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The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg,
Germany, exhibit measurement error from various sources. Measurements of mobile devices show classi-
cal possibly individual–specific measurement error; Berkson–type error, which may also vary individually,
occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individ-
ual exposure measurements results in a mixture of the two error types. We extended existing bias analysis
approaches to linear mixed models with a complex error structure including individual–specific error com-
ponents, autocorrelated errors and a mixture of classical and Berkson error. Theoretical considerations and
simulation results show, that autocorrelation may severely change the attenuation of the effect estimations.
Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of at-
tenuation. Bias correction with the method of moments using mixture data partially yielded better results
compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta
method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present
the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the
corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement
error of ultrafine particle measurements has little impact on the results. The developed methodology is
generally applicable to longitudinal data with measurement error.
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1 Introduction

Measurement errors occur in varying applications, including the context of ambient particulate matter mea-
surements (Zeger et al., 2000; Dominici et al., 2003; Sheppard et al., 2011). Epidemiological longitudinal
studies of acute health effects of outdoor air pollution often use estimated exposure of the study partici-
pants by one or several fixed outdoor monitoring sites located in an urban background of the study area
(e.g. Bergen et al., 2016; Alexeeff et al., 2016). The ambient air pollutant concentrations measured at
the fixed sites are assumed to represent the population–averaged exposure and this value usually enters
the analysis. However, this “measured value” is different from individual exposure of study participants

∗Corresponding author: e-mail: Veronika.Deffner@stat.uni-muenchen.de, Phone: +49-89-2180-3197, Fax: +49-89-2180-
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2 Deffner et al.: Mixtures of Berkson and classical covariate measurement error

because people spend their time in different microenvironments (from high–exposure microenvironments,
e.g. during commuting, to low–exposure microenvironments, e.g. being at home) and have different time–
activity patterns, as seen in Deffner et al. (2016). This type of measurement error is called Berkson error.
The individual exposure could be more accurately estimated by mobile measurement devices carried by
each individual; these devices deliver highly resolved measurements of individual exposure. Classical
measurement error occurs if the device readings vary around the true value, i.e. around the true individual
exposure, due to low precision of the instruments. In addition, mobile devices are difficult to handle, costly
and often record only a short period (mostly up to 24 hours) without reloading the batteries.

Statistical analyses rely on the accuracy of the applied measures for data collection. Since measurement
error possibly yields distorted results, its size, relevance and impact are worth to examine even in complex
but practically relevant data situations. In contrast to methods that simultaneously account for measurement
error (e.g. Bayesian and maximum likelihood (ML) methods), the exact calculation of the effect of mea-
surement error enables the easy evaluation of its relevance, transparently elucidates its impact and involves
the calculation of correction formulas. General linear mixed models (e.g. Diggle et al., 2002; Pinheiro and
Bates, 2000) offer a widely used framework for the analysis of multiple measurements in varying statistical
units with temporal autocorrelation. Therefore, this method is applied to model the relationship between
ECG measurements and ultrafine particle concentrations in the Augsburger Umweltstudie. Former works
extended the existing knowledge about covariate measurement errors and the corresponding methods (see
e.g. Carroll et al., 2006, for an overview) to models with random effects (e.g. Tosteson et al., 1998; Wang et
al., 1998), correlated measurement error terms (Wang et al., 1996; Wang, 2000) and correlated predictors
with correlated measurement error (Schwartz and Coull, 2003). So far, measurement error in linear mixed
models with autocorrelated error terms has not been studied. Therefore, three challenges are considered
within this work to investigate measurement error in data on individual exposure to particulate matter:
1. random effects within the measurement error structure, 2. autocorrelated measurement error and 3. a
mixture of classical and Berkson error.

The paper is organized as follows: The Augsburger Umweltstudie and the related validation studies are
described in Section 2. Covariate measurement errors in linear mixed models are theoretically examined
and the resulting biases are quantified in Section 3. The properties for a small number of observations of
each individual are considered as well as allowing for additional covariates. Moreover, the distributional
characteristics of the estimator for the attenuation factor based on repeated measurements are examined.
The biases are further investigated by a simulation study based on the Augsburger Umweltstudie (Section
4). Finally, adequate correction factors are applied to adjust the effect estimations of the Augsburger
Umweltstudie (Section 5). Derivations and other details can be found in the Supporting Information.

2 Data description

The Augsburger Umweltstudie (Hampel et al., 2012a,b; Peters et al., 2015; Rückerl et al., 2014; Gu et al.,
2015) was conducted between March 2007 and December 2008 in the city of Augsburg and two adjacent
counties. The aim of the study was to examine the association between human health and the concentration
of fine and ultrafine particles in the air, which represent two quantities to measure air pollution. Since short–
term effects of particle concentrations were the focal point, their association with blood parameters was
investigated. One hundred and twelve individuals were enrolled and measured up to four times for a 5–6
hour period their individual exposure to particle number concentration (PNC) in their daily life by carrying
a portable particle counter. Beside the individual exposure measurements, air pollution measurements at
fixed monitoring site were collected. During the same time, the individuals wore ECG devices recording
their cardiac rhythm activity and documented their activities in a diary. The data were analyzed using a
resolution of five minutes.

Based upon the Augsburger Umweltstudie, a validation study was conducted to quantify the sizes of the
measurement errors. In the first part of the validation study, which was described in Deffner et al. (2016),
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ten volunteers measured their individual exposure to PNC using mobile devices during three predefined
scenarios in three different seasons (winter, spring summer) in 2011. The scenarios comprised commuting
between the home or the city center by public transport, car or as a pedestrian and the participants kept
an activity diary during their measurements. In the second part of the validation study, another person
conducted mobile PNC measurements on a predefined route within the same study period. Information
about the relationship of individual and fixed site measurements can be deduced from this validation study.
Moreover, comparison measurements between the three mobile devices and the measurement station were
accomplished before and after each measurement campaign. These data reveal information about the
measurement accuracy of the devices, which were gained through statistical models presented in Section
5.

The mobile exposure measurements of the Augsburger Umweltstudie revealed two major problems:
First, the precision of the devices is quoted to be ± 20 % by the manufacture resulting in measurements
with classical measurement error. Second, about 23 % of the outdoor measurements were missing due
to breakdown or incorrect appliance of the device by the study participants. The problem of missing
values becomes even more severe if lagged exposure effects are considered. One solution is to substitute
missing personal exposure measurements through the Berkson error–prone data from the fixed monitoring
site. This approach induces a mixture between classical and Berkson error, i.e. classical measurement
error occurs for about 77 % of the observations and Berkson error occurs for the remaining part of the
observations. Classical and Berkson errors are both considered to comprise individual–specific effects
and to be autocorrelated. Autocorrelated and individual-specific Berkson error may arise, because the
difference of the exposure levels in the microenvironments of the individuals and of the fixed site differ with
temporal and individual–specific dependencies. Individual–specific handling of the portable measurement
devices as well as differing accuracy depending on the device and the environmental conditions and which
is varying over time may yield individual–specific and possibly autocorrelated classical measurement error.

