loci 442 
reaching genome-wide significance for one of the ischemic stroke subtypes were also 443 
genome-wide significant for AIS or AS, while none reached genome-wide significance for 444 
multiple ischemic stroke subtypes (Fig. 2, Supplementary Table 9). For some novel loci, the 445 
association was strictly confined to a single subtype (p > 0.5 for other stroke subtypes): 446 
EDNRA and LINC01492 showed association with LAS only, suggesting mechanisms limited 447 
to atherosclerosis; NKX2-5 showed association with CES only, implying that the association 448 
may be primarily mediated by cardioembolism. We also found subtype-specificity for 449 
previously published loci (TSPAN2 for LAS and PITX2 for CES). We further investigated 450 
shared genetic influences of individual loci on different stroke subtypes using gwas-pw 451 
analyses

22
, which estimate the posterior probability that a specified genomic region influences 452 

two different traits. Applying a posterior probability cut-off of 90% for shared contribution at 453 
a given locus (model 3) we found shared genetic influence between LAS and SVS at SH2B3, 454 
and between LAS and CES at ABO (Supplementary Table 10 and Supplementary Fig. 11).  455 
 456 
Conditional analysis to identify independent signals within loci 457 
When conditioning all SNPs in a ±0.5 Mb window on the lead SNPs in the Europeans–only 458 
analysis, we found two additional independent genome-wide signals at the PITX2 locus for 459 
CES, consistent with known multiple independent loci at PITX2 for atrial fibrillation (AF),

23
 460 

suggesting that a similar genetic architecture at this locus influences both conditions 461 
(Supplementary Fig. 12). We further found suggestive independent signals at MMP12, 462 
SH2B3, and HDAC9-TWIST1 that did not reach genome-wide significance (Supplementary 463 
Table 11). 464 
 465 
 466 
Genetic overlap with related vascular traits 467 
 468 
Association of individual stroke risk variants with related vascular traits 469 
Several of our loci are in genomic vicinity of established risk loci for vascular risk factors 470 
(e.g., blood pressure, BP), and related vascular phenotypes affecting the heart (e.g., CAD), 471 
vasculature (e.g., carotid intima media thickness, cIMT), or brain (WMH). To systematically 472 
explore genetic overlap between stroke and these traits we surveyed published GWAS for BP, 473 
blood lipids, type 2 diabetes (T2D), cIMT, cPL, AF, venous thromboembolism (VTE), CAD, 474 
and WMH, assembled through the IGEN-BP

24
, ENGAGE

25
, DIAGRAM

26
, CHARGE

27,28
, 475 

AFGen
29

, INVENT
30

, and CARDIoGRAMplusC4D
31

 consortia (Supplementary Table 12). 476 
When constructing sets of index SNPs of the non-stroke phenotypes (Bonferroni adjusted p < 477 
1.3x10

-4
 = 0.05/32 loci/12 related vascular traits) and SNPs in high LD (r

2
 > 0.9 in 1000G 478 

EUR) with those index variants, 17 of the 32 stroke lead variants showed overlap with these 479 
sets (Supplementary Table 13, Fig. 3). Fourteen loci reached genome-wide significance (p < 480 
5.0x10

-8
) for association with one or more of the following phenotypes: BP (5 loci), CAD (5 481 

loci), AF (2 loci), VTE (2 loci), LDL-cholesterol (2 loci), cPL (1 locus), and WMH (1 locus). 482 
Among the 21 additional subthreshold loci for stroke (Supplementary Table 8) 6 loci have 483 
previously been associated with related vascular traits including AF (PRRX

32
, CAV1/2

32
), 484 

VTE (F11
30

), CAD (SWAP70, LPA
31

), blood lipids (LPA
31

), and WMH (ICA1L-WDR12
28

). 
 485 

 486 
Association of genetic risk scores of related vascular traits  487 
Second, we generated weighted genetic risk scores (wGRS) for VTE, BP-related traits, blood 488 
lipids, T2D, and CAD using the lead SNPs from published GWAS and tested these wGRS for 489 
association with each stroke phenotype, implementing the inverse-variance weighting  490 
approach (Methods, Supplementary Table 14). We found significant associations (p < 491 
5.6x10

-3
 correcting for 9 independent phenotypes, see Methods) with wGRS for all traits 492 
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examined, except for triglyceride and LDL-cholesterol levels, with clear differences between 493 
stroke subtypes (Fig. 4). The strongest association was between the wGRS for CAD and LAS 494 
consistent with shared pathophysiology through atherosclerosis. We further found 495 
associations of all stroke subtypes with wGRS for BP traits. The wGRS for VTE was 496 
significantly associated with both LAS and CES (all p < 1.0x10

-4
) but not SVS. The wGRS 497 

for HDL-cholesterol showed a significant inverse association with SVS.  498 
In the present setting the wGRS analysis was used primarily to explore the genetic overlap 499 
with related vascular traits, not as a tool for establishing causal inference. In sensitivity 500 
analyses we conducted an MR-Egger regression to explore whether any of the significant 501 
associations between vascular wGRS and stroke may be partly driven by directional 502 
pleiotropy. There was no indication of directional pleiotropy except for the association 503 
between the SBP wGRS and AS (MR-Egger intercept estimate p=0.015), which was no 504 
longer significant after removing 6 of 37 SNPs appearing as outliers from the leave-one-out 505 
analysis (Methods), leading to causal estimates in broad agreement across regression 506 
techniques (Supplementary Table 15).   507 
 508 
Shared genetic contribution to stroke and related vascular traits at the whole genome 509 
level 510 
Third, we applied LD score regression to quantify the extent of shared genetic contributions 511 
between traits on a whole genome level.

33,34
 Using available GWAS results from individuals 512 

of European ancestry, we found significant positive correlations (rg > 0; p < 5.6x10
-3

 513 
correcting for 9 independent phenotypes), mostly corroborating the wGRS results (Fig. 4 and 514 
Supplementary Table 16). In addition, we found significant genetic overlap between 515 
triglyceride levels and AIS with similar results obtained in available GWAS datasets from 516 
East-Asian ancestry (Supplementary Table 16). Results did not materially change when 517 
removing genome-wide signals for stroke and related vascular traits and their proxies (r

2
 >0.8 518 

in 1000G EUR). 519 
 520 
 521 
Global functional interpretation of stroke risk loci 522 
 523 
Global epigenetic patterns at the 32 stroke risk loci 524 
To test for cell-specific enrichment in chromatin marks that were previously shown to be 525 
phenotypically cell-type specific in ENCODE/RoadMap (H3K4me1, H3K4me3, H3K9ac)

35
, 526 

we implemented the epigwas tool
35

 and the narrow peak information from the latest RoadMap 527 
dataset (127 tissues).

