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Summary: Acute kidney injury (AKI) is a severe and frequent condition in hospitalized patients. Currently, no

efficient therapy of AKI is available. Therefore, efforts focus on early prevention, and potentially early initiation

of renal replacement therapy to improve the outcome in AKI. The detection of AKI in hospitalized patients

implies the need for early, accurate, robust, and easily accessible biomarkers of AKI evolution and outcome

prediction because only a narrow window exists to implement the earlier-described measures. Even more

challenging is the multifactorial origin of AKI and that the changes of molecular expression induced by AKI are

difficult to distinguish from that of the diseases associated or causing AKI as shock or sepsis. During the past

decade, a considerable number of protein biomarkers for AKI have been described and we expect from recent

advances in the field of omics technologies that this number will increase further in the future and be extended

to other sorts of biomolecules, such as RNAs, lipids, and metabolites. However, most of these biomarkers are

poorly defined by their AKI-associated molecular context. In this review, we describe the state-of-the-art tissue

and biofluid proteomic and metabolomic technologies and new bioinformatics approaches for proteomic and

metabolomic pathway and molecular interaction analysis. In the second part of the review, we focus on AKI-

associated proteomic and metabolomic biomarkers and briefly outline their pathophysiological context in AKI.

Semin Nephrol ]:]]]-]]] C 2017 Elsevier Inc. All rights reserved.

Keywords: Proteomics, metabolomics, pathway analysis, AKI diagnosis

Q6

A
cute kidney injury (AKI) is the most frequent

acuteQ7 renal condition and is associated

withQ8 increased morbidity and mortality.1,2

Currently, AKI is defined and classified by a rapid

decrease in glomerular function and/or urine output

based on increases of serum creatinine or decreases of

urine production.3 This definition is applied uniformly

in clinical medicine and experimental AKI. In addition,

patient history and physical examination, urine chem-

istry and cytologic analysis, ultrasound, and very rarely

kidney biopsy currently are used as diagnostic tools in

AKI. However, these diagnostic methods have limi-

tations. They do not permit early detection of AKI or

prediction of the course of AKI.

To improve patient outcome, it would be critical to

have clinical tools that permit early detection of

patients at risk of and those with evolving AKI. It also

would be critical to have markers available to deter-

mine AKI progression, assess response to therapy,

subsequent requirement of renal replacement therapy,

as well as the degree of renal regeneration or residual

chronic kidney disease after an AKI episode. Finally, it

would be ideal to have markers that also are mediators

of the different pathophysiological pathways leading to

AKI.

Numerous biomarkers have been reported to enable

the early detection of AKI. However, most of these

biomarkers are linked closely to a single pathologic

process, such as tubular injury. This may explain why

these markers frequently have performed poorly in

AKI populations with other pathophysiological mech-

anisms or of heterogeneous origin. In this review,

various biomarkers and the currently experimental

approaches of proteomics and metabolomics in bio-

fluids and kidney tissue are highlighted. Proteomic and

metabolomic approaches may provide multimarker
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panels that answer the earlier questions that are critical

in AKI.

TECHNOLOGIC ADVANCES IN PROTEOMICS

Introduction to Proteomics

Proteins and peptides constitute the main functional

and structural units of the cell. Thus, the proteome and

peptidome are associated with the health status of an

organism. Qualitative and quantitative differences of

the proteome and peptidome composition reflect patho-

logic conditions. Because most human diseases are

characterized by a complex landscape at the molecular

level it is imperative to acquire a global picture of the

proteome to depict pathways and proteins with pivotal

roles in pathogenesis. The introduction of high sensi-

tivity and resolution mass spectrometry analytic

approaches has enabled the identification and quanti-

tation of proteins and peptides in tissues and biological

fluids, and offered novel insights on disease-associated

processes at the molecular level. The information

obtained from these experiments could be exploited

in the clinical setting by the introduction of biomarkers

(diagnostic, predictive, prognostic) and targeted ther-

apeutic approaches. A recent example of high-sensi-

tivity proteomics analysis in the context of AKI is the

study by Malagrino et al,4 which resulted in the

identification of 55 putative biomarkers in porcine

urine. However, only one biomarker, dipeptidyl pepti-

dase IV, was validated in the urine of human subjects

with diabetic nephropathy, which is no model for

AKI.4 One of the main findings of proteomics studies

to date has been that a single biomarker cannot fully

account for the complexity of human diseases and thus

it is preferable to use biomarker panels. Moreover, the

high number of proteins contained in biological sam-

ples (several thousands) and the extended range of their

concentration (spanning 12 orders of magnitude in

the case of plasma) hinders the complete character-

ization of proteomes. In addition, post-translational

modifications of specific amino acids greatly increase

the complexity of proteins and peptides present

in human samples and present a formidable analytic

challenge.

Proteomic Technologies

Initially, two-dimensional gel electrophoresisQ9 was the

principal method for protein separation before mass

spectrometry (MS), but now largely is replaced

by liquid chromatography (LC) and capillary electro-

phoresis (CE) for numerous reasons including higher-

resolving capacity and ease of use.

Small proteins and peptides can be analyzed directly

by LC or CE coupled to MS. Larger proteins have to

be cleaved to peptides, mostly by trypsin, which

cleaves polypeptide chains after lysine and arginine

residues.

Many different MS methods exist but they share

common principles. Peptides are ionized and then

subjected to an electric or magnetic field. The subse-

quent ion characterization is based on its mass over

charge ratio. Matrix-assisted laser desorption/ioniza-

tion (MALDI), surface-enhanced laser desorption-ion-

ization, and electron spray ionization (ESI) are the

main ionization techniques that have been used in

clinical proteomics. In MALDI, samples are spotted

onto a plate, mixed with matrix, dried, and analyzed

under high vacuum. In surface-enhanced laser desorp-

tion-ionization, the principle of MALDI is combined

with selective surface binding to functionalized matri-

ces. Different chip surfaces for hydrophobic, ionic, or

affinity binding of proteins are commercially available.

Before analysis, the sample is spotted on the function-

alized chip matrix, and all nonadsorbed molecules are

washed off. In ESI, the separation effluent is ionized

online in a high-voltage field that results in desolvati-

zation. In comparison, MALDI results in single-

charged ions and readily interpretable spectra, whereas

ESI generates multiply charged ions, resulting in more

complex spectra but richer in information. The advan-

tages of ESI, as compared with MALDI, are superior

ionization efficiency and consequently better linear

response. Furthermore, ESI is more suited for online

coupling with LC or CE, whereas in MALDI fractions

must be collected to be spotted on the plate. Many

different approaches exist for protein mass detection,

mostly in respect to amplification of ionic signals.

Time of flight, Orbitrap Q10, and Triple Quadrupoles

are the most commonly used analyzers in biomarker

research.

In principle, only relative quantification is possible

with MS profiling techniques based on an approximate

proportionality between signal intensity and the pro-

tein/peptide abundance in the sample. For comparison

of different samples, normalization procedures there-

fore are required to compensate for biological and

analytic variances (ie, by different hydration states of

samples or signal suppression effects).5 Advanced

methods such as isobaric tags for relative and absolute

quantification and multiple reaction monitoring

(MRM) are based on exogenous synthetic peptide

standards and thus are restricted to cases in which

exact sequence information of the analytes to be

quantified is available. Even if this is the case, these

may well be suited to correct for analytic variances, but

are inappropriate in correcting for differences in

sample dilution. Creatinine might be a possibility to

normalize the different dilutions of a set of samples,

but certainly is less suited to correct for analytic

variances. As shown by Jantos-Siwy et al,6 the use of
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29 high-abundant, low-variability, collagen-derived

peptide fragments as internal ion signal normalization

standards allowed in urinary low-molecular-weight

proteome analysis (mass range, 0.8-20 kDa) both

correction of analytic variances during proteomic

profiling and correction for different dilution levels of

individual urine samples in one single data analysis

integrative step. Thus, a set of internal protein cali-

brants of known signal intensities might be the best

option to correct for intersample variability in MS

profiling experiments.

Tissue Versus Biofluid Proteomics

In respect to specimen collection, tissue is close to the

origin of the disease, but its collection is invasive.

Blood and urine can be collected noninvasively. Blood

plasma or serum has a high dynamic range, affording

depletion of most abundant proteins, and is character-

ized by low stability because of high proteolytic

activity. Urine has a higher stability and lower com-

plexity than blood and can be obtained easily. The use

of a standardized collection protocol including deep

freezing directly after urine collection avoids proteol-

ysis by urinary protease inhibition.

Preanalytic processing steps such as centrifugation

of insoluble material, depletion of most abundant

proteins, ultrafiltration to remove high- or low-mass

proteins, and precipitation introduce bias and add

variability in the preparation of biofluids, but allow

measurement of low-abundance proteins.

Methods in Tissue Proteomics

In comparison with body fluid proteomics, efficient

disruption and homogenization of tissue material is a

first step of the tissue proteomics pipeline. Until now,

several homogenization strategies have been devel-

oped,7,8 with the combination of mechanical and

chemical methods being applied most commonly for

processing tissue specimens. However, depending on

the type of the tissue sample analyzed (eg, soft tissue,

hard tissue), specimen size, and down-stream analytic

methodology, tissue disruption and protein extraction

protocols need to be adjusted and optimized (including

reproducibility and efficiency of protein extraction).