The biases of the effect coefficients due to classical, Berkson and mixture error–prone covariates in a
general linear regression model are theoretically examined in the following section.

3 Bias calculations

3.1 Main model and measurement error models

A simple linear mixed model is considered as the main outcome model for the association between the
health–outcome Yit and the true exposure Xit of independent individuals i, i = 1, . . . , n, at time point
t, t = 1, . . . , T :

Yit = β0 + β1Xit + τi + εit , τi ∼ N(0, σ2
τ ) , εi ∼ N(0,Σε) . (1)

β0 is the intercept of the model and β1 the effect coefficient for the impact of exposure on health. The
random individual–specific intercept is denoted by τi, and the independent random model errors by εi,
which are assumed to follow an AR(1) process with autocorrelation coefficient ρ. In the following, the
correlation matrix of an AR(1) process with autocorrelation coefficient ρ is denoted by Wρ; thus, Σε =
σ2
εWρ and σ2

ε is the variance of εit.
The true latent individual exposure vector is denoted byXi and the measurements of the mobile device

by X∗Ci , which are assumed to include an additive classical measurement error, UC
i . Measurements from

a monitoring station at a fixed site X∗Bi characterize the population exposure to PNC of all included
individuals. If X∗Bi is used instead of Xi as covariate in the main outcome model, Berkson error UB

i

occurs, because these measurements do not account for the individual structure of personal exposure and
represent a spatially averaged value. The classical measurement error of the fixed site measurements is
neglected due to the lack of data to determine the size of the error, but is assumed to be small.
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4 Deffner et al.: Mixtures of Berkson and classical covariate measurement error

Thus,X∗Bi andX∗Ci represent the measurements with Berkson and classical measurement error, respec-
tively. We extend the conventional error structure for both measurement error types through individual–
specific components νB

i and νC
i and autocorrelated measurement errors UB

i and UC
i :

Xit = X∗Bit + νB
i + UB

it , νB
i ∼ N(0, σ2

νB) , UB
i ∼ N(0,ΣUB) , ΣUB = σ2

UBWρB , (2)

X∗Cit = Xit + νC
i + UC

it , νC
i ∼ N(0, σ2

νC) , UC
i ∼ N(0,ΣUC) , ΣUC = σ2

UCWρC , (3)

where UB
it and νB

i are independent from X∗Bit and UC
it and νC

i are independent from Xit; the measurement
errors are non–differential and independent from each other and from the model errors τi and εit.

Because mobile exposure measurements are missing for some observations, the information of the fixed
site measurements could be used in these cases. This results in the mixture of Berkson and classical mea-
surement error and is considered as a third type of measurement error. Formally, for a known proportion
1− p of observations, individual, but classical error–prone, PNC measurements are available, whereas the
remaining fraction p of observations without individual measurements is substituted by Berkson error–
prone measurements, e.g. fixed site records:

X∗Mit =X∗Bit Git +X∗Cit (1−Git)

=

{
X∗Bit for p · 100% of the measurements

X∗Cit for (1− p) · 100% of the measurements
, (4)

with Git indicating whether the observation at time point t of individual i exhibits Berkson error. This
type of the mixture measurement error differs from the mixture error considered in Mallick et al. (2002),
Carroll et al. (2007) or Yin et al. (2013), whose observed error–prone covariate consists of a latent variable
with Berkson error superposed with classical measurement error.

Since distributional assumptions forX∗Bi are necessary in some situations, we assume that

X∗Bi ∼ N(µX
∗B

1T ,ΣX∗B) with E(X∗Bit ) = µX
∗B

and ΣX∗B = σ2
X∗BWρX∗B .

Under these conditions,

Xi ∼ N((µX
∗B

+ νB
i )1T ,ΣX) with ΣX = ΣX∗B + ΣUB

X∗Ci ∼ N((µX
∗B

+ νB
i + νC

i )1T ,ΣX∗C) with ΣX∗C = ΣX∗B + ΣUB + ΣUC .

Note, ΣX and ΣX∗C are not the variance–covariance matrices of AR(1) processes but of ARMA processes
(Lütkepohl, 1984) andX∗Ci depends onX∗Bi .

3.2 Bias and uncertainty of naive estimators

The bias of the naive estimators due to the usage of X∗ ∈ {X∗B,X∗C,X∗M} can be calculated if the
parameters describing the measurement errors are known. At the beginning of this section a general ex-
pression of the bias in a simple linear mixed model is given followed by expressions for Berkson and
classical error as well as for the mixture of both error types assuming T →∞.

First, we derive the general form of the bias through a closer look on the estimation approach for the
naive estimators. β∗ = (β∗0 , β

∗
1)
> and φ∗ = (σ2

ε∗ , ρ
∗, σ2

τ∗)> = (φ∗1, φ
∗
2, φ
∗
3)
> denote the probability

limits of the naive estimators for n→∞ and are obtained as solutions from the linear mixed model score
equations, if n→∞:

E
{
χ∗>V ∗−1 (Y − χ∗β∗)

}
= 0, (5)
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and for φ∗j , j = 1, 2, 3,

1

2

[
E

{
(Y − χ∗β∗)> V ∗−1 ∂V

∗

∂φ∗j
V ∗−1 (Y − χ∗β∗)

}
− tr

(
V ∗−1

∂V ∗

∂φ∗j

)]
= 0, (6)

with χ∗ = (1T ,X
∗) (see Wang et al., 1998). V ∗,V ∗ = Σε∗ + σ2

τ∗JT , denotes the probability limit for
n → ∞ of the variance–covariance matrix of the error term in the naive model and JT the T × T matrix
of ones. τ∗i ∼ N(0, σ2

τ∗) is assumed and εit∗ is assumed to follow an AR(1) process with autocorrelation
parameter ρ∗ and variance matrix Σε∗ = σ2

ε∗Wρ∗ ; index i is neglected in eq. (5) and eq. (6) and in the
following considerations. To relate β∗1 to β1, the first score equation (5) is rewritten as

λ =
β1
∗

β1
=

tr
{
V ∗−1Cov(X,X∗)

}
tr
{
V ∗−1Var(X∗)

} (7)

(Supporting Information, Appendix A.1.1). The attenuation factor λ resembles the common form of the ra-
tio between Cov(X,X∗) and Var(X∗). The detailed expression of λ depends on the type of measurement
error and is examined in the subsequent paragraphs.

The remaining model parameters φ∗ characterize the model errors and thus the uncertainty of the naive
estimates. The score equations (eq. (5) and eq. (6)) do not allow to write φ∗ in terms of other unknown
model parameters. Instead, only expressions for the variance–covariance structure of the model error
Var(Y |X∗) can be derived (Supporting Information, Appendix A.2).

After the general considerations about the bias and the uncertainty of the naive estimators, we con-
tinue with a more detailed view on the impact of Berkson error. The effect estimate for a covariate with
individual–specific and autocorrelated Berkson error is just as unbiased as with conventional Berkson error
due to E

(
Y |X∗B

)
= β0 + β1X

∗B: β∗B1 = β1 and λB = 1.
The fraction of the variability of X exceeding the variability of the Berkson error–prone measurement

X∗B, is conferred on the model error variance, Var(Y |X∗B). This implicates in conjunction with lower
variability of X∗B compared to X an increased variance of the naive effect estimate, β̂∗1 (Supporting
Information, Appendix A.2).

