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1,*

Harmless microbes colonizing the gut require the establishment of a well-

equilibrated symbiosis between this microbiota and its host. However, the

immune system is primed to recognize both conserved microbial patterns

and foreign antigens, and therefore developed strong tolerance mechanisms

to prevent potential fatal immune reactivity to symbiotic microbes. Transcription

factorQ2 RAR-related orphan-like gt [ROR(gt); encoded by Rorc] has been identi-

fied as a key determinant of lymphoid tissue organogenesis via expression by

lymphoid tissue inducer cells (LTi) and later by proinflammatory type 17 T helper

(Th17) cells. Surprisingly, recent research has revealed a contribution of ROR

(gt)-expressing cells in a variety of tolerance mechanisms in both the innate and

adaptive immune systems.

Diverse Functions of ROR(gt)+ Cells

The highest density of microbial colonization occurs in the gut, and the microbiota allows the

host to more efficiently use a wider range of nutrients as energy sources, to prevent

infections, and more generally to maintain a better ‘fitness’ of this collective superorganism

[1]. Both the innate and adaptive immune system can recognize diverse foreign molecular

patterns or antigens and integrate these signals for the induction of an effective and well-

adapted immune response. A special subset in the gut, termed innate lymphoid cells type 3

(ILC3s), together with a subset of innate-like gd T cells, express the lineage-defining

transcription factor ROR(gt) [2,3]. Characteristic for ROR(gt)+ innate cells is the expression

of large amounts of the cytokines IL-22 and IL-17, both of which are crucial for the

enforcement of the epithelial barrier integrity [4,5]. In addition to constitutive cytokine

secretion, ILC3s have been recently shown to express major histocompatibility complex

molecules type II (MHC-II) and present microbiota-derived antigens to naïve CD4+ T helper

cells [6]. The adaptive arm of the immune system, including T helper (Th) cells, generates

its antigen-recognition receptors through random gene rearrangements which are

negatively selected for self-recognition. In the periphery, additional passive and active

tolerance mechanisms are required to prevent antigen-specific activation by harmless

environment-, microbe-, or food-derived antigens. Surprisingly, antigen presentation via

ILC3s results in deletion of microbiota-reactive T cells and therefore shapes the T cell

receptor (TCR) repertoire of intestinal T helper cells to prevent constant activation of the

adaptive immune system [7]. Nevertheless, colonization of the gut with microbes, and

especially with epithelium-attaching bacteria, activates the adaptive immune system and

leads to the induction of ROR(gt)+ Th17 cells [8–11]. Th17 cells have gained much attention

owing to their prominent role in multiple autoimmune diseases and in fighting extracellular

infections [12] but, together with ROR(gt)+ ILC3s, they also contribute to the regulation of the

intestinal barrier [13]. In addition to Th17 cells, microbe- [14,15] but not food-derived

antigens [16] induce a subset of Foxp3+ regulatory T cells (Tregs) co-expressing ROR(gt)
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[17,18]. Such ROR(gt)+ Tregs have recently been shown to efficiently protect from intestinal

immunopathology in different colitis models [14,15,19]. This raises the question whether the

physiological role of a ROR(gt)-directed transcriptional program consists of preventing

inappropriate immune activation by the symbiotic microbiota.

Physical Separation Between Microbiota and Host Is Regulated by Innate

ROR(gt)+ Cells

ROR(gt) was identified in the immune system as an essential transcription factor of LTi cells

[2,20] which are now considered as a subset of ILC3s [3]. ROR(gt)+ ILC3s as well as a subset

of ROR(gt)+ gd T cells in the gut share the expression of IL-22 and IL-17A in both mice and

humans [21]. Intestinal ILC3s arise from a common precursor in the fetal liver [22] or the

bone marrow [23]. Lineage differentiation of ILC3s requires the expression of ROR(gt) in both

mice [3,24] and humans [25]. Interestingly, the efficient differentiation of ILC3s is also

dependent on a vitamin A metabolite, retinoic acid [26], which in turn regulates the expres-

sion pattern of gut-homing chemokines of ILC3s [27]. Even before birth, functional ILC3s

populate the intestinal lamina propria, preparing the host for microbial colonization [4].