36
 Epigwas estimates the enrichment score (ratio of the height of the 528 

nearest narrow peak over the distance to the peak) for the lead variant and proxies (r
2 

>0.8 in 529 
1000G cosmopolitan panel) and calculates statistical significance by examining the relative 530 
proximity and specificity of the test SNP-set with 10,000 sets of matched background. The 531 
analysis showed significant enrichment of enhancer and promoter sites (H3K4me1, 532 
H3K4me3) in mesenchymal stem cells, embryonic stem cells, epithelial cells, and blood & T-533 
cells, and of active promoters (H3K9ac) in embryonic stem cells and digestive tissue 534 
(Supplementary Table 17). 535 
 536 
Pathway Analyses  537 
To identify pathways overrepresented in stroke association results we used the DEPICT gene-538 
set enrichment tool

37
 using all SNPs with log10(BF) > 5 for the respective stroke subtype. We 539 

found three gene-sets to be significantly (FDR < 5%) associated with AS: enlarged heart, 540 
decreased cardiac muscle contractility, and oxaloacetate metabolic process (Supplementary 541 
Table 18). Next, we used Ingenuity Pathway Analysis 542 
(https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/) examining 543 
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genes within the 53 stroke locwith log10(BF) > 5. The extended gene list (r
2
 > 0.5 in 1000G 544 

Europeans or East-Asians, or located within 50kB of the lead SNP) consisted of 214 genes. 545 
We found the coagulation system to be the most significant canonical pathway followed by 546 
cardiomyocyte differentiation via bone morphogenetic protein receptors (FDR 5%) 547 
(Supplementary Table 19). Finally, we tested enrichment of VEGAS2 derived gene-based p-548 
values in expert curated and computationally predicted Biosystem gene-sets

38
 adapting 549 

VEGAS2Pathway,
39

 and identified significant association with 18 pathways including various 550 
cardiac pathways, muscle cell fate commitment, and nitric oxide metabolic process with CES 551 
(FDR 5%) (Supplementary Table 20). 552 
 553 
 554 
Prioritizing potential causal variants  555 
 556 
Fine-mapping derived from credible SNP set analyses 557 
To reduce the number of candidate variants per locus to the most noteworthy associations we 558 
constructed 95% credible SNP sets for each of the 32 loci (lead SNP and proxy SNPs r

2 
> 0.1 559 

in 1000G panels) assuming one causal SNP per locus and uniform priors.
40

 Credible SNP sets 560 
were generated in all stroke phenotypes and for European, East-Asian, and African ancestries 561 
separately. We found a marked reduction of credible SNP sets for most loci, expectedly most 562 
pronounced for the phenotype showing the strongest association signal (Supplementary 563 
Table 21). The greatest refinement was observed at RGS7, HDAC9-TWIST1, and SH2B3, 564 
where the lead SNP was the only SNP contained in the 95% credible set for the stroke 565 
phenotype showing the strongest association.  566 
 567 
Stroke loci with nonsynonymous or predicted deleterious variants 568 
To determine SNPs that have protein-altering effects, we annotated all SNPs using 569 
ANNOVAR.

41
 Of the 32 lead SNPs three were exonic, of which two were non-synonymous 570 

(rs3184504 [p.Arg262Trp] in SH2B3 and rs1052053 [p.Gln75Arg] in PMF1). p.Arg262Trp is 571 
a loss-of function variant that leads to expansion of hematopoetic stem cells and enhanced 572 
megakaryopoiesis in humans.

42
 Both variants are predicted to be benign or tolerated by 573 

PolyPhen
43

 and SIFT.
44

 In addition, we identified a proxy SNP (r
2
=0.99 in 1000G EUR) for 574 

another lead SNP, that was non-synonymous (rs6050 [p.Thr331Ala] in FGA), also predicted 575 
as benign or tolerated. 576 
 577 
Investigation of eQTLs, meQTLs, and pQTLs in different tissues 578 
We interrogated genome-wide gene expression (expression quantitative trait loci, eQTLs), 579 
methylation (meQTLs), and protein expression (pQTLs) in extensive publicly and non-580 
publicly available datasets to determine whether stroke risk SNPs influenced the 581 
cis regulation of nearby genes. These datasets encompass numerous tissues and cell types 582 
including cardiac, vascular, and brain tissue, circulating cells, and vascular endothelial cells 583 
(Methods). These comprise: for eQTLs the GTEx V6

45
, an expanded version of GRASP2

46,47
, 584 

HGVD
48

, BIOS
49

, Blueprint epigenome project (subset)
50

, STARNET
51

 and the human aortic 585 
endothelial cells study

52
; for meQTLs, the Blueprint epigenome project (subset)

50
 and the 586 

ARIC cohort
53

, and for pQTLs the KORA cohort.
54

 Only cis eQTLs, meQTLs, and pQTLs 587 
were considered.     588 
We found that in 18 of the 32 stroke risk loci the lead stroke risk variant either overlapped or 589 
was in moderate to high LD (r

2
>0.8) with the most significant QTL variant for a nearby gene, 590 

in at least one tissue or cell type (Supplementary Table 22 and 23). For seven loci, we 591 
observed association of the lead SNP and proxies with expression of a single gene (or 592 
methylation or protein level), sometimes the nearest gene (LRCH1, CDK6, CDKN2B, PRPF8, 593 
and MMP12), sometimes a more distant nearby gene (ZCCHC14 for the ZCCHC14 locus, and 594 
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TWIST1 for the HDAC9-TWIST1 locus), within the datasets we explored. Associations were 595 
mostly found in stroke-relevant tissues and cell types, including vascular tissues, aortic 596 
endothelial cells, brain, blood, and immune cells. In most instances (11 loci, 61.1%), the risk 597 
SNP affected expression of multiple genes suggesting that at individual loci pleiotropic 598 
mechanisms, which might differ according to tissue/cell type, could in some instances 599 
influence stroke susceptibility.

55,56
 For several of these loci there was a clear predominance of 600 

eQTL associations with one gene in stroke-relevant tissues, such as ZNF318 (chr6p21), 601 
AL049919 (chr12q24), and FES (chr15q26) in brain tissues (Supplementary Table 22-23).  602 
At some loci, meQTLs and eQTLs provided complementary information on the regulatory 603 
pattern. For instance, for the SH3PXD2A locus, SNPs in high LD with the lead stroke risk 604 
variant are eQTLs for multiple genes (SH3PXD2A, SLK, GSTO1, GSTO2, LOC729081), 605 
while several high LD proxies (r

2
>0.96) function as the most significant meQTL for CpG 606 

probes located in the promoter region of SH3PXD2A and not any of the other genes.   607 
For the 149 genes located in the 32 genome-wide significant loci (r

2
 > 0.5 in Europeans or 608 

East-Asians, or being located +50kB from the lead SNP, Methods), we assigned an empirical 609 
functional score based on the presence and number of eQTLs, meQTLs, pQTLs and other 610 
biological criteria

57,58
 (Methods and Supplementary Table 24) reasoning that genes with a 611 

higher functional score are more likely to be causal, although this score requires validation by 612 
experimental data. 613 
 614 
Joint modeling of epigenetic marks and association statistics  615 
As an additional approach to identify the most plausible causal variants and genes we used 616 
RiVIERA