Despite recent advances in the proteomics field, several

major limitations of tissue proteomics analysis still

remain, mostly being associated with the high com-

plexity and broad dynamic range of protein concen-

trations, as well as high cellular heterogeneity.9

Because of the high complexity of tissue, and to

identify low-abundance disease-related proteins, addi-

tional fractionation approaches are used (either at the

level of cellular organization, protein, or peptide).

Thus, studying the tissue proteome provides an

opportunity to analyze specific subcellular fractions,

allowing for a deeper understanding of disease-asso-

ciated processes. To address the cellular tissue hetero-

geneity, laser-capture microdissection can be used.10

However, the small size of the tissue sample may

preclude the use of laser-capture microdissection.

Moreover, considering the invasive way of collection

of the tissue samples, availability of fresh-frozen

specimens might be an issue. To overcome this

limitation, recent improvements in the sample prepa-

ration protocols allows the analysis of formalin-fixed,

paraffin-embedded tissue.2,11,12 In addition, a tissue

sample contains protein up-regulated or down-regu-

lated at one specific time point in the course of AKI.

Because it will not be possible to collect several tissue

samples at different time points in human beings, this

will limit the value of tissue proteomics in the dynamic

process of AKI. A schematic overview comparing the

advantages and limitations of tissue versus biofluid

proteomics is presented in F1Figure 1. As indicated in

Figure 1, performing both types of proteomic analyses

enables complementary data cross-correlation for com-

plete proteome expression profiling.

Future Trends in Proteomics

The MS instrumentation and methods have improved

greatly during the past decade and several recent

developments have indicated that proteomics analysis

will greatly benefit from innovative advances.

The sensitivity of shotgun proteomics methods for

untargeted proteomic profiling has increased signifi-

cantly with limit-of-detection values in the low femto-

molar range in the case of complex or even atomolar Q11

range in the case of simple protein mixtures. The

technological advances are supplemented by computa-

tional advances in the processing and subsequent

bioinformatics interpretation of the generated large

MS data sets. An unresolved issue in shotgun
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Figure 1. Advantages and limitations of tissue and biofluid
proteomics.
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proteomics, however, is the inability to quantify the

detected protein targets directly.

New targeted approaches such as MRM, which also

is called selected reaction monitoring, have emerged in

recent years and allow absolute quantification of

several proteins of interest in a complex mixture.

MRM allows the detection and quantitation of specific

peptides, and requires a triple quadrupole MS. It selects

specific fragments for a known peptide of interest and

precisely measures the abundance of each fragment in

a subsequent step. For quantitative analyses, a known

quantity of the same but isotope-labeled peptide is

added to the sample before the MS run. The labeled

peptide has the same amino acid sequence as the

unlabeled native peptide, resulting in the same frag-

mentation ions but in a different mass owing to the

isotope label. This enables absolute quantification of

the peptide of interest, by comparing the signal

intensities of corresponding labeled and unlabeled

ions. Moreover, the use of stable isotope-labeled

peptides ensures the specificity of the signal measured

from the corresponding native peptides.13 An alterna-

tive to using labeled peptides for MRM was inves-

tigated by Gilquin et al,14 who introduced a technique

named protein standard absolute quantification for

measuring the levels of four putative AKI biomarkers

in urine. The approach is based on the use of labeled

protein standards and has the advantage that it takes

into account all steps before MS analysis (in contrast to

a typical MRM experiment that is based on the

addition of a known amount of standard isotope-

labeled peptides to the digested peptide mixture before

MS analysis).

It is appealing to consider that specific PTMsQ12

(phosphorylation, glycosylation, acetylation, and so

forth) that are associated with pathologic conditions

could be used as highly specific biomarkers.15 More-

over, novel PTMs are identified and measured with

high accuracy, but their relevance to specific diseases

remains to be elucidated. An interesting example is the

quantification of proteins that undergo adenosine

diphosphate–ribosylation upon oxidative stress in

HeLa cells.16 This highly challenging measurement

was made possible by the use of a hybrid MS instru-

ment that combines the selectivity of a triple quadru-

pole with the high resolution of an Orbitrap. The

widespread use of this approach, named parallel

reaction monitoring, will greatly facilitate the applica-

tion of quantitative proteomics in research and the

clinical setting. In comparison with MRM, parallel

reaction monitoring can have higher sensitivity and

throughput, and assays can be developed more

easily.17

Another recent advance in proteomics analysis was

the introduction of the data-independent acquisition

approach named sequential window acquisition of all

theoretical fragment ion spectra.18,19 This innovative

approach achieves quantitation of several hundred

proteins without the use of labeled standards. It is

reasonable to expect that with further improvements in

instrumentation and software that we will be able in the

near future to both identify and quantitate the majority

of proteins contained in a biological sample.

TECHNOLOGIC ADVANCES IN METABOLOMICS

Introduction to Metabolomics

Metabolomics is defined as the analyses of molecules

smaller than 1,000 Da, which are transformed as a

result of, and in support of, an organism’s metabolism.

The metabolome is therefore a complete set of metab-

olites that can be produced and consumed by organ-

isms.20,21 Typically, the metabolome is measured in

fluids or tissues.20 In the past, these experiments

focused on a single metabolite that was attributed to

a specific disease or enzymatic reaction.22 Today,

technologies and computational tools allow a more

extensive and wide-ranging investigation of many

metabolites within a single measurement, providing a

broader insight into mechanisms of diseases. In this

section we present the state-of-the-art techniques in

metabolomics and how they can be applied in the

discovery of AKI biomarkers. A schematic overview

of a metabolomics workflow is presented in F2Figure 2.

There are two main approaches in metabolomic

experiments: nontargeted and targeted analyses. Tar-

geted analysis is focused on a specific set of com-

pounds, which often are similar in structure and

chemical properties, and/or derived from the same

biological pathway.21,23 All aspects of the study, from

sample preparation to data analysis, are tailored to the

measurement of these specific metabolites. In contrast,

nontargeted approaches take a global approach by

seeking to measure as many metabolites as possible

and using statistical tools to identify those that differ

between healthy and ill individuals.21,23 Nontargeted

approaches are more challenging because these meth-

ods are more complex compared with targeted analy-

sis, and novel hypotheses for diagnosis and etiology of

diseases may be derived from their results.

Metabolomic Technologies

Nuclear magnetic resonance (NMR) spectroscopy and

MS are the two main analytical platforms used in

modern metabolomic studies. Both platforms have

advantages and weakness for nontargeted and targeted

approaches.

NMR is a highly robust instrument. This method is

quantitative, nondestructive, and provides details of the

molecular structure of metabolites detected.23,24 High-
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resolution NMR can acquire thousands of distinct

peaks and has the potential to detect and quantify

hundreds of metabolites.25,26 Because of the rather

simple sample preparation and relatively short time for

sample measurement, this top-down approach is well

suited for high-throughput, nontargeted, metabolite

fingerprinting investigations20,24,26 and provides val-

uable information on the structure of compounds.23

One drawback of NMR, however, is its relatively low

sensitivity when compared with MS. Despite this

limitation, NMR has been a valuable tool in a wide

range of studies of human fluids,27–29 especially of

urine. Urine contains large amounts of salts that can

cause intersample variability in metabolite measure-

ments.24,30,31 This variability has convoluting effects

for statistical analyses. Therefore, both ionic strength

and pH need to be well controlled by adding adequate

buffer solutions.24,31 Blood and tissue samples also can

be analyzed using NMR with more extensive sample

preparation.24,32

MS also is used widely in metabolomics. Mass

spectrometers consist of an ionization source, mass

analyzer, and detector. The choice of the MS system

greatly may influence the quality of metabolomics data

generated depending on the focus of the experiment.

ESI is best suited for semipolar and polar compounds,

whereas atmospheric pressure chemical ionization isQ13

better for neutral or less polar compounds.33 Mass

analyzers commonly used in metabolomics are quadru-

pole time-of-flight, Orbitrap, and Fourier transform.

Because of their high resolving power, these instru-

ments are ideal for distinguishing the chemical com-

plexity of the metabolome.34 More recently, Fourier

transform ion cyclotron MS have been used more

widely in metabolomics. These are the most advanced

mass analyzers in terms of mass accuracy and resolv-

ing power,34,35 helping to determine the exact molec-

ular formulas of metabolites, and developing

metabolite networks that have the potential to represent

biochemical reaction networks that would be seen in

nature.34,36

Finally, separation techniques are also an important

aspect to consider. The three main techniques used in

online coupling to MS are gas chromatography,

liquid chromatography, and capillary electrophoresis.