Mature ILC3s in the gut show a high degree of tissue residency and do not recirculate

systemically either at steady-state or during inflammation underlying their local impact on the

intestinal barrier [28]. Activation of the IL-23 receptor and signaling via STAT3 are thought to

be the main elicitors of IL-22 secretion by ILC3s [5,29]. By contrast, intestinal gd T cells are

able to secrete IL-17A independently of IL-23. The IL-17A provided by these cells is

necessary to maintain functional tight junctions between intestinal epithelial cells, an essential

parameter for the regulation of barrier permeability during inflammation [30,31]. Nonetheless,

inappropriate IL-23 secretion can also produce innate and adaptive colitis [32,33], and

transgenic overexpression of IL-23 promotes neonatal pathology and death as a result of

expansion and hyperactivation of ILC3s even before birth [34]. Similarly, ROR(gt)+ ILC3s can

drive intestinal inflammation in a model of anti-CD40-mediated innate colitis through the

combined secretion of IFN-g, IL-17, GM-CSF, and IL-22 [32,35]. Thus, and similarly to T cells

(reviewed in [36]), ROR(gt)-dependent ILCs can acquire a state of shared type 1 and type 3

cytokine secretion that may be considered to be highly pathogenic.

The continuous secretion of IL-22 by ILC3s in the intestine activates epithelial cells to produce

antimicrobial peptides (AMP) such as RegIIIg, RegIIIb, S100A9, or S100A8 [37,38]. In addition,

ILC3s express lymphotoxin b, which triggers IL-23 secretion by dendritic cells (DCs) and thus

induces a positive feedback loop [39]. AMPs together with the mucus layer are essential

parameters for the spatial separation between the intestinal epithelial barrier and the microbiota

[4,38]. In addition, ILC3-derived IL-22 and lymphotoxins enforce host–microbiota symbiosis by

fucosylation of intestinal epithelial cells to prevent overgrowth by opportunistic bacteria or

pathogens [40,41]. In line with this notion, ILC3s and the cytokine IL-22 have been shown to

maintain intestinal stem cells after tissue damage to rapidly restore barrier integrity upon

epithelial damage [42].

Not surprisingly, the enforcement of the epithelial barrier plays a central role in the immune

response to orally transmitted pathogenic bacteria. For instance, IL-22-producing ROR(gt)+

ILC3s have been shown to promote partial resistance to infection with Citrobacter roden-

tium [43,44], Salmonella typhymurium [40], or Clostridium difficile [45]. The immune

response induced by activated intestinal ILC3s is therefore crucial in fighting oral

infections and may prevent the systemic dissemination of life-threatening bacteria early

after infection.

In addition to enforcing the epithelial barrier, intestinal ROR(gt)+ ILC3s have been shown to

secrete high amounts of granulocyte/macrophage colony-stimulating factor (GM-CSF) that is
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responsible for the recruitment of (inflammatory) mononuclear cells to the intestine

[35,43,46,47]. GM-CSF production by ILC3s in turn is dependent on IL-1b and IL-23 secretion

by CX3CR1+ cells triggered upon sensing symbiotic microbes [46,48]. Therefore, ROR(gt)+

ILC3s also shape the myeloid compartment in response to symbiotic microbes.

In general, innate ROR(gt)+ cells enforce the epithelial barrier and regulate the physical separation

from symbiotic microbes at steady-state. Nevertheless, no massive inflammation is observed in

mice with constitutive deficiency of ILC3s or their key cytokines. Thus, the function of ROR(gt)+

ILC3s may be more important after an abrupt alteration of the intestinal homeostasis – as may

naturally occur during infection or epithelial injury. However, hyperactivation of ROR(gt)+ ILC3s

has been shown to contribute to intestinal inflammation depending on the disease model

applied. These models differ dramatically in their mode of action, and it is likely that each model

mimics only particular aspects of intestinal inflammation in humans – and may thus serve as

surrogates to study immune-triggered pathologic symptoms rather than causative mechanisms,

for example intestinal barrier dysfunction (DSS-colitis), hyperactivation of innate immunity (anti-