59
, which jointly models summary association statistics and corresponding 617 

epigenetic regulatory information in a Bayesian framework to estimate the posterior 618 
probability of association (PPA). RiVIERA uses the RoadMap epigenome data of 127 tissue 619 
types and information on chromatin (H3K4me1, H3K4me3, H3K36me3, H3K27me3, 620 
H3K9me3, H3K27ac, H3K9ac), and DNA accessibility (DNaseI) marks. Three of the stroke 621 
risk loci (PMF1-SEMA4A, SH3PXD2A, and EDNRA) displayed a pattern in which the 622 
association statistics and epigenetic regulatory information jointly contributed to the modeling 623 
of the RiVIERA credible SNP set (the minimum number of SNPs whose PPA, accounting for 624 
both association statistics and epigenetic regulatory information, sum up to 625 
>95%)(Supplementary Fig. 13). The variants identified by RiVIERA as having the highest 626 
PPA were in moderate to high LD in the 1000G cosmopolitan panel with the respective lead 627 
SNP (rs7534434 for PMF1- SEMA4A [r

2
=0.79 with lead SNP]; rs11191829 for SH3PXD2A 628 

[r
2
=0.99]; rs4835084 for EDNRA [r

2
=0.35]). Two of these (at PMF1- SEMA4A and 629 

SH3PXD2A) were significantly enriched for RNA Pol II binding in ENCODE cell types
60

 630 
including H1-hESC (human embryonic stem cells) (Supplementary Fig. 13).  631 
 632 
Enrichment in drug target genes 633 
Given previous evidence for utility of GWAS for drug discovery and drug repositioning

57,61,62
 634 

we evaluated the overlap between stroke-associated genes and known drug targets. Among 635 
the 149 genes located within the 32 stroke risk loci, 16 (11%) were registered as targets of 636 
currently approved drugs in the DrugBank database and the Therapeutic Target Database 637 
(Supplementary Table 25). Of these, two genes (FGA, PDE3A) were targets of approved 638 
drugs for antithrombotic therapy (ATC B01), i.e. alteplase, tenecteplase, reteplase and 639 
anistreplase for FGA, and cilostazol for PDE3A (enrichment OR=5.46, p=0.0369; Fig. 5). 640 
This enrichment was strengthened after removing the locus with the largest number of genes 641 
(SH2B3, 73 genes) (OR=8.89, p=0.0166) and after adding 65 genes in 21 suggestive stroke 642 
risk loci (OR=7.83, p=0.00606).  643 

 644 

 645 
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DISCUSSION 646 
 647 
The current transethnic meta-analysis more than triples the number of stroke risk loci and 648 
identifies novel loci for AS, AIS, and all major subtypes of ischemic stroke. Our results 649 
highlight several major features of stroke genomics: (i) approximately half of the identified 650 
stroke loci show shared genetic association with other vascular traits, the largest genetic 651 
correlation being found for BP. We also identified shared genetic association with VTE, with 652 
distinct patterns for individual stroke subtypes providing mechanistic insight; (ii) eleven of 653 
the novel stroke loci (ANK2, CDK6, KCNK3, LINC01492, LRCH1, NKX2-5, PDE3A, PRPF8, 654 
RGS7, TM4SF4-TM4SF1 and WNT2B) point to mechanisms not previously implicated in 655 
stroke pathophysiology; some of these suggest a strong link with cardiac mechanisms beyond 656 
those expected from established sources of cardioembolism; (iii) the 32 stroke risk loci were 657 
significantly enriched in drug targets for antithrombotic therapy, one for an approved 658 
thrombolytic drug (alteplase) and the other for an antiplatelet agent (cilostazol) approved for 659 
stroke prevention in Asia; (iv) through incorporation of extensive functional datasets and 660 
bioinformatics analyses we provide detailed information on prioritization of stroke risk 661 
variants and genes as a resource for further experimental follow-up.  662 

The majority of genome-wide associations were identified with both AS and AIS. While this 663 
relates in part to a higher power compared to subtypes, we also found shared genetic 664 
influences between stroke subtypes, as exemplified by the gwas-pw analyses (SH2B3 and 665 
ABO). A notable finding is the identification of PMF1-SEMA4A as a risk locus for AIS. 666 
PMF1-SEMA4A is an established risk locus for non-lobar ICH

6
 and thus represents the first 667 

locus reaching genome-wide significance for ischemic as well as hemorrhagic stroke. PMF1-668 
SEMA4A further reached genome-wide association for WMH burden

28
 (Fig. 3), an established 669 

marker for SVD, and showed a strong signal in the SVS subtype suggesting that the 670 
association with stroke is at least in part mediated by SVD. The underlying biological 671 
pathways do not seem to involve known vascular risk factors and may thus reveal novel 672 
targets for stroke prevention.  673 

Among the novel loci showing associations restricted to specific stroke subtypes, EDNRA is 674 
consistent with atherosclerotic mechanisms given its association with LAS, cPL

27
 and CAD

31
 675 

(Fig. 3). LINC01492 and the previously reported TSPAN2 locus likewise displayed 676 
associations restricted to LAS but showed no association with related phenotypes in our look-677 
ups and in prior literature, thus evidencing mechanisms more specific for LAS. NKX2-5, 678 
showing association restricted to CES, was previously reported as a genome-wide risk locus 679 
for heart rate and PR interval

63,64
 but not consistently for AF

63,65
 thus pointing towards cardiac 680 

mechanisms other than AF. 681 
 682 
Although the number of loci reaching genome-wide significance for association with SVS 683 
remains low, our results suggest an important role for common genetic variation in SVS. First, 684 
several of the associations with AS or AIS including at novel loci (CASZ1, LOC100505841, 685 
SH3PXD2A, ICA1L-WDR12) show predominant association with the SVS subtype 686 
(Supplementary Table 7 and Supplementary Table 9). Second, three of the top loci 687 
(PMF1-SEMA4A, LOC100505841, SH3PXD2A) show genetic overlap with loci for WMH. 688 
Third, several suggestive loci (log10[BF] >5) for AS and SVS harbor genes implicated in 689 
monogenic SVD (HTRA1, COL4A1, COL4A2) (Supplementary Table 8). 690 

Our extensive exploration of shared genetic variation between stroke and related vascular 691 
traits found the most widespread correlations with BP phenotypes consistent with 692 
epidemiological data showing high BP to be the leading risk factor for stroke. A quarter of the 693 
32 genome-wide significant stroke loci are BP loci, most of which are novel with respect to 694 
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stroke risk and show association with risk of AS or AIS. Aside from expected genetic overlap 695 
between LAS and CAD, we also identified significant overlap between a wGRS for VTE and 696 
both LAS, and CES, but not SVS (Supplementary Table 14, Fig. 4) despite a higher power 697 
for this subtype, potentially suggesting that thrombotic processes play a less important role in 698 
SVS. 699 

Three of our novel loci (NKX2-5, ANK2, and LRCH1) have previously been associated with 700 
cardiac pacing.