Separation techniques reduce matrix effects, ionization

suppression, and help to separate isomers. In addition,

these technologies add an extra orthogonal dimension,

which is important to improve metabolite

identification.33,37

Sample preparation is more critical in MS-based

than in NMR experiments because the extraction of

metabolites needs removal of unwanted proteins and

salts that adversely will affect the quality of measure-

ments as well as the instrumentation itself.38 Solid- and

liquid-phase extractions are used most commonly in
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Figure 2. Schematic representation of a metabolomics workflow. Abbreviations: ANOVA, analysis of variance; 2D,
two-dimensional.
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metabolomics, and applied to blood, urine, and tissues

samples. Critical to all metabolite extraction methods is

the choice of solvent, which are categorized according

to toxicity, solubilizing power, selectivity, dissolution

rate, chemical reactivity, and pH.38 Most important is

the solvent selectively, which is based on the polar

index of the solvent and influences the extraction

efficiency of polar or nonpolar metabolites from the

original matrix.38

Analysis of Metabolomics Data

The large amount of acquired data in metabolomics

experiments requires sophisticated data handling strat-

egies and advanced statistical tools. In addition, before

any statistical analysis, data preprocessing must take

place to ensure the best possible results from the

applied statistics.

The key steps in metabolomic data preprocessing

are spectral alignment, normalization, transformation,

and scaling. Normalization of data is required for

accurate metabolite quantification. One common

method is normalizing data based on endogenous

metabolites, such as urinary creatinine. However,

creatinine itself may be somewhat variable, and subject

to variation owing to diseases such as AKI.20,39

Therefore, alternative methods for normalization, such

as probabilistic quotient normalization, should be

considered to reduce bias.40 This approach is based

on the calculation of the most probable dilution factor

from the distribution of quotients between all spectra

and a reference spectrum.39 Evaluation of a list of

normalization methods can be found in a study

performed in autosomal polycystic kidney disease.41

Many of the normalization, transformation, and scaling

strategies can be applied to both NMR and MS-based

data, but are especially important in MS because the

range in signal intensities can vary by several orders of

magnitude.42

Metabolomics data are evaluated by univariate and

multivariate analyses. For targeted metabolite analyses,

univariate statistics are adequate, which analyzes each

metabolite independently of other factors. These tools

can include the Student t test, Wilcoxon test, analysis

of variance, or Kruskal-Wallis one-way analysis of

variance.20,43 In nontargeted metabolomics analysis,

data are analyzed in a multivariate way. Multiple

metabolite features are statistically analyzed simulta-

neously with an attempt to evaluate patterns in metab-

olite data that can discriminate groups.20,43 In

multivariate statistics, both unsupervised and super-

vised approaches can be applied depending on added

knowledge of the sample classification to control for

other conditions. Unsupervised methods such as prin-

ciple component analysis can be applied to summarize

complex data.20,43,44 It reduces the high dimensionality

of the data by linear transformation to principle

components without consideration for a y-variable

(ie, classifier variable). In this analysis, score vectors

of each sample can be obtained and plotted to show

which components of the data best explain the differ-

ences between groups.20,43,44 This is an important step

to understand the data structure and detect outliers and

review the influence of the metadata of samples such as

sex. On the other hand, supervised multivariate anal-

yses identify metabolic patterns that correlate with a

particular phenotypic y-variable,20 and can be based on

the results of unsupervised methods. One frequently

used method is partial least-squares analysis, used as a

discriminatory or a regression analysis depending on

the y-variable of interest. In this context, multivariate

statistics is a powerful selection tool that narrows down

data sets of thousands of variables to a manageable

number that is most responsible for explaining the

metabolic variation in the y-variable.20,44,45 Once data

patterns have been identified as significant, the identi-

fication of individual metabolites can be achieved by

two-dimensional experiments (ie, two-dimensional

NMR or MS/MS) and cross-referenced with databases

such as the human metabolome database.46 Identified

metabolites then can be added to pathway enrichment

analyses and merged with other omics technologies

such as proteomics to gain a global picture of the

metabolic processes in AKI.

Future Trends in Metabolomics

Although many novel and cutting-edge techniques

have been developed, the challenge in current metab-

olomics is its transition to clinical use. Integrating

metabolomic data with other omics data for the

purpose of drug discovery and development is one

direction in which this field may proceed.47,48 Another

direction undoubtedly will be personalized medicine,49

in which nontargeted data can be used to characterize

the metabolic fingerprint of individual patients. Flux

analysis also is an emerging field within metabolo-

mics,50,51 and likely will be important in future

medicine to characterize metabolic changes in real

time.

MULTIVARIATE AND MULTI-OMICS DATA

INTEGRATION

Multi-Omics Data Comparison

Recent advancements in genomics (next-generation

sequencing) and proteomics MS technologies have

shown that, although the clinical presentation may be

the same, many complex and/or chronic diseases

present high levels of heterogeneity at the molecular

level.52 The high heterogeneity at the molecular level is
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one of the main reasons why experimental findings

rarely may end in clinical biomarkers because it

severely affects the statistical assessment in the pre-

clinical and early clinical phases.53 Therefore, one

biomarker may not be applicable to all patients with

a disease with consistent clinical or pathologic features.

We require a better understanding of molecular mech-

anisms of diseases and their progression. This ulti-

mately will lead to better diagnostic biomarkers.

Appropriate analysis of -omicsQ14 data and validating

the results with different technologies (multi-omics

comparison) provides new insights in the disease

process and identifies biomarkers that are clinically

useful and also disease mediators. The comparative

assessment of data from different sources such as

tissue, urine, and plasma also seems advantageous. In

this approach, markers are identified on a molecular

level in the affected tissue as well as in fluids derived

from this tissue. In the case of AKI this would be

biomarkers present in the kidneys as well as in the

urine.

Pathway Analysis and Construction of Molecular Maps

The various omics technologies frequently give rise to

long lists of modulated molecules that can be difficult

to interpret or deduct what processes are involved.

This is particularly a problem when integrating data

associated with several categories of biomolecules

such as metabolites and proteins. Although such lists

are not suitable in identifying potential biomarkers and

molecules of interest, the combination of shared

attributes and interlinking of associated prior knowl-

edge very often can reveal processes and molecular

pathways affected or involved in the system under

investigation.

A common approach is the clustering of function-

ality tags such as Gene Ontology or pathway names

associated with individual genes or proteins based on

independent and unrelated studies, whereby the occur-

rence of such tags in the list of molecules of interest are

evaluated statistically. This can be accomplished easily

using tools such as the Cytoscape54Q15 plugin ClueGO,55

R-based scrips such as Gogadget,56 and web-based

solutions such as GOrilla57 or David,58 and many

more. The results may show the common biological

processes involved and to some extent potentially

predict physiological end points that can be validated

or used as a clinical measure. Assembling delineated

molecular pathway maps, however, requires a higher

level of complexity because very often individual

processes such as signaling events or biochemical

reactions either are not attributed to the same pathways

but observed in a different context of unrelated

molecular events, not contextualized at all to date, or

no information has been gathered to date in terms of

the functionality of individual molecules. Therefore,

the construction of molecular pathway maps currently

involves painstaking extraction of molecular features

from the literature and other resources followed by

assembly of the various components into a network of

interacting and interlinking events. One particular

software, PathVisio,59 allows the manual construction

of such pathway diagrams and at the same time also

enables the searching and mapping of individual or

groups of molecules using the Wikipathways

resource.60 This database is a public effort to assemble

molecular pathways into a uniform structure, relying

on literature-based evidence according to the disease or

system under investigation. Alternatively, data map-

ping onto existing pathway collections also can be

accomplished using the Kyoto Encyclopedia of Genes

and Genomes database.61 Other resources containing

large-scale data of molecular pathways such as Reac-

tome62 or BioCyc and MetaCyc63 also actively are

engaged in developing such capabilities. In addition,

independent platforms such as IMPaLA64 that are re-

using data from other resources already are available.

It already has become evident that two-dimensional

representations of molecular events in complex sys-

tems and multifactorial diseases frequently are insuffi-

cient or overly complicated to follow or depict.65 This

may result in an oversimplification of pathway dia-

grams that can be ambiguous or misleading. One

potential solution to such a problem is to avoid spatial

representation and rather to establish pathway models

as mathematical and computational representations.66

Another important aspect in any data integration and

pathway mapping is the risk of gaps in the discovery

matrix, whereby linking molecules either were not

detected or not modulated significantly in disease.

GeneMania Q16
67 allows for such an approach whereby a

network is constructed using first all of the molecules

in the discovery matrix, followed by addition of other

connecting nodes, and, finally, pruning and removal of

entries in the network diagram that are not linking to at

least two other molecules found in the input list.

Ultimately, is was shown that de novo reconstruc-

tion of molecular pathways based on prior knowledge

not only helps to understand the complexity of proc-

esses involved in health and disease, but is an

important tool in providing the appropriate context of

the observations and in identifying intervention points

that potentially can be exploited pharmacologically.

Biomarkers Involved in AKI-Associated Disease

Processes

We provide a short overview of biomarkers described

in the literature as directly associated with AKI.

To present AKI in its pathophysiological context,

these AKI-specific markers were complemented with
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proteins and metabolites that occupy key positions in

AKI-underlying disease processes. The markers listed

in this section were used in molecular interaction and

pathway analysis.