CD40 injection, IL-23 transgenic overexpression), or infection with pathogens (C. rodentium,

C. difficile, S. typhimurium).

ILC3s Shape Adaptive Immune Responses to the Microbiota

The adaptive immune response to the microbiota is directly or indirectly regulated by ROR(gt)+

ILC3s. A prototype example is the genetic knockout of the arylhydrocarbon receptor (AhR) in

ROR(gt)+ ILC3s which results in the expansion of a particular member of the microbiota, termed

segmented filamentous bacteria (SFB) [49]. These bacteria in turn promote the induction and

expansion of ROR(gt)+ Th17 cells in the intestine [10,50]. Furthermore, AhR-deficient ILC3s are

not able to induce intestinal lymphoid follicles [51], and hence prevent the generation of affinity-

matured IgA [51,52]. Physical separation and regulation of gut microbiota composition is

mediated by a gradient of microbiota-reactive IgA molecules that are transcytosed into the

intestinal lumen [53]. Noteworthy, ROR(gt)+ ILC3-derived lymphotoxins have also been shown to

promote the generation of T cell-independent and -dependent IgA [54,55]. Therefore, ROR(gt)+

ILC3s indirectly regulate expansion of Th17 via limitation of SFB colonization and control IgA

responses to oral pathogens and commensals.

Recently, it was shown that ROR(gt)+ ILC3s express MHC-II molecules in both mice and

humans, and this enables them to present foreign antigens [6,7]. Genetic knockout of

MHC-II molecules in ROR(gt)+ ILC3s was sufficient to deregulate intestinal adaptive

CD4+ T helper cells and induce spontaneous intestinal inflammation. The improvement after

treatment with broad-spectrum antibiotics suggests that most CD4+ T helper cells respond

to microbiota-derived antigens, although a purely adjuvant effect of the microbiota, for

example on the antigen-presenting cells (APCs), cannot be completely excluded. Among

other T effector cells, Th17 cells specific for microbiota-derived antigens were expanded in

mice lacking MHC-II on ILC3s [6]. Nevertheless, ILC3-derived GM-CSF was shown to

regulate oral tolerance to dietary antigens by augmenting the myeloid cell production of

cytokines and retinoic acid that are required for the efficient induction of Tregs [46].

Importantly, antigen presentation by ILC3s themselves did not result in the induction of

Tregs but rather in the deletion of a commensal-reactive T cell clones through induction of

apoptosis [7]. However, genetic ablation of MHC-II on conventional DCs also induces

intestinal inflammation characterized by impaired T follicular helper cell accumulation and

consequently reduced IgA induction [56]. In contrast to mice lacking MHC-II molecules on

ROR(gt)+ ILC3s, the DC-specific ablation of MHC-II results in reduced frequencies of induced

Tregs in the gut and associated lymphoid organs. Mucida and colleagues recently confirmed

that classical DCs are necessary to induce antigen-specific tolerance to dietary antigens

through the induction of peripheral Tregs [57].
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The question emerges of why ROR(gt)+ ILC3s and professional APCs such as DCs or macro-

phages show a division of labor in the regulation of T helper cells in response to symbiotic

microbes. First, ROR(gt)+ ILC3s are generally found in cryptopatches and lymphoid follicles, or

are dispersed in the intestinal lamina propria, and do not have direct contact with the microbiota

at steady-state [2,47]. By contrast, specific dendritic cell subsets are able to extend their

dendrites into the intestinal lumen and constantly sample antigens from microbes in close

proximity to the epithelium [58,59]. In addition, DCs sample antigens beneath the M cells in

Peyer's patches and may acquire phagocytosed antigens from CX3CR1+ macrophages via gap

junction transfer [60]. CD103+ DCs are thought to frequently migrate to draining lymph nodes

where the local milieu including resident stromal cells preferentially drives the induction of Foxp3+