63,64,66
 NKX2-5 and ANK2 are further implicated in familial forms of cardiac 701 

disease
67-70

 but none of the three loci was associated with AF or CAD in the latest published 702 
GWAS.

31,65
 Apart from NKX2-5 they were not specifically associated with CES, possibly 703 

pointing to an involvement of the underlying genes beyond cardiac development and function. 704 
rs9526212, the lead variant in LRCH1 functions as an eQTL for LRCH1 in multiple tissues 705 
including left ventricle, atherosclerotic aorta, atherosclerotic-lesion free arteries, and blood 706 
(Supplementary Table 22). Pathway analyses further support a strong link with cardiac 707 
mechanisms.  708 
 709 
The extensive in silico functional annotation of identified stroke risk loci provides informative 710 
elements for future prioritization and follow-up of the most compelling biological candidates. 711 
In some instances, the eQTL, meQTL and pQTL information strongly supports involvement 712 
of one gene over others in the region, e.g., for SH3PXD2A, encoding SH3 and PX domain-713 
containing protein 2A, an adapter protein involved in invadopodia and podosome formation as 714 
well as extracellular matrix degradation. For some loci, joint analysis of epigenetic regulatory 715 
effects and association statistics enabled prioritization of credible SNPs. When exploring 716 
overall epigenetic patterns of identified stroke risk loci, some enrichment of enhancer and 717 
promoter sites in developmental tissues was observed, suggesting that some associations may 718 
be driven by developmental effects, as recently proposed for the FOXF2 locus.

10
 719 

  720 
RGS7 and TM4SF4-TM4SF1 showed low minor allele frequencies, high heterogeneity, poor 721 
imputation quality in non-Europeans, and large effect size estimates and must therefore be 722 
interpreted with caution. Moreover, while our extensive functional exploration provides 723 
guidance on gene prioritization for further exploration, additional experiments are required to 724 
identify the causal genes and variants. Several studies had limited information on stroke 725 
subtypes. Hence sample sizes for ischemic stroke subtypes were still in the lower range. Also, 726 
the proportion of the phenotypic variance explained by the 32 lead SNPs was relatively small 727 
but comparable to other complex diseases.

71
 Collectively, these aspects highlight the potential 728 

for gene discovery in the future. 729 
 730 
In conclusion, we identify 22 novel stroke risk loci and demonstrate shared genetic variation 731 
with multiple related vascular traits. We further identify novel loci offering mechanisms not 732 
previously implicated in stroke pathophysiology and provide a framework for prioritization of 733 
stroke risk variants and genes for further functional and experimental follow-up. Stroke risk 734 
loci are significantly enriched in drug targets for antithrombotic therapy thus highlighting the 735 
potential of stroke genetics for drug discovery. Collectively, these findings represent a major 736 
advance in understanding the genetic underpinnings of stroke. 737 
  738 
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FIGURE LEGENDS 1113 
 1114 
Figure 1 MEGASTROKE study design. Variants were retained that passed central QC 1115 
criteria (Methods). Number of cases / number of controls are listed for each ancestry. 1000G, 1116 
1000 Genomes; HRC, Haplotype reference consortium; MAF, minor allele frequency; rsq, 1117 
squared correlation between imputed and true genotypes; imp, measure of imputation quality 1118 
(Methods); FE, fixed-effects; EUR, European ancestry; AFR African ancestry; EAS, East 1119 
Asian ancestry; SAS, South Asian ancestry; ASN, mixed Asian ancestries; LAT, Latin 1120 
American ancestry. Phet, heterogeneity p-value; PPhet, posterior probability of heterogeneity. * 1121 
Note the ASN and LAT ancestries were composed of a single study so did not require 1122 
ancestry specific meta-analysis. 1123 
 1124 
Figure 2 Association results of the transethnic GWAS meta-analysis and the prespecified 1125 
ancestry-specific meta-analysis in European samples. Shown are novel (red) and replicated 1126 
(black) genetic loci associated with any stroke or stroke subtypes. The upper panel displays 1127 
the Manhattan plot from the MANTRA transethnic GWAS meta-analysis for any stroke. The 1128 
dotted line marks the threshold of statistical significance (log10(Bayes factor) > 6.0). 1129 
 1130 
Figure 3 Genetic overlap between stroke and related vascular traits at the 32 genome-wide 1131 
significant loci for stroke. (A) Association results from the look-ups in published GWAS data 1132 
for related vascular traits. Symbol sizes reflect p-values for association with the related trait. 1133 
(B) Venn diagram. Loci reaching genome-wide significance for association with stroke 1134 
subtypes are marked by a dagger symbol (for CES), underlined (for LAS), or marked by an 1135 
asterisk (for SVS). Novel loci are in bold. Note that SH3PXD2A, WNT2B, PDE3A and 1136 
OBFC1 have previously been associated with AF (SH3PXD2A)

65
, DBP (WNT2B and 1137 

PDE3A)
24,88

 or SBP (OBFC1)
89

, but the respective lead SNPs were in low LD (r
2
<0.1 in 1138 

1000G cosmopolitan panel) with variants associated with stroke in the current GWAS. MRI, 1139 
magnetic resonance imaging; CAD, coronary artery disease; IMT, intima-media thickness. 1140 
BP, blood pressure; LDL, low density lipoprotein; HDL, high density lipoprotein. Note that 1141 
the lead variant for TBX3 is not included in the original data sets for BP traits (SBP and 1142 
DBP). Results are based on a perfect proxy SNP (rs35432, r

2
=1 in the European 1000G phase 1143 

3 reference). 1144 
 1145 
Figure 4 Shared genetic contribution between stroke and related vascular traits as determined 1146 
by weighted genetic risk scores (wGRS, upper panel) and LD score regression analysis (lower 1147 
panel). Effect sizes and significance levels are represented by color and symbol size. β, wGRS 1148 
effect size; R(g), genetic correlation.Sample sizes for related vascular traits are displayed in 1149 
Supplementary Table 12. 1150 
 1151 
Figure 5 Connection between stroke risk genes and approved drugs for antithrombotic 1152 
therapy. Shown are the connections between lead SNPs at stroke risk loci, biological stroke 1153 
risk genes, and individual targeted drugs. Lead SNPs reaching suggestive evidence for 1154 
association (MANTRA transethnic meta-analysis log10(Bayes factor) > 5) are shown in grey. 1155 
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rsID Chr Gene(s) 
Location relative 

to gene 

Risk allele/ 

reference allele 

Risk allele 

frequency, 

% 

Phenotype Analysis OR 95% CI P-value log10 (BF) 