Classical measurement error mostly causes an attenuation of the effect estimate in linear regression ana-
lyses, i.e. the effect estimate is biased towards 0, and only a slight increase in the uncertainty of the effect
(Fuller, 1987; Carroll et al., 2006). If measurement error and model error are independent, the attenuation
factor will be calculated through the ratio between Cov

(
X,X∗C

)
and Var

(
X∗C

)
in linear regression

models with the usual classical measurement error. For general linear mixed models, the attenuation factor
results with some matrix algebra and with the Sherman–Morrison formula for the calculation of the inverse
of V ∗C in eq. (7) as:

λC =
β∗C1
β1

=
tr
{
V ∗C

−1Cov(X,X∗C)
}

tr
{
V ∗C

−1Var(X∗C)
}

=
{
σ2
X∗Bg∗CT

(
ρX

∗B
)
+ σ2

νBg∗CT (1) + σ2
UBg∗CT

(
ρB)}{

σ2
X∗Bg∗CT

(
ρX

∗B
)
+ σ2

νBg∗CT (1) + σ2
νCg
∗C
T (1) + σ2

UBg∗CT
(
ρB)+

σ2
UCg
∗C
T

(
ρC)}−1 , (8)

with g∗CT (ρ) = 1− 2ρρ∗C + ρ∗C
2 if |ρ| < 1 and g∗CT (ρ) = 0 if ρ = 1 and ρ∗C 6= 1 for T →∞ (Supporting

Information, Appendix A.1.2 and Appendix A.1.4). Thus, for T → ∞, the effect of σ2
νB and σ2

νC on
the attenuation factor vanishes. If at least one of ρX

∗B
, ρB and ρC differs from zero, the autocorrelation
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6 Deffner et al.: Mixtures of Berkson and classical covariate measurement error

coefficient(s) influence(s) the degree of attenuation through weighting the respective variance with the
weight g∗CT . Although Var

(
Y |X∗C

)
exceeds the error variance in a model without measurement error

(Supporting Information, Appendix A.2), the uncertainty of the naive estimate β̂∗C1 may either increase or
decrease because the variability ofX∗C is higher compared toX .

Finally, bias and uncertainty of the naive estimator resulting from mixture error are examined. A ran-
dom variable with mixture measurement error is composed by a certain percentage p of observations with
Berkson error and the percentage (1− p) of observations with classical measurement error (see eq. (4)).

In the simple linear regression case with usual classical and Berkson errors (σ2
τ = σ2

νB = σ2
νC = 0, ρ =

ρX
∗B

= ρB = ρC = 0), the reliability ratio λM is calculated through

λM =
β∗M1
β1

=
Cov(X,X∗M)

Var(X∗M)
=

σ2
X∗B + (1− p)σ2

UB

σ2
X∗B + (1− p)(σ2

UB + σ2
UC)

.

Since λM ≤ 1, mixture measurement error entails an attenuation of the true effect estimate, similar to
classical measurement error.

For the general framework described in Section 3.1, the attenuation factor is given by (Supporting
Information, Appendix A.1.3):

λM =
β∗M1
β1

=
tr
{
V ∗M

−1Cov(X,X∗M)
}

tr
{
V ∗M

−1Var(X∗M)
}

=
[
σ2
X∗Bg∗MT

(
ρX

∗B
)
+ (1− p)σ2

νBg∗MT (1) + (1− p)σ2
UBg∗MT

(
ρB)][

σ2
X∗Bg∗MT

(
ρX

∗B
)
+ (σ2

νB + σ2
νC)
{
(1− p)2g∗MT (1) + p(1− p)g∗MT (0)

}
+

σ2
UB

{
(1− p)2g∗MT

(
ρB)+ p(1− p)g∗MT (0)

}
+

σ2
UC

{
(1− p)2g∗MT

(
ρC)+ p(1− p)g∗MT (0)

} ]−1
. (9)

Analogically to the classical measurement error, g∗MT (ρ) = 1 − 2ρρ∗M + ρ∗M
2 if |ρ| < 1 and g∗CT (ρ) = 0

if ρ = 1 and ρ∗M 6= 1 for T →∞ (Supporting Information, Appendix A.1.4).
Higher Berkson error reduces the bias of the effect estimate and increased classical error enlarges the

bias. The random effect of the naive main model covers only an averaged individual–specific measurement
error of individual i. Therefore, the variance between the individual mean of the Berkson error–prone
measurements and the individual mean of the measurements with classical measurement error affects the
denominator of the attenuation factor. This term strongly intensifies attenuation as it is easily seen in the
case of ρ = ρX

∗B
= ρB = ρC = 0 and T →∞:

λM =
β∗M1
β1

=
Cov

(
X,X∗M

)
Var (X∗M)

=
σ2
X∗B + (1− p)σ2

UB

σ2
X∗B + p(1− p)

(
σ2
νB + σ2

νC

)
+ (1− p)

(
σ2
UB + σ2

UC

) . (10)

λM = λC, if p = 0, and λM = 1, if p = 1.
In general, the components of the attenuation factors λC and λM consist of the product of a weighting

factor g∗T (·) and of a variance. Similar to the classical measurement error, Var
(
β̂∗M1

)
may be increased

or decreased in comparison to Var
(
β̂1

)
, but if the fraction of observations with Berkson error is large

enough, uncertainty of β̂∗M1 is higher than for β̂1 (Supporting Information, Appendix A.2).
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3.3 Small number of observations per individual

The expressions for the attenuation factors considered in the previous section are valid for T → ∞.
Since asymptotic properties in the derivations of the attenuation factor do not hold for a small number
of observations per individual T , the attenuation factor for autocorrelated model errors and measurement
errors is calculated with the following weighting formula

g∗T (ρ) =1− 2
T − 1

T
ρρ∗ +

T − 2

T
ρ∗2−{

(T − 2)(1− ρ∗)4 + 2(1− ρ∗)2(1 + ρT−1)+

4(1− ρ∗)3
T−2∑
t=1

ρt + 2(1− ρ∗)4
T−3∑
k=1

k∑
t=1

ρt
}

[
T

{
T − 2(T − 1)ρ∗ + (T − 2)ρ∗2 +

σ2
ε∗(1− ρ∗

2)

σ2
τ∗

}]−1
(Supporting Information, Appendix A.1.2 and Appendix A.1.3). The influence of the weighting factor is
higher for strongly differing ρ and ρ∗.

The variances of the individual–specific components of the measurement errors, σ2
νB and σ2

νC , contribute
to the attenuation factors λC and λM with additional terms in the numerator and the denominator of the
attenuation factor (see eq. (8) and eq. (9)). If ρ = ρX

∗B
= ρB = ρC = 0, individual–specific components

in the measurement error affect the attenuation factor, analogically to heterogeneity in the error–prone
covariate, only for small values of T (and of σ2

τ∗C/σ
2
ε∗C ) as it was shown in Wang et al. (1998); the weights

of these components simplify to (1 + (T − 1)σ2
τ∗/σ2

ε∗)
−1, as found in Wang et al. (1998).