Proteins and PeptidesQ17

Cystatin C is a 13-kDa cysteine protease inhibitor

synthesized and released continuously into blood by

nucleated cells. It is filtered freely by the glomerulus

but, unlike creatinine, is catabolized completely by the

proximal renal tubule in physiological situations.

Serum cystatin C is a biomarker of glomerular filtration

function whereas urinary cystatin C is a marker of

proximal tubular function. In some, but not all,

studies, an increase in serum cystatin C concentration

could detect AKI earlier than creatinine concentra-

tionQ18 .68–70

Neutrophil gelatinase-associated lipocalin (NGAL),

also known as lipocalin-2, is a 25-kDa protein71

strongly up-regulated in urine in response to ischemic

and toxic AKI.72,73 Both a monomeric and a hetero-

dimeric form are produced in the renal tubular epithe-

lial cells whereas a homodimeric form is produced by

neutrophils. NGAL has the ability to inhibit bacterial

growth and sequestering siderophores (molecules che-

lating iron required, among others, for bacterial

growth).74 NGAL filtered through the glomerulus is

taken up in the proximal tubule and degraded in

lysosomes.75 Serum and urinary levels have been

reported to correlate with AKI, but also with sepsis

and other conditions.76

Interleukin-18 (IL-18) is a 18-kDa proinflammatory

cytokine secreted by various antigen-presenting cells.

It induces interferon γ production in type 1 T-helper

cells and is a mediator of ischemic injury, in particular

in the kidney.77 Urine IL-18 is increased in acute

tubular necrosis and delayed kidney graft function and

is predictive of mortality in cardiac surgery. Because

different studies showed conflicting results on diag-

nostic performances of IL-18, a meta-analysis recently

was performed and found that IL-18 had only a

moderate diagnostic value (AUCQ19 , 0.77), performing

best in predicting early AKI and AKI in pediatric

patients.78

Kidney injury molecule-1 is a transmembrane gly-

coprotein that is not detectable in healthy kidneys but

is expressed highly by epithelial cells of the proximal

tubules after ischemic or toxic injury,79,80 with the

ectodomain being shed into the tubular lumen.81 It

functions as a phosphatidyl-serine receptor and confers

a phagocytic phenotype on epithelial cells, most likely

to clear cellular debris during apoptosis.82 Kidney

injury molecule-1 levels both in urine and plasma

have been shown to increase in both AKI and chronic

kidney disease (CKD) and to be prognostic for

progression toward end-stage renal disease in

diabetes.83

Liver-type fatty acid–binding protein 1 (FABP1) is a

transport protein for free fatty acids. In the kidney, it is

expressed in renal proximal tubule cells and shed into

urine in response to hypoxia caused by decreased

peritubular capillary blood flow. Transferring cytotoxic

lipids produced from free fatty acid peroxidation into

the urinary space presumably reduces their noxious

cellular effects.84 Urinary FABP1 levels are increased

in both CKD and AKI. A large prospective cohort

study has investigated the ability of FABP1 to predict

AKI after cardiac surgery.85 Its urine levels were not

associated independently with AKI after adjusting for

other kidney injury biomarkers, and even the combi-

nation with other AKI biomarkers only yielded an

AUC of 0.78 to predict AKI.

N-acetyl-beta-D-glucosaminidase (NAG) is a 140-

kDa hydrolytic lysosomal enzyme that breaks chemical

bonds of glycosides and amino sugars in carbohydrate-

rich structural components.86 NAG is found in high

concentrations in the lysosomes of proximal renal

tubular cells but also under the form of a membrane-

anchored molecule shed into urine during tubular

damage. Although it is present in many tissues, NAG

does not pass the glomerular barrier because of its high

mass and urine NAG only originates from the kidney.

Moreover, urinary NAG levels correlate with the

severity of tubular damage.87 In a recent large pro-

spective observational study performed in critically ill

adult intensive care unit (ICU) patients, urine NAG

levels alone allowed weak to moderate prediction of

AKI, severe AKI, and ICU mortality (AUCs, 0.65,

0.71, and 0.79, respectively).88

α-1-microglobulin (A1M) is a 27-kDa plasma pro-

tein produced by the liver. It has an immunoregulatory

role and is considered to be an anti-oxidant that can

scavenge pro-oxidant heme groups. The gene for A1M

also codes for bikunin, a glycoprotein with a number of

functions. A1M freely passes through the glomerular

barrier and approximately 99% of it is reabsorbed by

the megalin receptor in the proximal tubule, where it is

catabolized. A1M is an indicator for proximal tubular

function.89 In a small study with nonoliguric AKI,

urinary A1M (among others) best identified patients

who later required renal replacement therapy,90 but

diagnostic performances for AKI in two later studies

on patients undergoing cardiac surgery were modest

(AUC, 0.61 and 0.62).91,92

Retinol binding protein (RBP) is a low-molecular-

weight protein (21 kDa) synthesized mainly in the liver

and transports retinol. RBP retinol circulates in the

plasma bound to transthyretin,93 a complex that pre-

vents its glomerular filtration. Four percent to 5% of

serum RBP circulates freely and passes the glomerular

barrier. It subsequently is reabsorbed and degraded in
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the proximal tubule. Urinary RBP is therefore a marker

of proximal tubular dysfunction as in studies on AKI

after heart surgery,94 and is used as a diagnostic tool in

proximal tubulopathies.95 It may be superior to B2MQ20

because RBP is more stable at low urine pH.

Clusterin is a 75- to 80-kDa glycosylated protein

that can be found in its secreted form in biological

fluids. It has been suggested to play an anti-apoptotic

and cell-protective role in AKI.96 It is up-regulated in

renal tissues of both human beings and experimental

models by various forms of cellular stress, such as

unilateral ureteral obstruction97 and ischemia-reperfu-

sion injury.98 It is not filtered by the glomerula, hence

urinary clusterin originates from the urinary tract. In a

study on urine markers of toxic tubular dysfunction in

rats, urinary clusterin had higher diagnostic power than

serum creatinine (AUC, 0.88 versus 0.79) and its

increase occurred before histopathologic lesions could

be seen.96

Cysteine rich protein 61 (Cyr61) is a secreted (~40 kDa),

matrix-associated, heparin-binding protein.99 Cyr61

has been reported to control or to be involved in the

cell cycle, stimulation of chemostasis, growth factor–

induced effects, angiogenesis, integration of biological

mechanisms of cutaneous wound healing, induction

of senescence, and apoptosis in fibroblasts. CYR61Q21

gene transcription was reported to increase rapidly

(410-fold) after experimental AKI.72 In a recent study

of 50 patients undergoing cardiac surgery with cardi-

opulmonary bypass, CYR61 failed to identify the

patients who developed AKI.100

Hepatocyte growth factor (HGF) is a member of the

family of neurotrophic factors, composed of a 69-kDa

and a 34-kDa chain. It is a pleiotropic cytokine that is

synthesized in mesenchymal cells, including leuko-

cytes and megakaryocytes. HGF circulates as an

inactive single-chain protein and is converted to the

mature active form by a serine-protease homologous to

Factor XII, which derives from an inactive precursor

activated by thrombin.101 In one study, urine HGF

markedly increased in patients with AKI compared

with normal renal function and CKD.102 In a study on

recovery after AKI, the decrease of urinary HGF in the

first 2 weeks after initiation of renal replacement

therapy predicted which patients ultimately would

recover.103

Meprin A, a neutral metalloendoprotease, is com-

posed of an α- and a β-subunit and located on apical

membranes. After ischemia-reperfusion and cisplatin-

induced AKI in animal models, meprin A is redis-

tributed toward the basolateral plasma membrane,

cleaved, and excreted in the urine. Meprin A is

injurious to the kidney during AKI because meprin

A–knockout mice and meprin inhibition provide pro-

tective roles and improve renal function. This suggests

that the altered localization of meprin A may be

deleterious in AKI. Meprin A may be important in

AKI and could be a target for therapeutic interven-

tion.104 To our knowledge, urinary Meprin A has not

been studied as a biomarker of AKI in human beings.