  Novel associations  

rs880315 1p36 CASZ1 Intronic C/T 40 AS TRANS 1.05 1.04-1.07 3.62E-10 8.09 

rs12037987 1p13 WNT2B Intronic C/T 16 AS TRANS 1.07 1.05-1.10 2.73E-08 6.33 

rs146390073 1q43 RGS7 Intronic T/C 2 CES EUR 1.95 1.54-2.47 2.20E-08 NA* 

rs12476527 2p23 KCNK3 5’-UTR G/T 48 AS TRANS 1.05 1.03-1.07 6.44E-08 6.47 

rs7610618 3q25 TM4SF4-TM4SF1 Intergenic T/C 1 LAS EUR 2.33 1.74-3.12 1.44E-08 NA** 

rs34311906 4q25 ANK2 Intergenic C/T 41 AIS EUR 1.07 1.04-1.09 1.07E-08 5.67 

rs17612742 4q31 EDNRA Intronic C/T 21 LAS TRANS 1.19 1.13-1.26 1.46E-11 9.47 

rs6825454 4q31 FGA Intergenic C/T 31 AIS TRANS 1.06 1.04-1.08 7.43E-10 7.53 

rs11957829 5q23 LOC100505841 Intronic A/G 82 AIS TRANS 1.07 1.05-1.10 7.51E-09 6.67 

rs6891174 5q35 NKX2-5 Intergenic A/G 35 CES TRANS 1.11 1.07-1.16 5.82E-09 6.96 

rs16896398 6p21 SLC22A7-ZNF318 Intergenic T/A 34 AS TRANS 1.05 1.03-1.07 1.30E-08 6.60 

rs42039 7q21 CDK6 3’-UTR C/T 77 AIS TRANS 1.07 1.04-1.09 6.55E-09 6.84 

rs7859727 9p21 Chr9p21 ncRNA_intronic T/C 53 AS TRANS 1.05 1.03-1.07 4.22E-10 8.01 

rs10820405 9q31 LINC01492 ncRNA_intronic G/A 82 LAS EUR 1.20 1.12-1.28 4.51E-08 4.74 

rs2295786 10q24 SH3PXD2A Intergenic A/T 60 AS TRANS 1.05 1.04-1.07 1.80E-10 8.34 

rs7304841 12p12 PDE3A Intronic A/C 59 AIS TRANS 1.05 1.03-1.07 4.93E-08 5.87 

rs35436 12q24 TBX3 Intergenic C/T 62 AS TRANS 1.05 1.03-1.06 2.87E-08 6.29 

rs9526212 13q14 LRCH1 Intronic G/A 76 AS TRANS 1.06 1.04-1.08 5.03E-10 7.97 

rs4932370 15q26 FURIN-FES Intergenic A/G 33 AIS TRANS 1.05 1.03-1.07 2.88E-08 6.05 

rs11867415 17p13 PRPF8 Intronic G/A 18 AIS TRANS 1.09 1.06-1.13 4.81E-08 6.06 

rs2229383 19p13 ILF3-SLC44A2 Exonic; synon T/G 65 AIS TRANS 1.05 1.03-1.07 4.72E-08 6.02 

rs8103309 19p13 SMARCA4-LDLR Intergenic T/C 65 AS TRANS 1.05 1.03-1.07 3.40E-08 5.85 
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  Previously known associations  

rs12124533 1p13 TSPAN2 Intergenic T/C 24 LAS TRANS 1.17 1.11-1.23 1.22E-08 6.60 

rs1052053 1q22 PMF1-SEMA4A Exonic; nonsyn G/A 40 AS TRANS 1.06 1.05-1.08 2.70E-14 11.92 

rs13143308 4q25 PITX2 Intergenic T/G 28 CES TRANS 1.32 1.27-1.37 1.86E-47 45.10 

rs4959130 6p25 FOXF2 Intergenic A/G 14 AS TRANS 1.08 1.05-1.11 1.42E-09 7.52 

rs2107595 7p21 HDAC9-TWIST1 Intergenic A/G 24 LAS TRANS 1.21 1.15-1.26 3.65E-15 12.99 

rs635634 9q34 ABO Intergenic T/C 19 AIS EUR 1.08 1.05-1.11 9.18E-09 4.99 

rs2005108 11q22 MMP12 Intergenic T/C 12 AIS TRANS 1.08 1.05-1.11 3.33E-08 6.12 

rs3184504 12q24 SH2B3 Exonic; nonsyn T/C 45 AIS TRANS 1.08 1.06-1.10 2.17E-14 12.04 

rs12932445 16q22 ZFHX3 Intronic C/T 21 CES TRANS 1.20 1.15-1.25 6.86E-18 15.49 

rs12445022 16q24 ZCCHC14 Intergenic A/G 31 AS TRANS 1.06 1.04-1.08 1.05E-10 8.57 

Table 1 Results from the transethnic and fixed effects (transethnic and Europeans-only) GWAS meta-analyses. For each locus the variant reaching the highest BF in the MANTRA or the 1156 
lowest p-value in the fixed effects transethnic meta-analysis or the fixed effects Europeans-only meta-analysis, respectively, is shown and the respective stroke phenotype showing the 1157 
strongest association is specified. Gene names in bold indicate that the variant is located within the gene; in other cases the first gene corresponds to the closest gene, whereas additional 1158 
gene names indicate eQTL signals from multiple studies, or from both eQTLs and meQTLs, or genes previously suspected to be causal (LDLR) with a maximum of two genes reported. 1159 
Note that the lead SNPs in ILF3-SLC44A2 and SMARCA-LDLR are in low LD (r

2
=0.082). Chr, chromosome; TRANS, MANTRA transethnic meta-analysis; EUR, Europeans-only fixed-1160 

effects meta-analysis; OR, odds ratio; CI, confidence interval; BF, Bayes factor; NA, not assessed; * rs146390073 did not meet the MAF threshold of 0.01 in samples other than those of 1161 
European ancestry; **rs7610618: The trans-ethnic meta-analysis results showed high heterogeneity (PPhet=0.96) and were thus excluded1162 
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ONLINE METHODS 
 

Study design and phenotyping  

A detailed description of the study design, participating studies, and phenotype definitions for 

stroke and stroke subtypes is provided in the Supplementary Note. Characteristics of study 

participants are given in Supplementary Table 2 for each study. All participants provided 

written informed consent, and local research ethics committees and institutional review 

boards approved the individual studies. 

 

Genotyping, imputation and quality control 

Genotyping platforms and imputation methods for each participating study are described in 

Supplementary Table 2. All studies used imputed genotypes based on at least the 

1000Genomes phase 1 multiethnic reference panel and conducted logistic regression analyses 

(or Cox regression for longitudinal population-based cohort studies) for five stroke traits (AS, 

AIS, LAS, CES and SVS) with all measured and imputed genetic variants in dosage format 

using appropriate software under an additive genetic model with a minimum of sex and age as 

covariates. Information on additional covariates is given in Supplementary Table 2. 