Tregs at steady-state [61,62]. Therefore, different accessibilities to antigens and presentation at

different anatomical sites may influence the impact of the respective APC type on the adaptive Th

cell response. Second, the functional outcome of antigen presentation is fundamentally different

between DCs and ILC3s because the latter provoke deletion of commensal reactive T cells

rather than activation and differentiation to Treg or T effector phenotypes [6,7]. Similarly to thymic

epithelial cells during negative selection of T cells – and in contrast to classical APCs – ROR(gt)+

ILC3s lack the dynamic regulation of costimulatory molecules such as CD40, CD80, or CD86

upon stimulation with TLR ligands, and may thus induce ‘negative selection’ of microbiota-

reactive T cells [6].

In summary, presentationQ3 of microbial antigens by DCs may be more regulated and tightly

controlled to induce efficient tolerogenic or effector T cell responses, whereas antigen presen-

tation by ROR(gt)+ ILC3s can be seen as a ‘safeguard’ to prevent T cells reactive against luminal

antigens from reaching the host side.

Pathogenic and Protective ROR(gt)+ Th17 Cells at Barrier Sites

The differentiation of IL-17-secreting T cells from naïve T cells is induced by the cytokines IL-6

and TGF-b1, and ROR(gt) expression is generally seen as a master regulator of Th17 cell

differentiation [12,50]. In addition to their very prominent role in autoimmune diseases, Th17 cells

are found in non-inflammatory tissues at steady-state where, together with ROR(gt)+ ILC3s, they

contribute to maintain epithelial barrier integrity [13]. Interestingly, even in some autoimmune

diseases, the accumulation of Th17 cells can be associated with alteration of epithelial barriers,

for example psoriasis-like diseases or Crohn's disease (CD). Th17 cells secrete a variety of

cytokines, including IL-17A and IL17F, IL-22, IL-26, and GM-CSF, which has led to the idea of

targeting Th17 cells themselves [e.g., via the transcription factor ROR(gt)] rather than single

cytokines for the treatment of autoimmune disorders (reviewed in [63]). Interestingly, transient

inhibition of ROR(gt) produced a reduction of IL-17A production from Th17 cells and intestinal

inflammation after C. rodentium infection, while preserving functionality of ILC3s [64]. However,

complete ROR(gt)-deficient animals show an enhanced fraction of bacteria-specific IgG immu-

noglobulins at steady-state and suffer from aggravated inflammation in DSS-mediated chronic

colitis despite the absence of potentially proinflammatory Th17 cells [17]. Furthermore, ex-Th17

cells giving rise to follicular Th cells in Peyer's patches have been implicated in the generation of

high-affinity IgA molecules upon oral immunization [65]. Along these lines, Foxp3+ Tregs have

also been shown to promote diversification of the intestinal microbiota and regulation of IgA

selection, both mandatory for intestinal homeostasis [66]. Whether ROR(gt)+Foxp3+ Tregs (see

below) contribute to regulation of IgA selection remains to be established but is not unlikely given

their close relationship to the microbiota [14,15,67].

The highest frequencies of Th17 can be found in the ileum of mice harboring epithelium-

attaching SFBs [10,11]. The presence of SFB or a complex microbiota has been associated

with more severe Th17-associated autoimmune reactions at different anatomical sites [68,69]

but it seems unlikely that this process is antigen specific because most SFB-induced Th17 cells
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are SFB-specific and therefore not the result of a polyclonal bystander activation [70,71].

Another possibility for the microbiota/Th17 cell axis to contribute to autoimmune disorders is

molecular mimicry of the antigen: antigens from the microbiota have been shown to activate

retina-specific Th17 cells preceding the migration to the immune privileged eye and induction of

autoimmune uveitis [72].

The intestinal microbiota undergoes constant alterations depending on environmental changes,

e.g., food intake, use of antibiotics, infections, behavior and personal hygiene. Recently, even

circadian rhythms were found to alter the relative composition of the microbiota [73]. Similarly,

Th17 cell differentiation varies with the circadian rhythm in an NFIL3-dependent manner which

blocks transcription of ROR(gt) in Th17 cells [45,74]. Thus, both Th17 cell differentiation and

symbiotic microbes are subjected to the same biological mechanism even though no direct link

has been identified [74].