3.4 Unbalanced observations and missing values

So far, our bias calculation assumes a balanced sample, i.e. the observations for each individual are equidis-
tant and have the same number T . An extension of the correction approach to a sample with missing values
or with non–equidistant observation times is considered in this section. In these situations, Xi and Yi,
i = 1, . . . , n, are not identically distributed and the attenuation factor is given by

λ =
β1
∗

β1
=

tr
{
V ∗−1Cov(X,X∗)

}
tr
{
V ∗−1Var(X∗)

} =

∑n
i=1 tr

{
V ∗i
−1Cov(Xi,X

∗
i )
}∑n

i=1 tr
{
V ∗i
−1Var(X∗i )

} ,

with individual–specific V ∗i . In the case of individually varying measurement durations Ti, the calculation
of the attenuation factors λC and λM differs in comparison to the balanced case only through individual–
specific weights g∗Ti

(·).
If missing values occur inX∗M, which cannot be imputed through fixed site measurements, or inX∗C,

the model errors and the measurement errors follow a continuous AR(1) process. The attenuation factor is
in this case calculated with individual–specific weights (Supporting Information, Appendix A.1.5):

λ =
β1
∗

β1
=

tr
{
V ∗−1Cov(X,X∗)

}
tr
{
V ∗−1Var(X∗)

} =

∑n
i=1 tr

{
(DiV

∗D>i )
−1DiCov(Xi,X

∗
i)D

>
i

}∑n
i=1 tr

{
(DiV ∗D>i )

−1DiVar(X∗i )D
>
i

} . (11)

Di is defined as IT where the rows of observations with missing values are deleted.

3.5 Calculation of Cov (X,X∗) and Var (X∗)

As seen in eq. (7), Cov(X,X∗) and Var (X∗) are essential for calculating the attenuation factor. Two
alternative calculations of Cov

(
X,X∗C

)
and Cov

(
X,X∗M

)
are presented in the following, since the
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8 Deffner et al.: Mixtures of Berkson and classical covariate measurement error

calculation of Cov(X,X∗) can be done either based on X∗ ∈ {X∗C,X∗M} or on X∗B (Supporting
Information, Appendix A.1.6):

• Classical measurement error:

1. Cov
(
X,X∗C

)
= Var

(
X∗C

)
− σ2

νC JT −ΣUC

2. Cov
(
X,X∗C

)
= ΣX∗B + σ2

νB JT + ΣUB (12)

• Mixture measurement error:

1. Cov
(
X,X∗M

)
=Var

(
X∗M

)
+ p(1− p)σ2

νB(JT − IT )+

p(1− p)(ΣUB − σ2
UB IT )−

(1− p)2σ2
νC JT − p(1− p)σ2

νC IT−
(1− p)2ΣUC − p(1− p)σ2

UC IT
2. Cov

(
X,X∗M

)
=ΣX∗B + (1− p)ΣUB + (1− p)σ2

νB JT . (13)

Another alternative for the calculation of Cov (X,X∗) and Var (X∗) arises from known breakdown times
of the mobile devices, i.e. the entries ofG are known. Since the breakdown times are known in the Augs-
burger Umweltstudie, they can be involved in the estimation of λM (Supporting Information, Appendix
A.1.6):

λM =
β1
∗M

β1
=

tr
{
V ∗M

−1Cov(X,X∗M)
}

tr
{
V ∗M

−1Var(X∗M)
}

=
[ n∑
i=1

tr
{
V ∗M

−1 (
ΣX∗B +

(
1T (1T −Gi)

>
)
◦
(
σ2
νB JT + ΣUB

))}]
[ n∑
i=1

tr
{
V ∗M

−1 (
ΣX∗B +

(
(1T −Gi) (1T −Gi)

>
)
◦

(
σ2
νB JT + σ2

νC JT + ΣUB + ΣUC

))}]−1
. (14)

3.6 Bias correction and confidence intervals

Knowing the formula of the attenuation factor enables us to directly correct bias due to classical or mixture
measurement error; bias correction is unnecessary in the case of Berkson error. Therefore, the components
of the attenuation factor λ ∈ {λC, λM} are estimated through their empirical equivalents resulting e.g. from
validation data or repeated measurements using empirical estimators. Subsequently, the estimated naive
effect coefficient is corrected with the estimated attenuation factor λ̂:

β̂1 =
β̂∗1

λ̂
.

This approach is known as the method of moments (e.g. Carroll et al., 2006).
The variance of the corrected effect coefficient is approximated using the delta method:

Var
(
β̂1

)
= Var

(
β̂∗1

λ̂

)
≈
E
(
β̂∗1

)2
E
(
λ̂
)4 Var

(
λ̂
)
+

1

E
(
λ̂
)2 Var

(
β̂∗1

)
. (15)
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Biometrical Journal 52 (2010) 61 9

The variance of the corrected estimator is constantly higher than the naive variance estimation, because
0 < λ̂ ≤ 1. Since the variability of the estimated attenuation factor λ̂ influences the variability of the bias
corrected effect coefficient β̂1, Var(λ̂) has to be considered for the calculation of confidence intervals for
β̂1. Whereas the calculation of Var(λ̂) is possible in simple settings (Supporting Information, Appendix
A.3), bootstrap replicates of the validation data may be used to estimate Var(λ̂) in more complex settings.

Bootstrap techniques provide confidence intervals with the advantage of relaxing the assumption of
approximate normality of the estimator. For the longitudinal setting in our study this was realized by
drawing b, b = 1, . . . , B, samples with replacement from the independent individuals of the main study
and of the independent units of the validation study resulting in B bootstrap replications of λ̂. Bootstrap
percentile intervals were derived through the required percentiles of the B bootstrap replications.

3.7 Further covariates

The previous considerations are restricted to a single covariate X . The inclusion of additional precisely
measured covariates Z does not affect the bias of the effect coefficient induced by the deficient covariate
X∗, if Z and X∗ are independent. However, the attenuation of the effect may change and biased effect
estimates β∗Z of Z possibly occur if X∗ and Z are dependent. Attenuation even could be inverted if
the measurement errors of two covariates are correlated (Carroll et al., 2006) or if several covariates are
measured with error (Buzas et al., 2005).