Netrin-1 is a 50- to 75-kDa laminin-like protein

involved in guiding axonal growth and is a chemo-

tropic and cell survival factor.105 Netrin-1 is widely

expressed in various tissues, including in normal renal

tubular epithelial cells. However, it was found to be

highly expressed and excreted in the urine after AKI in

rodents. Subsequently, urinary Netrin-1 excretion was

detected to increase dramatically in patients with AKI,

whereas no changes were detected in healthy volun-

teers' urine samples.106 In a study on AKI after sepsis

and septic shock, urinary netrin-1 levels increased

significantly as early as 1 hour after ICU admission

and peaked at 3 to 6 hours at a seven-fold value

compared with controls and baseline, with an AUC of

0.858 at 3 hours.107

Insulin-like growth factor-binding protein-7

(IGFBP-7) has a molecular mass of 29 kDa and is a

marker of cellular stress in the early phase of tubular

cell injury caused by a wide variety of insults (inflam-

mation, ischemia, oxidative stress, drugs, and tox-

ins).108 Furthermore, it can initiate G1 cell-cycle

arrest, which prevents cells from dividing when poten-

tially injured.109 Importantly, it has been described as

an "alarm Q22" protein exerting paracrine effects on adja-

cent cells.110 IGFBP7 measurement proved to be a

predictor of AKI in cardiac surgery patients.111 Urine

IGFBP-7 often has been studied simultaneously with

tissue inhibitor of metalloproteinase-2 (TIMP-2) levels

because a commercial test device is available for

[TIMP Q23-2]*[IGFBP-7]. In a recent meta-analysis the

diagnostic performance of urine [TIMP-2]*[IGFBP-7]

levels across 9 studies for early prediction of AKI had

an AUC of 0.846.112

Glutathione S-transferases (α and π GSTs) are

constitutive cytoplasmatic enzymes. GSTs are scav-

engers of free radicals and could help tubular epithelial

cells to resist stress. Urine GSTs were reported to be

increased after gentamycin-induced nephrotoxicity in

animal models, thereby serving as tubular injury

markers. Further immunohistochemistry examinations

showed the localization of α and π GST in the

proximal and distal renal tubules, respectively.113 After

tubular damage, GSTs are released into the urine.114 In

a recent study in AKI after cardiovascular surgery,

urinary π GSTs had an AUC of 0.784 to predict

advanced AKI.115

Monocyte chemoattractant protein-1 (MCP-1/

CCL2 Q24) is a member of the C-C chemokine family,

and a potent proinflammatory chemotactic factor for

monocytes. Human MCP-1 is composed of 76 amino

acids and is 13 kDa in size.116 MCP-1 levels increase

in proximal tubular epithelial cells and in urine after
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AKI induced by nephrotoxicity in rats.117 In a study of

patients undergoing cisplatin-based chemotherapy for

lung cancer, urine levels of MCP-1 (normalized for

urinary creatinine) were higher in patients who sub-

sequently developed AKI than in those who did not

(AUC, 0.85).118

Tumor necrosis factor (TNF)-α is a cytokine that

widely is implicated in inflammatory processes. Mainly

produced by activated macrophages, it exists in a

soluble and membrane-bound form. TNF-α has been

studied extensively for its role in sepsis, systemic

inflammatory response syndrome, and other severe

inflammatory and autoimmune diseases. TNF-α prob-

ably is cleared in part by the kidney, as suggested by

increased blood levels in CKD patients who do not

undergo dialysis. In a rat model of glycerol-

induced AKI, TNF-α levels increased rapidly while

kidney function decreased, and neutralizing anti–

TNF-α antiserum injected before glycerol injection

partly rescued kidney function.119 In a study of

Chinese patients with hemorrhagic fever with renal

syndrome the course of urine TNF-α levels and other

cytokines closely followed the stages of the disease

and normalized at the convalescence stage.120

Although it is a major mediator in the pathogenesis

of numerous conditions causing AKI, it is not

considered a specific marker of AKI itself. TNF-α

receptors I and II, however, were associated strongly

with the development of AKI in a study of septic

patients.121

TIMP-2 has a molecular weight of approximately 24

kDa. TIMP-2 is expressed constitutively in renal

tubules and glomeruli.122 It is involved in G1 cell-

cycle arrest during the early phases of cell injury.109

Renal tubular cells enter a short period of G1 cell-cycle

arrest after ischemic insult, explaining enhanced

TIMP-2 expression in this pathologic pathway of

AKI. In several studies urine IGFBP-7 has been

studied in parallel with TIMP-2 as another G1 cell

arrest marker.112

Osteopontin (OPN) has chemokine-like features and

plays a critical role in the formation of bone and

calcified extracellular matrixQ25 . It is expressed and up-

regulated during inflammation and various biological

processes.123 OPN is present foremost in the loop of

Henle and in distal nephrons in healthy kidneys, but

after renal damage its expression may be increased

significantly in all tubular segments and in the glomer-

uli.124 The role of OPN in inhibiting kidney stone

formation has been highlighted. In a study on AKI in

critically ill patients, the levels of serum OPN predicted

the outcome of renal replacement therapy (weaning

versus maintaining renal replacement therapy).125 In

another study on AKI and mortality in very-low-birth-

weight infants, urinary OPN levels were tested along

with other urine biomarkers and had an AUC of 0.83

for AKI, but the study size was very small (30 subjects

altogether).126

Fibroblast growth factor (FGF) 23 Q26and C-terminal

FGF23 have a molecular weight of approximately 31

kDa. It is produced in bone, controls renal phosphate

reabsorption, and has been considered the most potent

phosphaturic hormone. It influences the production of

parathyroid hormone and 1,25-(OH)2-vitamin D127

and participates in mineral homeostasis.128 FGF23 is

increased dramatically in advanced CKD. FGF23

circulates both as the full-length intact protein and as

a C-terminal fragment (cFGF23) after proteolytic

cleavage.129 In a murine folic acid–induced AKI

model, cFGF23 levels increased by 24 hours after

induction of AKI, and remained unchanged in controls.

Although cFGF23 started to increase as early as 1 hour

after induction of AKI, intact FGF23 started to increase

1 hour later. In human beings, several reports have

suggested that FGF23 and cFGF23 are predictive of

AKI and mortality. In a prospective study, 350

critically ill patients were admitted to the ICU and

urinary and plasma FGF23 levels were measured

within 24 hours of admission, among other measure-

ments.130 Urinary and plasma FGF23 levels, but not

levels of other mineral metabolites, were associated

significantly with mortality and AKI. In multivariate

analyses, ICU patients with the highest versus the

lowest quartile of urinary FGF23 had a 3.9 greater

odds (95% confidence interval, 1.6-9.5) of dying and

of AKI. The mechanisms underlying the early increase

of FGF23 remain to be elucidated and may be

independent of phosphorus metabolism.

Angiotensinogen (AGT) is related structurally to

serin Q27protease inhibitors and has a molecular mass of

55 to 60 kDa. It is the substrate of renin in the renin-

angiotensin-aldosterone system blood pressure regulat-

ing system. Although systemic AGT is produced

mostly in the liver, intrarenal AGT is synthesized

primarily in cells of the proximal tubule and is secreted

from the apical surface into the lumen. Urinary AGT

(uAGT) levels have been shown to reflect the intrarenal

RAS Q28system activation. Several studies have suggested

that uAGT may be an early biomarker of AKI

in the context of acute cardiorenal syndrome after

acute decompensated heart failure. In a large prospec-

tive cohort study on acute decompensated heart

failure patients, daily uAGT levels were analyzed

consecutively and peaked on day 1 in the patients

who later developed AKI. After multivariable

adjustment, the top quartile of uAGT had a 50-fold

higher risk of AKI compared with the last quartile,

resulting in an AUC of 0.84 for predicting AKI.

One-year mortality also strongly was associated

with uAGT levels.131 Similar outcomes have been

reported for uAGT in patients undergoing cardiac

surgery.132
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Prostaglandin-H2 D-isomerase (PTGDS), also des-

ignated as β-trace protein, is a 23- to 29-kDa secreted

protein, which receivesQ29 its name from the conversion

of prostaglandin H2 into the isoform D2. Besides this

isomerase activity, it can bind to small lipophilic

molecules such as bilirubin or retinoic acid. Moreover,

it functions as a scavenger for hydrophobic molecules

and inhibits platelet aggregation. Similar to other small

proteins, PTGDS is taken up by tubular cells from the

circulation.133 In this respect, fractional clearance of

PTGDS from the blood serves as a marker for impaired

glomerular filtration and shows the same diagnostic

accuracy as creatinine, cystatin C, and B2M.134–137

γ-Glutamyl transpeptidase (GGT) is an approxi-

mately 99-kDa heavily glycosylated cell membrane

protein composed of a heavy and light polypeptide

chain that transfers γ-glutamyl groups mainly from the

antioxidant glutathione to amino acids, peptides, and

water, and is an essential component of the γ-glutamyl

cycle for detoxification of xenobiotics.138 It is

expressed in all cells and tissues, with the liver being

the major source of circulating GGT.139 In normal

kidneys, GGT is not filtered via the glomerulus.