The prominent role of Th17 cells in autoimmune disorders and their close association to

microbiota and epithelial barriers raises the question whether both ‘pathogenic’ and ‘tolero-

genic’ Th17 cells exist. Indeed, Th17 ‘subpopulations’ have been identified in the analysis of

human Staphylococcus aureus – and Candida albicans – specific Th17 cell clones that show a

unique co-expression pattern with IL-10 or IFN-g, respectively [75]. Single-cell analysis further

revealed a remarkable diversity among Th17 cells that can be separated into ‘pathogenic’ and

‘non-pathogenic’ cells [76,77]. For example, the expression of CD5L correlated with a ‘non-

pathogenic’ state of Th17 cells and links this state with an altered metabolic state and availability

of ROR(gt) ligands [76]. The pathogenic potential of Th17 cells is further regulated by IL-23-

induced genes such as Blimp-1 and TGF-b3 [78,79]. Regulatory networks controlling Th17 cell

specification and identity may in the future provide evidence for different transcriptional regula-

tion of protective and pathogenic Th17 cells [80,81].

Relationship and Stability of Th17 and Treg Cells

As discussed before, Th17 cells are a diverse population and pathogenicity may be dictated

solely by TCR specificity against ‘self’ versus ‘foreign’ antigens. This notion has important

consequences for the observed plasticity between Th17 and Tregs: First, both subsets have

been thought to share the requirement of TGF-b for differentiation [82] but pathogenic Th17

cells may differentiate even without TGF-b [83]. Further, pathogenicity of murine Th17 cells

during experimental autoimmune encephalomyelitis (EAE) can be explained by ROR(gt)-

driven expression of GM-CSF, but not IL-17A or IL-17F whereas GM-CSF expression in

humans is independent of ROR(gt) [84–86]. Co-expression of Foxp3 and ROR(gt) in a

subpopulation of Th cells has led to the idea of an intermediate state of differentiation

between Th17 and Treg cells explaining a subsequent equilibrium between both subsets

[87]. This equilibrium or the equilibrium between Th17 cells and ROR(gt)+ Tregs may be

regulated by the availability of IL-2 and IL-6 in the microenvironment [88–90]. Second, Th17

cells specific for (foreign) pathogenic antigens may convert more rapidly into a non-inflam-

matory state after resolution of the infection than self-reactive Th17 cells: Fate reporter

systems demonstrated that cells with a history of IL17A expression show a marked differ-

ence among fate-mapped Th17 cells after chronic EAE or acute Candida albicans infection

because ex-Th17 cells transdifferentiated into pathogenic T effector cells during EAE in an

IL-23-dependent manner, whereas Candida-experienced ex-Th17 cells did not [91]. Th17

cells are further able to convert into IL-10-secreting Foxp3� Tregs (Tr1) during the resolution

of polyclonal anti-CD3-mediated or autoimmune inflammation [92]. Interestingly, IL-10

signaling via Stat3 in Tregs themselves and in Th17 cells is also required for efficient

suppression of Th17-mediated inflammation [93–95]. Moreover, ROR(gt)+ Th17 cells can

be recruited to the small intestine after anti-CD3 injection, where they are deleted or acquire

a regulatory phenotype [92,96]. Conversely, CD25loFoxp3+ Tregs are able to convert into
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pathogenic Th17 cells in an IL-6-dependent manner in a model of autoimmune arthritis [97].

Nonetheless, CD25lo Tregs probably do not represent bona fide Tregs, irrespective of Foxp3

expression, as revealed by analysis of epigenetic modifications in the non-coding regions of

the Foxp3 gene [98].