Analogously to the effect estimator for multiple error–prone covariates in linear regression models of
Carroll et al. (2006), the score equation for β∗X and β∗Z of the linear mixed model with one further precisely
measured covariate Z, i.e. Yit = β0 + βXXit + ZitβZ + τi + εit, is

β0
βX
βZ

 =

 tr(V ∗−1JT ) tr(V ∗−1µXJT ) tr(V ∗−1µZJT )
tr(V ∗−1µXJT ) tr(V ∗−1Cov(X,X∗)) tr(V ∗−1Cov(X,Z))

tr(V ∗−1µZJT ) tr(V ∗−1Cov(X,Z)) tr(V ∗−1Var(Z))

−1
 tr(V ∗−1JT ) tr(V ∗−1µX∗JT ) tr(V ∗−1µZJT )

tr(V ∗−1µX∗JT ) tr(V ∗−1Var(X∗)) tr(V ∗−1Cov(X∗,Z))

tr(V ∗−1µZJT ) tr(V ∗−1Cov(X∗,Z)) tr(V ∗−1Var(Z))

β∗0β∗X
β∗Z

 ,

(16)

with µX , µX∗ and µZ denoting the expected values of the respective random variable. Eq. (16) describes
the bias correction exemplary for one further covariate, but the principle also holds for more than one
additional covariate. Two items cause the differences to the simple case: (I) The probability limit of the
variance–covariance matrix of the naive model errors V ∗ changes due to additional explanatory power of
the additional covariates and (II)Z directly influences the estimation of β∗X through Cov(X∗,Z),Cov(Z)
and βZ .

Cross–covariances between the covariates contribute to eq. (16), which will be difficult to estimate in
real situations: in the Augsburger Umweltstudie, these parameters strongly varied between the individuals.
Therefore, empirical, individual–specific equivalents of the expectations, variances and cross–covariances
were used and the equation system (16) was numerically solved to estimate the effect coefficients β0, βX
and βZ .

Cov(X,X∗) and Cov(X,Z) cannot be estimated from the data. Cov(X,X∗) has to be calculated with
additional information (see Section 3.5), e.g. through a validation study. Cov(X,Z) equals Cov(X∗,Z)
because the classical measurement errors and the covariate Z are assumed to be independent.
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10 Deffner et al.: Mixtures of Berkson and classical covariate measurement error

4 Simulation study

4.1 Simulation design

A simulation study was performed to visualize the theoretical results and to examine the properties of the
estimators. The data was generated according to the main model (eq. (1)) and the measurement error
models (eq. (2)-(4)) defined in Section 3.1. The parameters are specified as described in Table 1, inspired
by the Augsburger Umweltstudie. The regression coefficients β0 and β1 were chosen to be 73 and 1,
respectively.

Table 1 Parameter choices for simulations.

Variable Mean Variance Autocorrelation
X∗Bit µX

∗B
= 9.5 σ2

X∗B = 0.3 ρX
∗B

= 0.99
νB
i σ2

νB = 0.04
UB
it σ2

UB = 0.2 ρB =0.7
νC
i σ2

νC = 0.03
UC
it σ2

UC = 0.06 ρC = 0.2
τi σ2

τ = 140
εit σ2

ε = 70 ρ = 0.7

Three scenarios were considered for the structure of the measurement errors: (I) uncorrelated errors
without individual–specific structure (νB = 0,νC = 0, ρB = 0, ρC = 0, ρ = 0), (II) uncorrelated random
errors and individual–specific measurement error components (ρB = 0, ρC = 0, ρ = 0), (III) autocorrelated
errors and individual–specific measurement error components.

These scenarios were evaluated for data with the three examined types of measurement error (Berkson,
classical, mixture) as well as for the proper data without measurement error using linear models with a
random intercept and an AR(1) error term. The size of measurement error was varied by scaling the vari-
ances of the random errors (σ2

UB , σ2
UC ) with the scaling factors (SF) 0, 0.5, 1, 2 and 5; the other parameters

remained equal within each scenario. The percentage of missing values in X∗C and the percentage of
Berkson error–prone measurements in X∗M was, accordingly to the percentage of missing values in the
Augsburger Umweltstudie, chosen to be 23 %. Within each of the N = 100 iterations, measurement series
of length T = 75 were generated for n = 100 individuals.

4.2 Attenuation in the general linear mixed model

The simulation results for the empirical attenuation factors depending on the varying measurement error
sizes are presented in Figure 1. The empirical attenuation factor was calculated as the ratio between the
estimated effect using the error–prone dataX∗, β̂∗1 , and the estimated effect using the proper dataX , β̂1.

On average, measurements with Berkson error provided unbiased effect estimates, also in the pres-
ence of individual–specific measurement error or autocorrelated measurement error. AR(1) Berkson errors
(scenario (III)) intensified the known accuracy reduction of the effect estimates.

In contrast to individual–specific classical measurement error, which did not affect attenuation for T →
∞, autocorrelated errors strengthened the degree of attenuation in particular regarding small measurement
error variances. Note, that the theoretical estimations of the attenuation factor allow for the presence of
missing values in the measurements with classical measurement error (see Section 3.4).

Mixture error attenuated the effect estimates as it is known for classical error–prone data, but to a dif-
ferent extent. Individual–specific components in the classical and Berkson error induced bias in the effect
estimates even without random measurement errors (UB, UC). The bias resulting from mixtures of autocor-
related measurement errors was high and strongly depended on both the size of the measurement errors and
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(I) Measurement error
 in a mixed model

(II) Measurement error
 with individual−specific effects

 in a mixed model

(III) Autocorrelated measurement error
 with individual−specific effects

 in a mixed model
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 error
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Figure 1 Simulation results for the empirical attenuation factor depicted in boxplots for increasing size
of classical and Berkson measurement error; the theoretical estimations of λ with the exact value of T
(using eq. (11) for λC and the combination of eq. (11) and eq. (14) for λM) are marked with triangles and
with circles for calculations assuming T → ∞ according to eq. (8) and eq. (9). Please note, σ2

νB = 0.04
and σ2

νC = 0.03.

the size of the autocorrelation coefficients. Increasing mixture measurement error reduced the attenuation
of the effect in scenario (III); this is possible to occur because the numerator of the attenuation factor is
not completely contained in its denominator. In general, attenuation resulting from mixture measurement
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Figure 2 The role of the proportion p of observations affected by Berkson error for the attenuation factor
λM in the case of mixture measurement error; dotted line: scenario (I), dashed line: scenario (II), solid
line: scenario (III).

error strongly depends on the proportion p of observations affected by Berkson error (Figure 2, eq. (9) and
eq. (10)). Note, λM = λC, if p = 0, and λM = 1, if p = 1.

Table 2 Bias and RMSE for the bias corrected effect estimations for scenarios (I)-(III); bold: lowest
absolute bias and lowest RMSE of each row (disregarding the results based on the true data).

SF of Truth Berkson Classical Mixture

Scen. σ2
UB , σ

2
UC Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(I) 0 0.015 0.360 0.015 0.360 0.020 0.421 0.015 0.360
0.5 0.024 0.242 -0.014 0.407 0.016 0.295 0.019 0.275
1 0.002 0.187 -0.008 0.378 0.022 0.246 0.014 0.234
2 0.003 0.137 0.003 0.370 -0.002 0.182 -0.003 0.177
5 -0.012 0.095 0.013 0.390 -0.009 0.118 -0.011 0.119

(II) 0 0.062 0.387 0.062 0.389 0.074 0.409 0.033 0.413
0.5 -0.039 0.237 -0.067 0.364 -0.035 0.282 -0.050 0.280
1 0.015 0.179 0.015 0.397 -0.010 0.243 0.000 0.238
2 0.031 0.151 0.000 0.370 0.027 0.185 0.029 0.180
5 -0.006 0.092 -0.034 0.387 -0.011 0.117 -0.008 0.117

(III) 0 -0.015 0.658 -0.018 0.670 -0.048 0.759 0.005 0.953
0.5 0.036 0.272 -0.007 0.606 0.053 0.402 0.088 0.533
1 -0.012 0.198 -0.002 0.672 0.017 0.299 -0.001 0.348
2 -0.009 0.165 0.013 0.677 -0.002 0.204 0.013 0.255
5 0.009 0.097 0.095 0.644 0.031 0.150 0.038 0.188

Comparing the correction methods in terms of bias and RMSE (Table 2) shows that the corrected es-
timations for classical or mixture error–prone data exceeded the accuracy of the estimations for Berkson
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error–prone data. In scenarios (I) and (II) the correction based on mixture data is superior or comparable
to the correction based on incomplete data with classical error, whereas in scenario (III) the correction of
classical error–prone data is more precise.