Therefore, urinary GGT released by proximal tubular

cells is indicative of tubular damage.140 In a study of

patients after liver transplantation, absolute urinary

GGT levels taken directly after surgery enabled pre-

diction of AKI with an AUC value of 0.74.141

Alanine aminopeptidase (AAP) is a 109-kDa pro-

teolytic enzyme that hydrolyzes oligopeptides derived

from protein degradation. Besides this nonspecific

substrate selectivity, AAP also catalyzes the conver-

sion of various peptides such as peptide hormones,

neuropeptides, and chemokines from their precursor

into their biologically active forms. In the kidney, AAP

is released into urine by damaged tubular cells during

acute renal tubular necrosis, renal graft rejection, or

nephrotoxic action of immunosuppressive drugs.142–144

In an experimental cisplatin-induced AKI model in the

rat, AAP showed good predictive accuracy for AKI

with an AUC value of 0.89.145

Lactate dehydrogenase (LDH) is a 140-kDa ubiq-

uitous enzyme that catalyzes the anaerobic, nicotina-

mide adenine dinucleotide phosphate-dependent

interconversion of pyruvate and lactate. High LDH

levels in the blood are indicative of cell death and

tissue damage.146 As reported in a recent study, plasma

and especially urinary levels of LDH released from the

renal cortex correlated with the severity of renal

damage in different experimental AKI models.147

Erythrocyte superoxide dismutase 1 (SOD1) is the

most abundant member of the family of antioxidant

enzymes, representing approximately 90% of

SODs.148,149 It is a major defense against reactive

oxygen species and primarily is intracellular, where it

is found in the copper–zinc bound form. SOD1 long

has been known to be involved in ischemic AKI in

animal models because its administration to rats

combined with sucrose reduced histologic and func-

tional lesions.150 Similar results also were observed in

kidney transplantation.151 More recently, SOD1 activ-

ity in erythrocytes has been shown to be associated

with septic AKI in critically ill patients, although the

diagnostic performance was weak (AUC, 0.69).149

Semaphorin-3A is a 89-kDa secreted protein with

short-range context-dependent chemorepulsive and

chemoattractive properties. Initially described in the

context of axon guidance, it later became clear that

semaphorin-3A also plays a role in vascular growth,

angiogenesis, and immune cell regulation.152 In the

kidney, semaphorin-3A and its receptor complex,

consisting of neuropilin 1 and plexin A1 or A3,153,154

are expressed in developing nephrons and mature

podocytes and collecting tubules.155 In pediatric AKI

after cardiopulmonary bypass, it was found that sem-

aphorin-3A levels increase within 2 to 6 hours after

cardiopulmonary bypass, allowed prediction of AKI

with an AUC of 0.88 at 2 hours after cardiopulmonary

bypass, and correlated with AKI duration and

severity.156

Transforming growth factor-β1 (TGF-β1) is a 44-

kDa multifunctional cytokine with broad growth factor

stimulation, cell proliferation, and cell differentiation

properties. The most notable functions of TGF-β1 are

stimulation of osteoblastic bone formation,157 stimula-

tion of collagen production during wound healing and

fibrosis,158 T-helper cell 17 Q30and regulatory T-cell

differentiation,159 and induction of epithelial-to-mes-

enchymal cell transition.160 In the kidney, both TGF-

β1 and its receptor are expressed in high levels by

proximal tubular cells.161 The role of TGF-β1 in AKI

still is not clear. On the one hand TGF-β1 stimulates

epithelial de-differentiation as a first step of cellular

repair after kidney injury,162,163 whereas on the other

hand TGF-β1 induces proximal tubule apoptosis,164,165

inhibits proximal tubule proliferation, and slows Q31re-

differentiation.166,167 In several studies on patients with

sickle-cell disease, a hematologic disease frequently

associated with episodes of kidney injury, urinary

TGF-β1 increased in parallel to serum creatinine level

and with increasing anemia.168,169

IL-6 is a 23-kDa cytokine with a variety of functions

mainly in the context of cell differentiation and acute-

phase response. Depending on the mode of signaling,

trans-signaling via binding to a soluble IL-6–receptor

isoform or classic membrane-bound IL-6–receptor

signaling, IL-6 possesses proinflammatory or anti-

inflammatory properties.169,170 IL-6 is secreted by

endothelial cells in response to proinflammatory stim-

uli such as TNF-α.171 IL-6 activates target cells via

membrane-bound or soluble IL-6 receptor by associa-

tion with the signal transducer gp130 and induction of
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the Janus kinase/signal transducers and activators of

transcriptionQ32 signaling pathway.172 IL-6 blood levels

have been associated with higher AKI-associated

mortality in human beings173 and in mice.174

Chemokine C-X3-C motif ligand 1 (CX3CL1,

fractalkine) is a 43-kDa chemo-attractant factor for

macrophages expressed mainly by endothelial cells.175

Up-regulation of CX3CL1 was observed in ischemia/

reperfusion-induced AKI. After renal injury, CX3CL1

promoted interstitial fibrosis.176 Inhibition of the

CX3CL1-receptor CX3CR1 reduced the number of

macrophages in the injured kidney and thus may have

therapeutic potential in AKI.177,178 Other studies con-

firmed that CX3CL1 is an important target in anti-

inflammation therapy for ischemic AKI.179 In a study

on AKI after cardiopulmonary bypass, numerous

candidate biomarkers for AKI including CX3CL1 were

tested and this molecule reached an AUC of 0.73.180

P-/E-selectin are lectin cell adhesion molecules that

bind sialyl Lewis groups and related terminal glycans on

the surface of other cells.181 Because of a low binding

affinity to their ligands, selectins mediate the process of

rolling of lymphocytes and platelets on the vessel wall,

promoting lymphocyte homing as well as lymphocyte

and platelet aggregation and extravasation.181 In

response to the inflammatory cytokines IL-1β,

TNF-α, and interferon-γ or other inflammatory stimuli,

the 90-kDa P-selectin is translocated rapidly from

secretory granules to the surface of platelets and

endothelial cells.182 The earlier-described inflamma-

tory cytokines also induce de novo synthesis and

expression of the 66-kDa E-selectin on endothelial

cells.182 During renal ischemia, up-regulation of P- but

not L-selectin was observed, which was accompanied

by enhanced adhesion of neutrophils to the renal

endothelium.183 Various animal studies have shown

beneficial effects of P- and E-selectin inhibition on the

progression and outcome of ischemia/reperfusion- and

endotoxin-induced AKI.184–187 Recently, a study of

patients with severe sepsis admitted to the emergency

department showed that serum E-selectin was an

independent and powerful predictor of early AKI.188

Basigin is a 42-kDa cell-surface glycoprotein

belonging to the Ig superfamily. It is expressed on

many cell types and owing to a broad spectrum of

ligands is involved in a variety of physiological

processes. Most important in the context of AKI is

its binding to E-selectin.189 Basigin-deficient mice

showed significantly lower numbers of neutrophils in

the kidney and less renal damage after induction of

ischemia compared with wild-type mice.189 In biopsy

specimens of patients with acute tubular necrosis,

basigin expression was found on inflammatory cells

in the interstitium and was absent in damaged

tubules.190 Moreover, it was found in patients after

abdominal aortic aneurysm surgery that serum and

urine levels of basigin on postoperative day 1 was

higher in patients who developed AKI than in those

who did not and had a similar profile as that of urinary

L-FABP.190

Intercellular adhesion molecule-1 is a 58-kDa cell-

surface glycoprotein of the Ig superfamily expressed

mainly on endothelial and some immune cells. It

functions as an adhesion molecule on endothelial cells

that upon activation by the cytokines IL-1 and TNF-α

or reactive oxygen species allow attachment of circu-

lating neutrophils and leukocytes via their β2 integrin

receptors LFA Q33-1 and Mac-1.191 Attachment by this

molecular interaction represents the essential first step

for transmigration of the inflammatory cells through

the endothelial layer on their way to the sites of

infection.192,193 Intercellular adhesion molecule-1 was

connected to ischemic AKI by the finding that inter-

cellular adhesion molecule-1–deficient mice showed

decreased structural and functional damage to the

kidney upon induction of ischemia compared with

normal mice.194

Toll-like receptors (TLRs) are pattern-recognition

receptors expressed on leukocytes, fibroblasts, and

epithelial and endothelial cells. They are the respon-

sible elements for the induction of the innate immune

system against pathogens by binding conserved patho-

gen-associated molecular patterns.195 Most importantly

in the context of AKI are TLR-2, TLR-4, and TLR-9.

TLR-2 mainly recognizes lipid structures on gram-

positive bacteria,196 whereas TLR-4 binds to lipopoly-

saccharide on gram-negative bacteria197 and TLR-9 to

bacterial CpG-DNA sequence motifs.198 It was shown

that TLR-2– and TLR-4–deficient mice are less sus-

ceptible to ischemic renal injury.199,200 Mice deficient

for the Tamm-Horsfall protein had more severe renal

damage after induction of ischemia than their wild-type

counterparts and this was associated with increased

TLR-4 expression.201 Furthermore, inhibition of TLR-

9 by chloroquine or CpG-DNA antagonists, same as

TLR-9 knockout, protect mice from sepsis-induced

AKI.202

Macrophage inflammatory protein-2 is an 8-kDa

cytokine that is secreted by macrophages to act via

the chemokine receptor CXCR2 as a chemotactic agent

for neutrophils.203 It is involved in the early phase of

an innate immune response against pathogens after

TLR-mediated activation of tissue macrophages.204 Its

implication in ischemia-reperfusion injury of the kid-

ney is shown by findings in mouse models that

CXCR2 inhibition and macrophage inflammatory pro-

tein-2 antibody neutralization prevents interstitial infil-

tration of neutrophils and further results in decreased

progression of kidney injury and increased animal

survival rates compared with untreated controls.205,206

Caspase-1 is a 45-kDa zymogen that cleaves

in its inflammasome-assembled autoactivated form
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precursors of the inflammatory cytokines IL-1β and