Overall, these results demonstrate the relatively high plasticity of Th17 cells and emphasize the

idea that the name-giving IL-17 and ROR(gt)Q4 expression by T cells is probably not a key

determinant of Th17 pathogenicity in most scenarios. Instead, a heterogeneous population

of ROR(gt)+ T cells may acquire tissue-protective or pathogenic functions according to yet to be

determined mechanisms.

Identification and Characterization of ROR(gt)+ Tregs

AQ5 subpopulation of T helper cells co-expressing the regulatory T cell transcription factor

Foxp3 and ROR(gt) has been identified, and was shown to have potent suppressive function

in vitro [18,89]. The expression of Foxp3 is thought to inhibit ROR(gt)-driven IL-17A expres-

sion at steady-state [18,99], but some Foxp3+ROR(gt)+ cells expressing IL17A have been

identified in both mice and humans, albeit at lower levels than in Foxp3�ROR(gt)+ T cells

[100–102]. Nevertheless, ROR(gt)+ Tregs express high levels of regulatory molecules includ-

ing IL-10, CTLA-4, and ICOS [15,100]. Transfer experiments and analysis of Treg-specific

demethylation region (TSDR) revealed that ROR(gt)+ Tregs probably represent a relatively

stable lineage and not merely a Th17/Treg intermediate differentiation state [19,100]. The

induction of ROR(gt)+ Treg crucially depends on symbiotic microbes and increases from oral

to aboral along the intestinal tract [14,15,67,89]. Individual members of the microbiota differ

in their ability to induce ROR(gt)+ Tregs [14], but it is unclear whether microbiota-derived

metabolites such as short-chain fatty acids or other determinants regulate their induction

[15]. Tregs isolated from the colon – most of which co-express ROR(gt) – but not from

secondary lymphoid organs have been shown to recognize microbiota-derived antigens

[103]. Even so, Tregs generated and selected in the thymus may contribute to intestinal

tolerance [104]. The anatomical site of Treg induction (thymus vs periphery) has been used

to discriminate between Tregs selected to recognize self and non-self antigens. In line with

this idea, mice lacking peripherally induced Tregs as a result of deletion of a conserved non-

coding element next to the Foxp3 promoter (CNS1) show spontaneous inflammation at

mucosal surfaces [105]. Two markers have been proposed to discriminate between thymic

and peripherally induced Tregs, namely Helios [106] and neuropilin-1 [107,108], but their

usefulness has been recently questioned [109]. Nevertheless, ROR(gt)+ Tregs express only

low levels of both markers [14,15]. Interestingly, Tregs specific for neo self-antigens are still

generated in the periphery but do express Helios [110]. The expression level of neuropilin-1

and ROR(gt) in Tregs has been further used to delineate peripheral-induced Tregs specific for

food- or microbe-derived antigens [16]. Thus, Helios and neuropilin-1, together with ROR(gt),

may be used to distinguish between self-reactive versus foreign-reactive Tregs in the gut

rather than as markers of the site of differentiation.

ROR(gt)+ Tregs as Novel Players in Intestinal Homeostasis

To elucidate the function of ROR(gt)+ Tregs, several groups generated mouse strains with a

selective knockout of ROR(gt) in Tregs [14,15,100]. Such mice show more pronounced

inflammation in different models of chemically induced colitis as well as increased type 1,

type 2, or type 3 cytokine secretion by T cells [14,15]. In addition, ROR(gt)+ Tregs were more

efficient than their ROR(gt)� Treg counterparts in suppressing transfer colitis [19]. ROR(gt)+

Tregs may be more effective in suppressing microbe-reactive T effector cells because, similarly

to T effector cells, microbial recognition by Tregs may be required for suppression of transfer

colitis [111]. Thus, Treg quality seems to be more relevant than Treg quantity for the suppres-

sion of colitis.
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In addition to these tolerogenic effects of ROR(gt)+ Tregs, the absence of ROR(gt)+ Tregs can also

result in stronger immune responses that are beneficial in the case of parasitic infections or

detrimental in the case of foreign antigen-induced nephritis [15,100]. Nevertheless, Tregs with

reduced Gata3 expression as a result of lack of defective IL-33 signaling also fail to efficiently

suppress transfer colitis [112]. In light of the mutually exclusive expression of Gata3 and ROR(gt)

in Tregs [113], this raises the question whether these two Treg subpopulations use different

modes of action for the suppression of colitis.