Before ancestry-specific meta-analysis, quality control (QC) was performed on each study by 

two independent researchers following a standardized protocol based on the suggestions of 

Winkler et al.
72

 Marker names and alleles were harmonized across studies. Meta-analyses 

were restricted to autosomal biallelic markers from the 1000Genomes phase1 v3. Duplicate 

markers were removed from each study. P-Z plots, QQ-plots and allele-frequency-plots were 

constructed for each study. After visual inspection, analysis and QC was repeated if deemed 

necessary. QC was conducted independently for all participating studies in at least two sites. 

Individual study-level filters were set to remove extreme effect values (beta > 5 or beta < -5), 

rare SNPs (MAF < 0.01) and variants with low imputation accuracy (oevar_imp or info score 

< 0.5). Effective allele count was defined as twice the product of minor allele frequency, 

imputation accuracy (r
2
, info score ore oevar_imp), and number of cases. Variants with an 

effective allele count < 10 were excluded.
72

 The number of SNPs passing QC for each study 

is given in Supplementary Table 26. 

 

Genome-wide Association Meta-Analyses  

The overall analytical strategy is shown in Figure 1. We conducted fixed effects inverse 

variance weighted meta-analysis with METAL
73

, first in each ethnic group (EUR, EAS, AFR, 

SAS, LAT, and other ASN), followed by meta-analysis of ancestry-specific meta-analysis 

results. We constructed two versions of each meta-analysis: one with single genomic control 

(GC) applied and one without GC (for LD score regression analysis).  

The EUR specific and transethnic fixed effects meta-analysis were further filtered for 

heterogeneity (p_het < 5.0 x 10
-8

) and for the number of cases included for a specific marker. 

(< 50% of stroke cases were excluded). In addition, we ran a transethnic GWAS meta-

analysis using MANTRA.
15

 The latter was based on ancestry-specific meta-analysis results. 

Final MANTRA results were filtered for a MANTRA posterior probability heterogeneity p-

value < 0.95. SNPs with log10(BF) > 6 were considered to be genome-wide significant, 

whereas SNPs with 6 > log10(BF) > 5 were considered to show suggestive association. We 

used a method based on summary statistics
74

 to estimate the variance in liability explained by 

each lead variant. Disease prevalence was set to 5.5% for AS, to 4.4% for AIS and to 0.11% 

for IS subtype in Europeans.
75

 Disease prevalence was set to 2.97% for AIS, to 0.91% for 

LAS, to 0.24% for CES and to 1.76% for SVS in East-Asians (unpublished data from the 

Hisayama study). We used summary statistics from the Europeans-only fixed-effects meta-
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analysis and the East-Asian-only fixed-effects meta-analysis. Genomic inflation was 

calculated as lambda, using the GenABEL package (available through CRAN repositories). In 

addition, we calculated the LD score regression intercepts for the Europeans-only fixed 

effects meta-analysis using European LD scores. 

 

Shared genetic influences of individual loci on mechanistically defined stroke subtypes 

We used gwas-pw
22

 to detect shared genetic influences of LAS, CES and SVS, aiming to 

identify genetic variants that influence respective pairs of these traits. Gwas-pw estimates the 

posterior probability (PPA) for four models. Model 3 is the model where a given genomic 

region contains a genetic variant that influences both traits. We used the fixed-effects 

transethnic meta-analysis results as input, transforming results into signed Z scores based on 

p-value and sign of the log(OR). Chunk size (number of SNPs included in each chunk 

analyzed) was set automatically using an approximately independent block file (ld-select) as 

provided by the software. Correlation was set to reflect the overlap in controls. We deemed 

results of model 3 with a PPA > 0.9 as significant.
22

 

 

Conditional analysis 

We used GCTA-COJO
76

 to perform conditional association analysis in each of the stroke loci 

in Europeans. We first fit a step-wise joint regression model including all SNPs with joint p-

values < 5.0 x 10
-8

. In instances where regions included only one SNP, we fit a model 

including the top 2 SNPs from each region. The models made use of (i) summary statistics 

from the Europeans-only meta-analysis presented herein and (ii) genotype data for 3,291 

stroke cases and 11,820 controls of North European ancestry from NINDS-SIGN as an LD-

reference for each region. 

 

Gene-based analysis 

We performed gene-based tests using the VEGAS approach
77

 implemented in the VEGAS2 

software.
16

 We used 24,769 autosomal refseq genes to perform gene-based association 

studies. We used 1000 genomes phase 3 super populations African (AFR), East-Asian (EAS), 

European (EUR), American (AMR) and South-Asian (SAS) as a reference to compute pair-

wise LD between variants residing within a gene to perform gene-based association tests. We 

performed gene-based tests using ‘-top 10’ parameter in VEGAS2, which tests enrichment of 

top 10% of association p-values within a gene. To maintain specificity whilst including cis-

regulatory variants, we included variants that are located within 10kb of a gene’s 3’ and 5’ 

untranslated region (UTR). We performed 1 x 10
6
 simulations to compute empirical p-values 

association with each gene. For genes with p-value less than 1 x 10
-5

 we increased the number 

of simulations to 1 x 10
8
 to increase the accuracy of the association p-values. For individual 

stroke subtypes, we performed ancestry-specific gene-based association followed by meta-

analysis of gene association p-values using Stouffer’s method, based on sample size. 

 

Association of individual stroke risk variants with related vascular traits 

We systematically explored genetic overlap with AF, CAD, cIMT, cPL, diastolic BP, systolic 

BP, HDL-cholesterol levels, LDL-cholesterol levels, triglyceride levels, T2D, VTE and 

WMH. First, we acquired summary statistics from the appropriate consortia (Supplementary 

Table 12). For each of the non-stroke phenotypes we constructed a SNP set including the 

index variant of the non-stroke phenotype with p-value < 1.3 x 10
-4

 plus all variants in high 

LD (r
2
 in 1000G EUR > 0.9 with this index variant). If the MEGASTROKE lead SNP was 

included in this set of SNPs we deemed the overlap with the non-stroke phenotype to be 

significant. We show two different tiers: i) variants that showed genome-wide significance in 

the related vascular trait (p <5.0 x 10
-8

) and ii) variants that were not genome-wide significant 

but passed Bonferroni correction (p=1.3 x 10
-4

). 
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Association of genetic risk scores of related vascular traits with stroke and stroke subtypes 

Genetic risk scores generated from variants that are shown to be genome-wide associated with 

various vascular risk factors (VTE, DBP, SBP, mean arterial pressure [MAP], pulse pressure 

[PP], HTN, HDL-cholesterol, LDL-cholesterol, TG, T2D, CAD) were used to estimate the 

overlap between vascular traits and stroke and its subtypes. The effect allele for each risk 

factor variant was defined as the allele associated with increase in the risk factor levels. 