IL-18.207,208 The latter subsequently are released by

infected cells during pyroptotic cell death to initiate

local inflammatory responses.209 In transgenic mice

increased caspase-1 expression in the kidney resulted

in acute tubular necrosis via proinflammatory cytokine

activation and granulocyte recruitment. This indicates

that caspase-1 may be a marker for ischemic or

cisplatin-induced AKI.210,211

C-terminal agrin fragment (CAF) is the 22-kDa

c-terminal fragment of agrin, which is the major

heparin sulfate proteoglycan in the glomerular base-

ment membrane.212,213 CAF is generated by cleavage

of agrin by the serine protease neurotrypsin.214 In

human beings, CAF was detected both in urine and

blood, suggesting its role as a marker for renal

clearance with increased serum levels indicating

impaired kidney function.215 In a study of 61 patients

with severe sepsis and septic shock, serum levels of

CAF were associated with AKI (AUC, 0.721) inde-

pendent of sepsis.216

Hepcidin is a 25–amino acid, cysteinQ34 -rich antimi-

crobial peptide that elicits its function by regulation of

iron metabolism. It inhibits iron export from gut

enterocytes and macrophages by its binding to the iron

channel ferroportin.217 Increased hepcidin serum levels

therefore prevent iron release into circulation and

results in reduced iron availability to invading patho-

gens. Hepcidin levels increase during inflammation in

response to bone morphogenetic protein-6 and IL-6

activation.218,219 On days 1 and 5 after cardiopulmo-

nary bypass surgery the urinary hepcidin to creatinine

ratio was associated inversely with mild to moderate

AKI (AUC, 0.77 and 0.84).220

C-X-C motif chemokine 5 (CXCL5) is a 10-kDa

CXC chemokine also known as epithelial-derived

neutrophil-activating peptide 78. It is expressed by

highly specialized resident epithelial and mononuclear

cells upon induction by the proinflammatory cytokines

TFN-α or IL-1 and shows chemoattractant and angio-

genic properties on neutrophils by binding to the

chemokine receptor CXCR2.221,222 In a sepsis-induced

AKI mouse model, CXCL5 expression was induced in

kidney tubular cells during an IL-17–mediated immune

response, which consequently resulted in the recruit-

ment of neutrophils and induction of renal injury.223

A urinary peptide marker panel composed of 20

naturally occurring peptides from serum albumin, α-1-

antitrypsin, β-2-microglobulin, fibrinogen α chain, and

the collagen chains 1 α (I) and 1 α (III) was established

by support vector machine modeling and allowed

prediction of AKI in ICU patients and in leukemia

patients after hematopoietic stem cell transplantation in

blinded validation with AUC values of 0.84 and 0.90,

respectively.224 In a subsequent case-control validation

study, the peptide marker panel was applied to patients

after cardiac surgery and in this patient cohort showed

an AUC of 0.81 for the prediction of AKI.225

Metabolites

Creatinine is a 113-D molecule derived from creatine

metabolism, mainly in the muscle. Creatinine is filtered

freely by the glomerulus and excreted without signifi-

cant metabolic changes or reabsorption by the kidney.

Serum creatinine has been used clinically and exper-

imentally as a marker of glomerular filtration rate for

more than 50 years. It is limited by a late increase in

AKI, its variable production under conditions such as

sepsis, and tubular secretion, which increases with

decreasing glomerular filtration rate.

Uric acid is a 168-D final oxidation product of

purine metabolism and undergoes glomerular filtra-

tion.226 Therefore, increased serum uric acid levels are

seen in patients with reduced glomerular filtration rate.

However, in recent years, it has been proposed that uric

acid itself plays a causal role in the pathophysiology of

CKD and possibly in AKI. Uric acid is known to cause

endothelial dysfunction, increased IL-6 synthesis, and

impairment of nitric oxide production, all of which

may contribute to AKI and its progression. It remains

unclear whether these cellular changes related to uric

acid are reversible upon treatment of hyperuricemia. It

also remains unclear whether uric acid levels can be a

marker of AKI.227

Asymmetric dimethylarginine (ADMA) is a 202-D

methylated analogue of the amino acid arginine. It is

generated by arginine methyltransferase–mediated

post-translational protein methylation and constitutive

release during protein metabolism. It is eliminated

from the blood by urinary excretion and dimethylargi-

nine dimethylaminohydrolase degradation.228 ADMA

is an endogenous inhibitor of nitric oxide synthase.

The negative effect on the vasoactive function of nitric

oxide synthase provides the reason that increased

ADMA blood levels are associated with endothelial

dysfunction and progression of kidney injury.229–231

Moreover, because of the impact of reactive oxygen

species on the expression and activity of arginine

methyltransferase and dimethylarginine dimethylami-

nohydrolase,232 ADMA accumulates in the kidney

during oxidative stress, and by nitric oxide synthase

inhibition exacerbates ischemic damage to the

kidney.233

Urea is a 60-D molecule that is produced by the

liver in the urea cycle during degradation of proteins.

The blood urea nitrogen (BUN) test measures the

content of nitrogen from blood urea. BUN is used

widely in combination with creatinine for the diagnosis

of AKI. A BUN to creatinine ratio of greater than 20

may indicate prerenal AKI. Similar to creatinine, BUN

is limited in its diagnostic use because it is influenced
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strongly by nonrenal factors, such as catabolic state

and food and fluid intake.234

Renal osmolytes are critical to renal medullary

health in protecting cells and proteins from the harsh

osmotic gradients needed to produce concentrated

urine.235 An extensive review by Burg et al236 outlines

in detail the role that osmolytes play in renal health. In

recent metabolomic experiments using NMR, renal

osmolytes such as betaine, taurine, and myo-inositol

were found to be dysregulated significantly in AKI

mouse models.237,238 In both cases, decreased osmo-

lyte concentrations in kidney tissue were observed and

these findings can shed light on potential diagnostic,

prognostic, and treatment strategies for AKI.

Adenosine triphosphate (ATP) metabolites arise

from the degradation of the cellular energy transporter

ATP. Hypoxia, ischemia/reperfusion, and nephrotoxic

agents can have rapid and sustained effects on intra-

cellular ATP levels by causing ATP depletion.239–242

Currently, it is not possible to monitor changes in

intracellular ATP levels in patients at risk for AKI in a

clinical setting. The ATP metabolites adenosine mono-

phosphate, hypoxanthine, and inosine, which freely

diffuse out of renal proximal tubular epithelial cells,

however, might be used in the future as noninvasive

markers for AKI-associated alterations in intracellular

ATP metabolism. Another potential target is 2',3'-

cAMPQ35 , which is produced in the kidney in response

to energy depletion, and is a potent opener of apoptosis

and necrosis, mediating mitochondrial permeability

transition pores.243,244

Integration of Established AKI Biomarkers in Molecular

Interaction Graphs

In a proof-of-concept approach, we evaluated the

integration of the earlier-described biomarkers for

AKI and its underlying disease conditions in pathway

and protein interaction analysis. Our aim was to select

a sufficiently large and representative set of AKI-

associated markers. By doing so, we wanted to inves-

tigate which AKI-related pathways were enriched and

which additional proteins were essential to bridge gaps

in the interaction graph.

We selected predominatelyQ36 those biomarkers for our

molecular interaction analysis that were involved

directly and critical in the different pathophysiological

pathways of AKI. We excluded markers of AKI that

merely represent functional changes but are not linked

to AKI pathogenesis as the glomerular filtration rate

markers serum creatinine and cystatin C. The same

applies to markers of glomerular filtration barrier and

tubular cell dysfunction as urinary albumin, α-1-anti-

trypsin, and B2M. Some markers and substances that

are incorporated in the molecular interaction analysis

may not or only in part be considered biomarkers of

AKI. As examples, IL-6 and TNF-α are key factors in

all major pathways of injury (ischemia, ischemia-

reperfusion, proinflammation, apoptosis, necrosis, oxi-

dative stress, direct cell toxicity) of diseases causing

AKI. These may be shock, sepsis, cardiac failure, drug

toxicity, radio contrast, and others. We included both

in our molecular interaction analysis because their role

in these underlying conditions cannot be differentiated

from their function in similar pathways that occur

intrarenally during AKI.

The gap-bridging proteins in F3Figure 3 identified by

GeneMania are involved predominantly in cell sur-

face–receptor signaling either as ligands such as the

chemokines CXCL1, CXCL3, CXCL8, CCL3, and

CCL4, and the cytokine IL-1β, as cell surface (co)

receptors such as peroxisome proliferator activated

receptor α, antigen-presenting glycoprotein CD1d,

lymphocyte antigen 96, natriuretic peptide receptor 1,

and erythropoietin receptor, or as intracellular proteins

for receptor-associated signal transduction, such as

TNF-receptor superfamily member 1A and receptor-

interacting serine/threonine kinase 1. As proof for the

validity of our molecular interaction model, many of

the (patho)physiological processes mediated by these

cell surface–receptor complexes were described also in

the context of AKI or its underlying disease condi-

tions.245–252 This also accounts for all other proteins

included in the molecular interaction graph not

involved in receptor signaling such as the flavin

adenine dinucleotide-linked sulfhydryl oxidase ALR Q37,

for which renoprotective effects were described in

ischemia/reperfusion,253 the peptidylprolyl isomerase F,

a mitochondrial protein found to be involved in

ischemia/reperfusion-induced cell death,254 the calci-

tonin gene-related peptide 2, a vasodilator that

increases susceptibility to AKI,255 and superoxide

dismutase 3, an extracellular oxidoreductase that

decreases oxidative stress and injury after ischemia/

reperfusion-induced AKI.256 The connection of all

gap-bridging proteins to AKI was interpreted as a sign

for the high integrity of the molecular interaction

graph.