An absence of ROR(gt)+ Tregs can lead to more-efficient primary or secondary immune

responses to parasites and they must therefore be tightly controlled. Taking into account

the random generation of the TCR repertoire, it is highly likely that most naïve T cells reacting

to commensal- or food-derived antigens undergo anergy induction or deletion simply due to the

high number of potential antigens and the restricted ‘niche’ for Tregs. How the discrimination

between deletion and Treg induction is made (e.g., by the microenvironment, the nature of the

antigen, or APC status) remains to be discovered, but has certainly important consequences for
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Figure 1. The Role of ROR(gt)+ Cells in Intestinal Tolerance. (A) Innate ROR(gt)+ cells secrete large amounts of IL-22 and IL-17 which, together with lymphotoxins

(LT), induce the production of antimicrobial peptides (AMP) for the efficient spatial separation between the intestinal microbiota and the host. Presentation of microbiota-

derived peptides by MHC-II molecules on ROR(gt)+ innate lymphoid cells (ILC3s) leads to the induction of apoptosis of microbiota-reactive T helper cells. The secretion of

GM-CSF alters the function of intestinal myeloid cells. (B) Intestinal ROR(gt)+ T helper cells secrete mainly IL-17 to regulate barrier integrity. ROR(gt)+ T helper cells can

further transdifferentiate into follicular helper T cells (Tfh) in Peyer's patches where they induce IgA class-switching in B cells. Furthermore, transdifferentiation to IL-10-

secreting regulatory Tr1 or Foxp3+ regulatory T cells (Tregs) is possible. (C) ROR(gt)+Foxp3+ T cells are induced by the intestinal microbiota and are essential for

suppressing effector T cell responses and colitis.
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the prevention and therapy of diseases associated with loss of intestinal tolerance. In this

context, it will be important to study tissue-resident memory of regulatory and effector T cells in

the gut in light of a potentially dynamic microbiota.

Concluding Remarks

Increasing evidence suggests that the transcription factor ROR(gt) – or type 3 immunity – plays a

central role for the regulation of mucosal immune responses in response to the intestinal

microbiota (Figure 1). The central role of this transcription factor is highlighted by the firm

ROR(gt)-dependence of the development and function of the respective cell types. Surprisingly,

ROR(gt)+ cells are implicated in a variety of tolerance mechanisms to harmless antigens which –

in addition to their role in fighting extracellular infections – illustrates their role in barrier immunity

and tolerance. Therefore, ROR(gt)+ cells and associated transcriptional networks may have

evolved to tolerate the symbiotic microbiota by enforcing physical separation, deletion of

microbiota-reactive T cells, and induction of Tregs. Nevertheless, a variety of questions remain

open: how does the immune system fine-tune the reactivity to individual members of the

microbiota? Why is there a potential division of labor for presentation of microbial antigens

between DCs and ILC3s in the gut? In that regard, better models for the genetic ablation of ILC3s

may be mandatory to answer these questions. In addition, it is still unclear how the decision is

made between induction of apoptosis and differentiation towards a ROR(gt)+ Th17 or a ROR(gt)+

Treg cell upon TCR-mediated recognition of microbiota-derived antigens by naïve T cells? For

ROR(gt)+ Th17 and ROR(gt)+ Tregs, it is not entirely clear which factors determine the respective

differentiation pathway because both subsets are dependent on a ROR(gt)-driven transcriptional

program (see Outstanding Questions). For instance, do microbial or fungal metabolites contrib-

ute to this decision or is this decision fixed early during activation and the recognition of

conserved molecular structures by APCs? Finally, it will be important to understand if and

how intestinal tolerance by ROR(gt)+ Tregs can be exploited therapeutically to treat chronic

intestinal inflammations such as irritable bowel disease (IBD), and whether these cells are also

crucial mediators of oral immune defense.
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