Corresponding allele information, beta-coefficient and the standard error from different stroke 

subtypes was extracted and used as input. Association was tested using the inverse-variance 

weighting (IVW) method implemented as an R package “gtx V 0.0.8” (available through 

CRAN repositories). 
We further conducted a sensitivity analyses using the MR-Egger method implemented as an R 

package (TwoSampleMR, available through CRAN repositories),
78

 which unlike the IVW 

method estimates the intercept term as part of the analysis. An intercept term significantly 

differing from zero suggests the presence of directional pleiotropy. We used a conservative 

significance threshold of p<0.05 for the intercept. In the presence of directional pleiotropy, 

leave-one-out analysis was carried out by re-testing the association of the vascular GRS with 

the outcome (stroke) leaving out each SNP in turn, to determine whether a single SNP is 

driving the association. We manually identified outlier SNPs that may be driving the observed 

directional pleiotropy and we repeated the analyses (IVW and MR-Egger) after excluding the 

variants exhibiting directional pleiotropy. 

The selection of SNPs for the vascular GRS is based on literature (Pubmed) search and the 

GWAS catalog (http://www.ebi.ac.uk/gwas/) identifying studies that performed GWAS of the 

various risk factors. The latest and largest GWAS of each risk factor was selected and the 

associated variant details were retrieved. For the GRS analysis only independent variants 

(r
2
<0.01, based on 1000G EUR panel) were used for the analysis (Supplementary Table 27). 

Risk variant selection for BP traits (SBP, DBP, MAP and PP) was further extended to studies 

with gene-centric chips. We used beta-coefficients extracted from the summary statistics of 

the International Consortium of BP GWAS
79,80

 as weights for this GRS analysis. A p-value of 

< 5.6 x 10
-3

 correcting for 9 independent phenotypes was considered significant. The number 

of independent vascular phenotypes, taking into account correlation between the phenotypes 

considered, was estimated based on individual level data from the 3C study using the online 

tool matSpDlite (http://neurogenetics.qimrberghofer.edu.au/matSpDlite/). 

 

Shared genetic contribution to stroke and related vascular traits at the whole genome level 

We used LD score regression to estimate the genetic correlation between stroke and related 

vascular traits.
33,34

 We conducted analyses on the European and East-Asian stroke GWAS 

summary statistics only. Summary statistics from the GWAS meta-analyses for vascular risk 

factors and intermediate or related vascular phenotypes (BP, blood lipids, T2D, cIMT, cPL, 

AF, VTE, CAD, WMH) were acquired from the respective consortia, as detailed in 

Supplementary Table 12. For LD-score regression in East-Asians we further received access 

to unpublished summary statistics of GWAS for blood lipids conducted in BioBank Japan, as 

described in the Supplementary Note. For each trait, we filtered the summary statistics to the 

subset of HapMap 3 SNPs to reduce the potential for bias due to poor imputation quality. 

Analyses were performed separately using summary statistics from the European and East 

Asian-specific meta-analysis. We used the European or East-Asian LD score files calculated 

from the 1000G reference panel and provided by the developers. A p-value of < 5.6 x 10
-3

 

correcting for 9 independent phenotypes was considered significant. All analyses were 

performed using the ldsc package (https://github.com/bulik/ldsc). 

 

Global epigenetic patterns at the 32 stroke risk loci 
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We used the epigwas tool
35

 to test for cell-specific enrichment in chromatin marks that were 

previously shown to be phenotypically cell-type specific in ENCODE and/or RoadMap 

epigenome data (H3K4me1, H3K4me3, H3K9ac)
35

, leveraging the recent release of 

ENCODE/RoadMap epigenome data from 127 tissue types.
36

 Histone ChIP-seq data for 

narrow contiguous regions of enrichment was used to calculate the enrichment score (height 

of the nearest tall peak / distance to the peak) for the lead variant and proxies (r
2 

> 0.8 in the 

1000G cosmopolitan panel). Significance was estimated by examining the relative proximity 

and specificity of the test SNP set with 10,000 sets (permutation) of matched background. In 

addition, Bonferroni correction for the number of chromatin marks tested was applied. 

 

Pathway Analyses 

To identify pathways overrepresented in the stroke association results we used Data-driven 

Expression-prioritized Integration for Complex Traits (DEPICT
37

), Ingenuity Pathway 

Analysis (IPA, https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/), 

and VEGAS2Pathway.
39

 DEPICT version 1 rel 194, was used to identify biological pathways, 

tissues, and cell types enriched among suggestive associations (log10[BF] > 5) for any stroke 

and stroke subtypes in the MANTRA transethnic GWAS. Results are presented for the 

MANTRA transethnic analysis.  We deemed DEPICT pathways with an FDR <0.05 as 

statistically significant.  

IPA Pathway analysis was conducted using an extended gene list. The latter comprised genes 

lying in the boundaries defined by r
2
 > 0.5 with the lead SNP in Europeans or East-Asians, or 

being located +50kB from the lead SNP, for all suggestive loci reaching p < 1.0 x 10
-5 

or 

log10(BF) > 5, and consisted of 214 genes (Supplementary Table 25). This gene list was 

taken as an input for IPA, using only findings from human and experimentally verified 

results. Otherwise, standard parameters were used for the analysis. We corrected canonical 

pathway p-value with the Benjamini-Hochberg method and deemed an FDR < 0.05 as 

significant.  

We performed gene-wide gene-set enrichment analysis using the VEGAS2Pathway 

approach
39

 to test which Biosystem terms
38

 are enriched with VEGAS2 derived gene 

association p-values for stroke subtypes. VEGAS2Pathway performs a competitive gene-set 

enrichment test, while accounting for gene-density in LD blocks (or correlated association p-

values of neighbouring genes), SNP density and pathway size using a resampling strategy.  

For individual stroke subtypes we performed separate ancestry-specific gene-set enrichment 

analysis. Next, we combined the gene-set enrichment association p-values across ancestry 

using Stouffer’s method for sample size weighted combination of p-values. For each stroke 

subtype we tested association of 9,981 Biosystem genesets terms. 

 

Fine-mapping derived from credible SNP set analyses 

We implemented the method of Maller et al.
81

, converting our ancestry-specific meta-analysis 

p-values to Bayes factors using Wakefield's approximation
40

, in all stroke phenotypes in the 

EUR only, EAS only and AFR only analysis. We used all SNPs in LD with the lead SNP (r
2 

> 

0.1, ancestry-specific). The Bayes factors were then used to calculate posterior probabilities, 

based on the assumption of a single causal SNP in each region. For all regions, we 

constructed 95% credible sets of potentially causal SNPs. 

 

Investigation of eQTLs, pQTLs, meQTLs and regulatory marks in different tissues 

The following datasets, covering a large variety of tissue and cell types were interrogated for 

eQTLs, pQTLs, and meQTLs:  

- The Genotype-Tissue Expression (GTEx-V6) project data providing significant eQTL 

information from 44 post-mortem tissues (449 individuals) 



31 

 

(http://biorxiv.org/content/early/2016/09/09/074450), significance is based on gene-

specific p-value threshold that is permutation-adjusted for multiple SNPs per gene. 