By combining all previously described biomarkers

for AKI-associated disease processes with the gap-

bridging proteins in our molecular interaction analysis

(with the results presented in F4Fig. 4A), neutrophil and

platelet degranulation as well as IL-4/-13 and -10

signaling came up as the most significant molecular

processes. It seems that these are late events most

likely caused by oxidative stress or other danger

signals in tubular epithelial cells. Danger signals are

transduced by inflammatory mediators and ILs to

circulating immune cells. Immune cells pass through

the vascular wall of the renal microvasculature into

the inflamed site via cell contact to activated endothe-

lium.257,258 A morphological result of oxidative
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stress is increased autophagy in tubular cells,259 which

is expressed on the molecular level by a disinhibition

of SNAREQ38 complex formation, with the latter being

essential for the fusion of cellular vesicles.260 A link-

age between oxidative stress and inflammation path-

ways is provided by TLRs and their response to heat

shock protein 70 released by the affected tubular

epithelial cells as the damage-associated molecular

pattern molecule.261 Other significant TLR-mediated

processes in AKI according to the molecular interac-

tion analysis are induction of apoptosis by caspase-8

activation262,263 and programmed necrosis mediated by

IKK and RIP1.264 Infiltration of neutrophils and

neutrophil degranulation in the kidney as well as

apoptosis and programmed necrosis of tubular

epithelial cells result in protease-mediated degradation

of the extracellular matrix and collagen fibrils.

Therefore, specific peptide fragments in urine may

serve as a surrogate marker for altered activity

of certain proteases in AKI (ie, MMP-9 or

cathepsin D).224,265,266

As shown in Figure 4B, the danger signal sent out

by tubular epithelial cells (ie, owing to oxidative and/or

fluid shear stress or advanced glycation end product

formation), is transduced on the signal transduction

level by Toll-like and advanced glycation end product

pattern recognition receptors into inflammatory and

cell survival responses.267 Induction of the NF-κB and

the NOD Q39-like receptor signaling pathways by TLRs

result in the production of various proinflammatory

cytokines and chemokines, such as IL-1β, IL-17A, and

IL-18.268,269 In consequence, effector cells such as

neutrophils are recruited to the site of inflammation via

chemokine and cytokine receptor interactions. Cyto-

kine signaling pathways in the effector cells, such as

the TNF and IL-17 signaling pathways, lead to further

amplification of the inflammatory response. Because

of the release of hematopoietic growth factors, such as
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Figure 3. GeneMania network analysis of AKI-modulated molecules. Modulated proteins were analyzed by
network construction allowing for gap-filling of missing molecules. Input proteins are shaded and imputed ones are
colored uniformly. Connecting edges are colored according to the network legend.
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G-CSF, inflammation is accompanied by cell matura-

tion processes (ie, granulopoiesis)270 of intermediate

effector cells. In addition to these signaling pathways

associated with inflammation there are other activated

pathways, such as the HIF-1 and the PI3K-Akt signal-

ing pathway, which mediate cell survival.271,272 One

survival response of the tubular epithelial cells to

oxidative stress is increased synthesis of the endoge-

nous antioxidant glutathione, a cellular process that is

regulated by the PI3K-Akt signaling pathway.273

AKI Biomarker Patterns for Molecular Pathways, a New

Conceptual Approach for Phenotype-Specific AKI

Diagnosis

New biomarkers for AKI would have large clinical

implication as elucidated earlier. For more than 10

years a large number of studies attempted to identify

new biomarkers of AKI. Numerous biomarkers,

including plasma and urinary NGAL, urinary IL-18,

TIMP-2, and IGFBP-7, often have shown promising
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Figure 4. Term cluster analysis of AKI-modulated molecules. Proteins for which quantitative changes were
reported in the literature were analyzed using the Cytoscape plug-in ClueGO and CluePedia and terms derived
from the (A) reactome database of pathways or (B) Kyoto Encyclopedia of Genes and Genomes pathway maps.
Molecules are shown as open circles and pathway terms are shown as shaded nodes according to the legend.
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results in pilot studies, detecting AKI and its severity

and progression. Studies with these biomarkers pro-

vided important information with regard to pathophy-

siological mechanisms and some permitted early

detection in some forms of AKI. Despite intense

investigation, the clinical use and relevance of these

and other markers in AKI has in general remained

inconclusive. Furthermore, most clinicians worldwide

do not have access to these assays because they are not

commercially available or are expensive. The principal

goal of most studies attempting to identify AKI

biomarkers has been to develop one universal urinary

or serum biomarker that would permit both valid

determination of risk, diagnosis, severity and/or out-

come of AKI, discriminate between etiologies of AKI,

and monitor its course. However, the initial optimism

to find such a universal marker now has subsided. Most

large studies in heterogeneous patient cohorts could not

confirm the predominantlyQ40 excellent results of initial,

small-scale, pilot studies in homogenous cohorts.

Independent of the diagnostic accuracy of any

biomarker for AKI, in clinical practice the early

detection of AKI has no impact on clinical decisions

to date. Moreover, therapeutic possibilities for AKI are

very limited and the benefit of an early or late start of

renal replacement therapy is not clear. Therefore, the

early or late detection of AKI in most cases does not

have any influence on the clinical course of the patient.

This partially may explain why most biomarkers have

not been included in the panel of classic laboratory

parameters used in the clinical setting.

TQ41 here are numerous requirements to an ideal bio-

marker in AKI as for any other marker in laboratory

medicine. In addition to good pre-analytical properties,

an ideal marker would be both sensitive and specific,

precise and reliable, react rapidly to any AKI, and its

measurement should be standardized, simple, rapid,

and inexpensive. The biomarkers presently available,

whether commercially or only experimentally, do not

fulfill the majority of these requirements.

On closer view, one single ideal and universal AKI

marker likely never will be discovered. Perhaps the

goal to discover such a molecule should be abandoned

altogether. AKI is a nonuniform, very complex con-

dition with a wide spectrum of causes and pathophy-

siological mechanisms. On the one hand, a single

causative factor may damage the kidneys by several

pathomechanisms. On the other hand, AKI, especially

in critically ill patients, frequently is caused by

numerous factors. AKI is characterized by many

different courses, variable severity, and responses to

preventive measures and therapies with ultimately

different outcomes. One form of AKI may evolve into

another one over time, such as postrenal AKI into

intrarenal AKI with tubular damage when obstruction

persists for a long time. The particular point in the

course of AKI also needs to be considered, when

severity and outcome of AKI are assessed.

This is why we require several biomarkers that

cover different aspects of AKI. Marker panels could

provide us with accurate and detailed information on

specific causes, sensitive detection of an acute decrease

in kidney function and injury in various renal struc-

tures, and quantifying the degree of renal injury.

Ideally, these markers also should be mediators of

different disease pathways in AKI. Thereby, these

markers may lead to a better understanding of the

pathologic mechanisms, indicate the etiology of AKI,

provide targets for future therapies, and permit mon-

itoring of therapy.

To use the specific marker or combination of

markers for the respective diagnostic appropriate ques-

tion, it is necessary to identify the conditions causing

AKI. AKI may be categorized in several different

ways. We chose an approach to categorize by pheno-

type. Because most conditions causing AKI as well as

AKI markers are specific to the anatomic sites of renal

injury, it seems intuitive to categorize according to this

phenotype. Furthermore, most conditions and diseases

causing AKI preferably have one specific disease

mechanism. Therefore, we used these mechanisms as

a second dimension to categorize the conditions caus-

ing AKI. Of note, some conditions have several

mechanisms and affect more than one anatomic site,

whereas AKI in some clinical settings, as in critically

ill patients, has numerous causes. This presentation

only includes the predominant mechanisms, anatomic

sites, and conditions. It Q42is not an attempt to cover the

complete and complex picture of AKI, but rather to

simplify it. It is limited because the anatomic sites of

injury and the mechanisms may vary as AKI persists or

progresses. This may occur (eg, in therapy-resistant

shock) when initial function changes are superseded by

ischemia as the principal mechanism of injury. Further

potential dimensions to categorize AKI also were not

taken into account to prevent unnecessary complexity

and because we considered these of lesser importance for

the question of biomarkers. However, AKI also could be

categorized by mechanisms of injury (ischemia, ische-

mia-reperfusion, proinflammation, apoptosis, necrosis,

oxidative stress, direct cell toxicity), severity of injury,

regeneration, and the time point in the course of AKI.

Our review shows parallel disease pathways present

in conditions causing AKI, as in the kidneys in AKI

itself. This is shown by the parallels of markers and

mediators identified in our molecular interaction anal-

ysis. Future research should attempt to differentiate

between the two and elucidate which part is systemic

and which is derived from renal injury directly. This

may aid to further improve diagnostic panels because

they are expected to be as specific to the injured organ

as possible.
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