The RMSE values of corrected effect estimations for data with mixture error are not generally higher
than for incomplete data with classical measurement error. For example, for lower ρX

∗B
, the RMSE is

better or comparably good for the estimated coefficient based on data with mixture error (Supporting
Information, Table S1). Hence, using incomplete data with classical error outperforms the usage of data
with mixture error only under certain parameter specifications.

Weights g∗T (·) depending on T , as described in the Sections 3.2, 3.3 and 3.4, were used for the esti-
mation of the attenuation factors to account for the finite number of observations for each individual and
unbalanced or not equidistant data. Figure 1 and Supporting Information, Figure S3 indicate that the fi-
nite sample correction is indeed relevant, because the weights g∗T (·), and thus also the attenuation factor,
strongly depend on the number of observations per individuals T , especially in scenario (III).

4.3 Confidence intervals

Three types of 95 % confidence intervals (CIs) for the corrected effect estimations were compared regard-
ing their empirical coverage probabilities with a further simulation: bootstrap percentile intervals using
100 bootstrap iterations (“bootstrap”) and CIs assuming normality of β̂1 with the variance of the naive
estimate (“naive”), β̂∗1 , and with an approximation of the variance using the delta method (eq. (15), “delta
method”). The comparison was based on 1000 CIs. Varying values of λC and λM were investigated, gen-
erated through varying sizes of classical measurement error σ2

UC ; the other components of λC and λM were
fixed according to Table 1 and were assumed to be known. Variability of λ̂ was generated through random
shifting of λ̂ with a variance of 0.0004, which was approximately the bootstrapped variance of λ̂ in the
Augsburger Umweltstudie.

Table 3 presents the simulation results. Indeed, the naive estimations of the confidence intervals ex-
hibited the most narrow intervals, but their coverage probability was in nearly all scenarios below 95 %.
Only for strong attenuation, bootstrap percentile intervals provided inadequate coverage probabilities. In
comparison to confidence intervals based on the normality assumption of the estimator and on variance
calculations using the delta method, bootstrap confidence intervals were slightly narrower. The coverage
probabilities of the delta method CIs were also for large measurement errors high. Uncertainty in the
estimation of λ was adequately incorporated in CIs based on the delta method, whereas the coverage of
bootstrap CIs diminished for strong measurement error.

The simulations for the complex situation with autocorrelation showed: confidence intervals based on
the delta method and also on the bootstrap method tended to be too conservative, especially for small
measurement error.

4.4 Further covariates

For the Augsburger Umweltstudie we assumed that the individual PNC level was the only parameter mea-
sured with error. Besides exposure to PNC, variable selection within the main study identified some further
covariates with a significant concurrent or lagged impact on the heart rate of the individuals (Hampel et
al., 2012b). The following additional covariates affected the effect estimate of PNC, because they were
correlated (according to the correlation coefficient of Spearman) with the fixed site and thus also with
the individual PNC measurements: temperature at lag 2 (r = −0.399), quadratic temperature at lag 2
(r = −0.376) and relative humidity at lag 1 (r = 0.17).

We examined the influence of correlated covariates on the attenuation of the effect coefficient in the
framework of classical and mixture measurement error using bootstrap samples (of the individuals) from
the original data set. Realizations of X,X∗C and X∗M were generated according to the settings in Section
4.1 and scenario (III) based on the log–transformed samples of the fixed site measurements as realizations
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14 Deffner et al.: Mixtures of Berkson and classical covariate measurement error

Table 3 Comparison of naive CIs, bootstrapped CIs and CIs based on the delta method regarding their
empirical coverage probability and interval width; bold: empirical coverage probabilities greater than 0.95.

Empirical coverage probability Interval width

Error type Var
(
λ̂
)

λ Naive Bootstrap Delta method Naive Bootstrap Delta method

Classical 0 0.050 0.085 0.920 0.941 0.205 3.899 4.099
error 0.200 0.329 0.954 0.970 0.410 1.949 2.049

0.400 0.634 0.955 0.979 0.579 1.377 1.448
0.600 0.895 0.987 0.992 0.709 1.126 1.182
0.800 0.988 0.995 0.999 0.818 0.975 1.023
0.950 1.000 0.998 1.000 0.892 0.895 0.938

0.0004 0.200 0.344 0.933 0.968 0.410 1.998 2.119
0.400 0.642 0.950 0.980 0.579 1.382 1.464
0.600 0.882 0.986 0.994 0.709 1.129 1.192
0.800 0.986 0.992 0.998 0.818 0.977 1.030

Mixture 0 0.050 0.098 0.928 0.953 0.203 3.872 4.062
error 0.200 0.343 0.958 0.974 0.406 1.929 2.031

0.400 0.683 0.968 0.988 0.574 1.361 1.436
0.600 0.891 0.988 0.994 0.703 1.118 1.172

0.0004 0.200 0.343 0.950 0.974 0.406 1.968 2.091
0.400 0.656 0.969 0.987 0.574 1.368 1.456
0.600 0.890 0.986 0.994 0.703 1.120 1.181

of X∗B. The main health outcome was generated with the simulated individual PNC measurements and
the corresponding measurements of temperature, relative humidity, time of a day and the trend variable
of the bootstrap sample using the naive parameter estimates of the precisely measured parameters in the
main model of the Augsburger Umweltstudie. The attenuation effect is estimated with β̂∗X/β̂X after the
calculation of β̂X using eq. (16).

The results in Figure 3 show that the degree of attenuation due to classical and mixture measurement
error was reduced when further confounder variables were included in the model (left boxplots in Figure
3) in comparison to the simple regression model (triangles in Figure 3). The attenuation factor of the
effect in multiple regression would have been underestimated if the correlation between the covariates was
neglected and the correction formulas for the simple regression model were applied. Correcting the naive
estimations according to eq. (16) yielded more precise estimations. Bias and RMSE of the estimators are
listed in Supporting Information, Table S2.