- The Genome-wide Repository of Associations between SNPs and Phenotypes build 2.0 

(GRASP2),
46,47

 as well as a collected expression and epigenetic QTL database of >100 

sources covering a wide range of cell and tissue types (Supplementary Note), using 

p<5x10
-6 

as a significance threshold for association with expression of a transcript in the 

original study  

- The Human Genetic Variation Database (HGVD)
48

 providing eQTL information from 

peripheral blood cells in a Japanese population (N=1,208) with significance defined by a 

FDR < 5%. 

- The Biobank-based Integrative Omics Studies (BIOS) providing eQTLs from peripheral 

blood RNA-seq data in 2,116 unrelated individuals
49

, significance is defined by FDR < 

5%. 

- A subset of the Blueprint epigenome project
50

 with eQTL, meQTL and histone 

modification data (H3K4me1 and H3K27ac) in CD14+ monocytes, CD16+ neutrophils 

and CD4+ naïve T cells from 197 individuals; these were mapped using the classical QTL 

association test, allele-specific expression (ASE) test and the combined haplotype test, 

with significance defined by FDR < 5%.  

- The Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study 

(STARNET)
51

, providing eQTL data from vascular and metabolic tissues in 600 CAD 

patients, with association p-values corrected by Benjamini-Hochberg (p < 0.05) 

- The aortic endothelial cells study
52

 providing eQTL data from human aortic endothelial 

cells in 147 individuals, with Bonferroni multiple testing correction for the number of 

independent SNPs (p < 1.0 x 10
-4

)  

- The ARIC cohort
53

 providing meQTL information from peripheral blood in 794 of 

European ancestry and 784 of African-American ancestry individuals from, with multiple 

testing correction for the number of unique CpG probes in the look-up. 

- The Cooperative health Research in the region of Augsburg (KORA) cohort with pQTL 

information from the human blood plasma proteome
54

 measuring 1,124 proteins on the 

SomaSCAN platform in 1,000 participants. Significance for each association was set at p < 

5.0 x 10
-8

. 

In each of these datasets we report the most significant cis QTL, meQTL, or pQTL surpassing 

a study-specific predefined significance level or FDR, considering only QTLs in LD with the 

lead stroke SNP at an r
2
>0.8 (in 1000G, as well as queries of multiple builds of SNAP

82
 and 

SNiPA
83

), suggesting high concordance. Results are presented grouped per tissue or cell type 

(Supplementary Table 23), or per stroke risk locus (Supplementary Table 22). In addition, 

we also systematically report the association of the top QTL with stroke risk, and of the lead 

stroke risk variant with the corresponding transcript expression, methylation level, or protein 

level (Supplementary Table 23).    

In addition we used a subset of the Blueprint epigenome project in CD14+ monocytes, 

CD16+ neutrophils and CD4+ naïve T cells from 197 individuals
50

 and Haploreg V4
84

 to 

annotate the lead variants and proxies for enrichment in specific histone modification marks 

for the chromatin state, based on ChIP-Seq data from multiple cell/tissue types from 

ENCODE (Encyclopedia of DNA Elements)
85

 and NIH RoadMap epigenome.
36

 Results for 

each of the lead SNPs and its proxies are displayed in detail in Supplementary Table 22.  
 

Integration of association statistics and in silico functional information using RiVIERA-

beta 

To identify the most plausible causal variants and genes we used the RiVIERA software
59

, 

which jointly models the summary association statistics and the corresponding epigenetic 

regulatory information in a Bayesian framework to estimate the PPA. The empirical prior of a 

http://biorxiv.org/content/early/2016/09/09/074450
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variant to be associated with the respective trait through regulatory features was generated 

using the 848 tissue-specific epigenomic data in 7 chromatin (H3K4me1, H3K4me3, 

H3K36me3, H3K27me3, H3K9me3, H3K27ac, H3K9ac) and DNA accessibility (DNase I) 

marks from the ENCODE/RoadMap epigenome data. Binary epigenomic annotation matrices 

of a variant overlapping the narrow peaks were generated. For inferring the causal region, 

RiVIERA-beta performs a repeated (n=1,000) random sampling step per locus, with the step 

size set to 1.0 x 10
-4

. Iteration is performed until the convergence (acceptance rate of > 60 %) 

is achieved, which is critical for the accurate estimation of PPA. We generated 95% credible 

sets in each region based on the PPA. Regional plots were generated using the association 

statistics and the PPA. Epigenetic enrichment over a fixed window size (50bp) per tissue 

group was generated, by taking cumulative sum of empirical prior weighted global epigenetic 

enrichment. Tissues were grouped into 19 groups as defined in the NIH RoadMap epigenome 

project. 

 

Scoring method 

In an attempt to prioritize the most likely biological candidate genes, we integrated functional 

and biological information into an empirical score for each of the genes residing in the 32 

genome-wide significant loci. These comprised 149 genes within the region defined by an r
2
 > 

0.5 in any of the 1000G European or East-Asian populations or physical distances of ±50 kb 

from the lead SNP of the respective locus (Supplementary Table 25). A score of 1 was 

assigned for being the nearest gene to the lead SNP, for harboring a missense variant, for 

harboring histone marks H3K4me3, H3K9ac and H3K4me1 peaks in cells types that showed 

significant enrichment in epigwas analysis, and functioning as an eGene for an eQTL, 

meQTL, or pQTL (1 point for each) in at least one study and one tissue type. In addition, a 

score of 1 was assigned for each stroke phenotype showing evidence of being a drug target 

gene in the DrugBank database (ATC-C and ATC-B01) and the Therapeutic Target Database 

(Supplementary Table 25), and for overlap with biological pathways in DEPICT, IPA, or 

VEGAS2 (Supplementary Tables 18 to 20). 

 

 

Drug-Target gene enrichment analysis 

For each locus containing a variant with log10(BF) > 5 in the MANTRA analysis, we 

annotated the genes by considering LD structures (r
2
 > 0.5 in any of 1KG EUR or ASN 

populations) or physical distances (±50 kbp ) from the lead SNP of the respective locus. Drug 

target genes were extracted from the DrugBank database
86

 (considering those registered as 

pharmacological "active targets; https://www.drugbank.ca/) and Therapeutic Target 

Database
87

 (TTD; http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp) resulting in a list of 

1,123 genes (and corresponding proteins) annotated to currently approved drugs indicated for 

any diseases (Supplementary Table 25). Drugs indicated for antithrombotic therapy (n = 69) 

and cardiovascular diseases (n = 324) were curated from Anatomical Therapeutic Chemical 

(ATC) codes (Supplementary Table 25). Enrichment of overlap between stroke-associated 

genes with drug targets for antithrombotic therapy and cardiovascular diseases were assessed 

by Fisher’s exact test. 

 
Data availability 

The datasets generated and/or analyzed during the current study are available from the corresponding authors 

upon reasonable request. 

 

http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp
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