5 Application to Augsburger Umweltstudie

The method of moments correction for measurements with Berkson, classical and mixture measurement
error in a mixed model framework was applied to the models of the Augsburger Umweltstudie by using
the data of a validation study described in Section 2. For the naive main model of the Augsburger Umwelt-
studie, the 5–min. resolved heart rate was the health outcome and the corresponding (log–transformed)
mobile PNC measurements were regarded as the deficient covariate (Hampel et al., 2012b). The con-
founder model established for the analysis of the Augsburger Umweltstudie was used, which included a
linear time trend, linear and quadratic effects of 2–h lagged temperature at the measurement station, a
linear effect of 1–h lagged relative humidity and a binary variable for time of the day (before/after noon).
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Figure 3 Simulation results of scenario (III) for the empirical attenuation factor of β1 for increasing size
of classical and Berkson measurement error in the presence of further covariates; left boxplots: empirical
attenuation factor; right boxplots: estimated attenuation factors according to eq. (16) and the first versions
of eq. (12) and Supporting Information, Appendix A.1.6 (with known break down times G); the triangles
represent the estimated attenuation factors according to eq. (11) and eq. (14) assuming independence
between the deficient and precisely measured covariates.

The analysis was solely based on outdoor measurements, because indoor measurements differ in the size
of Berkson error in comparison to outdoor measurements. The log–transformed fixed site measurements
were adapted to the mean of the log–transformed individual measurements by adding a constant to fulfill
the assumptions for the bias correction defined in Section 3.1. Varying degrees of lagged effects of the
log–transformed PNC concentrations were examined up to a lag of 60 minutes.

The parameters for the correction of the measurement errors were estimated with validation data as
well as with data from the Augsburger Umweltstudie and are listed in Table 4. Variance and autocorrela-
tion coefficient of X∗B were directly estimated from the stationary PNC measurements of the Augsburger
Umweltstudie through the sample variance and through a general linear intercept model for fixed site mea-
surements assuming a continuous AR(1) process for the error term, respectively. The remaining parameters
were calculated in three steps:

First, comparison measurements of the mobile devices and the devices at the fixed site were conducted
before and after each measurement campaign of the validation study characterizing the classical measure-
ment error. Several battery changes were necessary during each period of comparison measurements. This
data was used to estimate σ2

νC , σ2
UC and ρC with a regression model for the differences between (log–

transformed) values of the mobile and stationary measurement devices:

log
(
PNCmobile

jkt

)
− log

(
PNCstation

kt

)
= α0 + αdevice

j + αbat. change
jk + εC

jkt.

j is the index for the three mobile devices, which measure PNC levels and k for the periods between battery
changes. The classical measurement error in this experimental setup consists of three components: 1) a ran-
dom error εC

jkt, 2) an error defined by periods between the battery changes αbat. change
jk and 3) a device error

αdevice
j . This error structure was modeled with a linear model including categorical effects for device and

battery change period. The classical measurement error σ2
UC was approximated through V̂ar

(
ε̂ C
jkt

)
and the

individual specific classical measurement error σ2
νC through V̂ar

[
log(PNCmobile

jkt )− log(PNCstation
kt )

]
−
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16 Deffner et al.: Mixtures of Berkson and classical covariate measurement error

V̂ar(ε̂C
jkt). ρ̂

C was estimated by a general linear intercept model (using restricted maximum likelihood
(REML) estimation) for ε̂ C

jk assuming a continuous AR(1) process for the error term.
Second, a regression model with the differences between mobile and stationary PNC measurements of

the Augsburger Umweltstudie while the individual was staying outdoors as response and the individual as
covariate provided information about σ2

UC + σ2
UB , σ2

νC + σ2
νB and ρB for individual i and time point t:

log
(
PNCmobile

it

)
− log

(
PNCstation

it

)
= ν0 + νBC

i + εBC
it .

νBC
i denotes a categorical effect for individual i. ρ̂B was estimated by a general linear intercept model

(using REML estimation) for ε̂ BC
i assuming a continuous AR(1) process for the error term and is only an

approximation, because actually, the sum of classical and Berkson error is considered.
Third, the size of the Berkson error was directly estimated from the difference between the size of

the sum of measurement errors (second step) and the classical measurement error (first step). σ2
UB was

estimated through V̂ar
(
ε̂ BC
it

)
− σ̂2

UC . The size of individual specific Berkson error σ2
νB was estimated

through V̂ar
[
log
(
PNCmobile

it

)
− log

(
PNCstation

it

)]
− V̂ar

(
ε̂ BC
it

)
− σ̂2

νC .
The reason for this approach is that the Berkson error prone measurements were likely to underly

sample–specific, unadjusted variations; therefore, external validation data may not be appropriate.

Table 4 Parameter specifications for application (concurrent personal and fixed site measurements).

Variable Variance Autocorrelation
X∗B σ2

X∗B = 0.34 ρX
∗B

= 0.932
νB
i σ2

νB = 0.21
UB
it σ2

UB = 0.3 ρB =0.582
νC
i σ2

νC = 0.03
UC
it σ2

UC = 0.03 ρC = 0.696

Three models were considered: Fixed site PNC levels were used as covariate in the first model. For the
second model, only observations with individual measurements were used and for the third model, missing
individual PNC observations were substituted with the values from the fixed measurement station. Equa-
tion system (16) was used for bias correction and Cov(X,X∗) was estimated adjusting for the missing
values inX∗ and the known breakdown times inX∗M.

Confidence intervals for the effect coefficients were based on the more conservative delta method (Sec-
tion 4.3). The variance of the attenuation factor, Var(λ̂), was calculated using bootstrap samples of the
appropriate data sets. The results are presented in Figure 4.

The application of the developed bias correction on the data of the Augsburger Umweltstudie revealed
a slight increase of the estimated effect coefficient considering the models for lag zero. We prefer the
model based on mixture data because more information is used; this argument would be of special interest
in situations with higher proportions of missing values. To further illustrate our theoretical results, also
simple regression models were estimated. The regression coefficients and their bias corrected equivalents
only slightly differ from the effect estimates presented in Figure 4 and are not depicted here.

6 Discussion

We examined Berkson error, classical measurement error and a special mixture error of a covariate in
general linear mixed models with autocorrelated errors and permitted a wide range of error structures. The
structure of the mixture error was motivated by the Augsburger Umweltstudie as a mixture distribution

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com

Page 16 of 24

Wiley-VCH

Biometrical Journal

Veronika
Notiz
C55

Veronika
Notiz
C56

Veronika
Notiz
C57

Veronika
Notiz
C58



Biometrical Journal 52 (2010) 61 17

−
2

−
1

0
1

2

ef
fe

ct

co
nc

ur
re

nt

10
 m

in.
 b

efo
re

20
 m

in.
 b

efo
re

30
 m

in.
 b

efo
re

40
 m

in.
 b

efo
re

50
 m

in.
 b

efo
re

60
 m

in.
 b

efo
re

Berkson error

−
2

−
1

0
1

2

ef
fe

ct

●

●
●

●

●

●

●

●
●

●

●

●

●

co
nc

ur
re

nt

10
 m

in.
 b

efo
re

20
 m

in.
 b

efo
re

30
 m

in.
 b

efo
re

40
 m

in.
 b

efo
re

50
 m

in.
 b

efo
re

60
 m

in.
 b

efo
re

Classical error

−
2

−
1

0
1

2

ef
fe

ct

●

●
●

●

●

●

● ● ●
●

●

●

●

co
nc

ur
re

nt

10
 m

in.
 b

efo
re

20
 m

in.
 b

efo
re

30
 m

in.
 b

efo
re

40
 m

in.
 b

efo
re

50
 m

in.
 b

efo
re

60
 m

in.
 b

efo
re

Mixture error

Figure 4 Multiple regression analysis: Naive (triangles) and corrected (circles) effect estimates for the
association between heart rate and individual PNC levels with Berkson, classical and mixture measurement
error.

of Berkson and classical error. The complex model structure enables valuable insights into the role of
exposure measurement error during the analysis of the association between exposure and human health.

We quantified the biases in the linear mixed models with AR(1) error term when error–prone measure-
ments are used. Analogously to the linear model, Berkson error–prone measurements yield unbiased effect
estimations but the error variance of the model and the variance of the random effects are overestimated
involving wider confidence intervals.

The size of attenuation of the effect estimation resulting for a covariate with classical measurement
error may change with autocorrelated errors in both directions. Each variance included in the attenuation
factor is therefore modified with a multiplicative factor depending on the correlation coefficients. We also
found that individual–specific components in the error structure can be neglected in the bias calculation for
classical measurement error if the number of observations for each cluster is high enough.

Mixture measurement error has similar characteristics as classical measurement error. However, the
main difference is that the individual–specific components of the error strengthen attenuation. Furthermore,
autocorrelated or individual–specific Berkson error affects the estimation of the effect using data with
mixture error.

Classical measurement error of the fixed site measurements was neglected in our considerations. This
data situation would result in a mixture of Berkson and classical measurement error, which is defined as a
mixture of errors (different to our definition) by Mallick et al. (2002) as follows:

X = X∗B + UB

X∗BC = X∗B + UBC.
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18 Deffner et al.: Mixtures of Berkson and classical covariate measurement error

Instead of the Berkson error–prone measurements X∗B, only X∗BC can be observed, which represents the
latent fixed site exposure with an additive measurement error. The attenuation factor in this case can be
obtained along the lines of the derivations in Supporting Information, Appendix A.1 and is given by

σ2
X∗B

σ2
X∗B + σ2

UBC

in the situation without autocorrelation and individual–specific effects.
Moreover, the concept of the mixture error can be generalized to observations with heteroscedastic

errors depending on a categorical covariate, like differing measurement errors for indoor and outdoor ob-
servations or for observations from different microenvironments, as considered in Muff and Keller (2015).
Thus,G, a vector indicating the breakdown of the devices, can be generally seen as an arbitrary categorical
covariate.

The developed bias correction formulas are generally applicable to the considered types of covariate
measurement errors in linear mixed models with an AR(1) error term. Extensions of the basic method
to common practical data situations with unbalanced design, missing values, and additional covariates
are provided. Hence, the theoretical, general considerations are transferable to other longitudinal studies.
For this purpose, the method of moments is a simple, effective and practically established method for the
correction of measurement error (Carroll et al., 2006) requiring only little computational demand.

A further strength of the analysis is the usage of individual exposure measurements involving more reli-
able results for individual health outcomes than data from one or several fixed monitoring sites. However,
only a single pollutant measure is collected and multipollutant analyses, like in Bergen et al. (2016) are
not feasible.

The methods are restricted to linear mixed models, i.e. normally distributed model errors are assumed.
Moreover, the measurement errors are supposed to be non–differential, which is fulfilled in the Augsburger
Umweltstudie, and to exhibit a certain structure, which indeed extends the usual structure, but still may
be too simplistic. Error corrections in hierarchical multi–level analyses are not considered within this
work. The presented approaches are extensible to more complex correlation structures. In these cases,
the variances in he attenuation factor are also weighted, but with different weights. Since these weights
possibly cannot be simplified to general explicit formulas, the impact of the parameters describing the
measurement error does not become obvious in contrast to the presented data situation. Error correction
through the method of moments provides only an approximation, because the estimation of the correlation
structure of the model error term cannot be adapted.

Alternative estimation approaches include the use of instrumental variables (e.g. Schennach, 2013) the
ML method or also Bayesian methods as described and applied in e.g. Rosner et al. (1989), Spiegelman et
al. (2000), Thoresen and Laake (2000) and Carroll et al. (2006). The ML approach results in a more or less
pronounced increase in efficiency (Carroll et al., 2006); the advantage of Bayesian methods is the possi-
bility to combine various sources of information (Carroll et al., 2006). However, these approaches do not
allow a detailed understanding of the impact of measurement error in linear mixed models. Additionally,
the ML and the Bayes approach are known to be sensitive to distributional assumptions; this is particularly
relevant for the specification of an exposure model for personal exposure to PNC.

Applying the correction methods to the Augsburger Umweltstudie revealed slight differences in the
effect coefficients compared to the naive estimations. The examined complex error structure had little
impact on the investigated effect estimations in the Augsburger Umweltstudie. The major reason was,
that the measurement error of the devices, which was quoted by ± 20 % for 1–min. resolved data, was
substantially lower for the analysis of data with a 5–min. resolution. Thus, the conclusions deduced from
the original naive analyses persist. This is an interesting and important result because unexpectedly, the
measurement error had only a slight impact on the effect estimates.

Deriving information about the measurement error from repeated measurements in a linear mixed model
setting is elaborate and hardly realizable, because many repetitions and time points are necessary. Infor-
mation from validation studies or comparison measurements seem to be more promising as shown with the
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practical example of the Augsburger Umweltstudie. The combination of the information from the main
study and the validation studies was accomplished with a two–stage procedure: (I) modeling with deficient
data and (II) error correction with validation data. Future Bayesian analyses will combine these steps in
one model.
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Simulation results for the empirical attenuation factor depicted in boxplots for increasing size of classical and 
Berkson measurement error; the theoretical estimations of λ with the exact value of T (using eq. (11) for λC 

and the combination of eq. (11) and eq. (14) for λM) are marked with triangles and with circles for 
calculations assuming T→∞ according to eq. (8) and eq. (9). Please note, δ2

ν
B=0.04 and δ2

ν
C=0.03.  
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The role of the proportion p of observations affected by Berkson error for the attenuation factor λM in the 
case of mixture measurement error; dotted line: scenario (I), dashed line: scenario (II), solid line: scenario 

(III).  
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Simulation results of scenario (III) for the empirical attenuation factor of β1 for increasing size of classical 
and Berkson measurement error in the presence of further covariates; left boxplots: empirical attenuation 
factor; right boxplots: estimated attenuation factors according to eq. (16) and the first versions of eq. (12) 
and Supporting Information, Appendix A.1.6 (with known break down times G); the triangles represent the 

estimated attenuation factors according to eq. (11) and eq. (14) assuming independence between the 
deficient and precisely measured covariates.  

 
213x101mm (200 x 200 DPI)  

 

 

Page 23 of 24

Wiley-VCH

Biometrical Journal



  

 

 

Multiple regression analysis: Naive (triangles) and corrected (circles) effect estimates for the association 
between heart rate and individual PNC levels with Berkson, classical  and mixture measurement error.  
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