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Summary: Metabolites are small molecules that are intermediates or products of metabolism, many of which

are freely filtered by the kidneys. In addition, the kidneys have a central role in metabolite anabolism and
catabolism, as well as in active metabolite reabsorption and/or secretion during tubular passage. This review
article illustrates how the coupling of genomics and metabolomics in genome-wide association analyses of
metabolites can be used to illuminate mechanisms underlying human metabolism, with a special focus on
insights relevant to nephrology. First, genetic susceptibility loci for reduced kidney function and chronic kidney
disease (CKD) were reviewed systematically for their associations with metabolite concentrations in
metabolomics studies of blood and urine. Second, kidney function and CKD-associated metabolites reported
from observational studies were interrogated for metabolite-associated genetic variants to generate and discuss
complementary insights. Finally, insights originating from the simultaneous study of both blood and urine or by
modeling intermetabolite relationships are summarized. We also discuss methodologic questions related to the
study of metabolite concentrations in urine as well as among CKD patients. In summary, genome-wide
association analyses of metabolites using metabolite concentrations quantified from blood and/or urine are a
promising avenue of research to illuminate physiological and pathophysiological functions of the kidney.
Semin Nephrol 38:151-174 C 2018 The Authors. Published by Elsevier Inc. All rights reserved.
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The kidneys have a profound impact on the
human metabolome, the collection of small
molecules that represent intermediates or end

products of metabolism. Not only do the kidneys have
a central role in the filtration of metabolites present in
blood, but also in metabolite generation (anabolism),
breakdown (catabolism), as well as active secretion and
reabsorption along the nephron. The prominent role of
the kidneys in clearing blood metabolites is illustrated
by the routine use of serum creatinine concentrations to
estimate the filtration function of the kidneys, the
estimated glomerular filtration rate (eGFR).

Studies of the metabolome are of interest to the field
of nephrology for several reasons: first, many of these
small molecules are freely filtered. Metabolites
matter
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therefore represent attractive filtration markers in addi-
tion to creatinine,1 which has limitations that can lead to
imprecise estimates of GFR and hence the definition
and staging of chronic kidney disease (CKD).2,3 Sec-
ond, studies of the human metabolome can reveal
indicators of the nonfiltration functions of the kidney
in health and disease. Third, metabolites may be causal
for the etiology and/or progression of kidney diseases,
such as chronically increased glucose for the develop-
ment of diabetes and subsequent diabetic kidney dis-
ease. Fourth, metabolites may represent useful markers
of CKD severity and progression that contain prognos-
tic information in addition to serum creatinine.

The coupling of genetics to metabolomics is a
powerful tool to gain insights into molecular mecha-
nisms that link human genetic variation to interindi-
vidual differences in metabolite concentrations, a
concept termed genetically influenced metabotypes
(GIMs).4 The GIM concept stipulates that the presence
of metabolic differences introduced by genetic varia-
tion may influence an individual’s ability to respond to
challenges as well as its susceptibility to disease. The
genome and the metabolome are closely linked, as
opposed to the more distal relationship between genetic
variants and disease end points. This close, proximal
relationship along with the long-standing knowledge of
human physiology and biochemistry facilitates the
biological interpretation of identified GIMs. Genetic
variants associated with metabolite concentrations
often map into genes encoding for enzymes that
directly or indirectly metabolize the respective or a
closely related metabolite, or into genes encoding for
their transport proteins.4–9
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With respect to nephrology, mGWAS therefore can
deliver insights into physiologic functions of the
kidney such as differences in the ability to excrete
waste products, or to gain insights into mechanisms
relevant to the etiology or progression of kidney
diseases. For example, genetic studies can implicate
renal metabolite transporters through the identification
of genetic variants in the corresponding genes that are
associated with concentrations of the transported
metabolite. Because the substrates for many renal
transporters are only partially identified and their
relevance in human beings in vivo often is unclear,10

such studies have the potential to uncover novel
aspects of renal transport physiology. Genetic studies
of metabolite concentrations in urine additionally may
deliver insights about metabolites that are generated or
metabolized specifically within the kidney and released
into urine. Finally, genetic studies of human metabo-
lism among patients with CKD may identify processes
that are specifically up-regulated in the disease state,
for example, catabolic functions of the kidneys such as
detoxification reactions or increased tubular secretion
in the setting of high blood metabolite concentrations.

In this article, we address several complementary
aspects of how genetic studies of metabolites can
provide insights relevant to nephrology and provide
examples where relevant. Nongenetic studies of human
metabolism with implications for nephrology are cov-
ered by another article in this issue.
OVERVIEW OF PUBLISHED MGWAS STUDIES

We conducted a literature review to systematically
capture mGWAS articles (Table 1). Most mGWAS
published to date examined blood, followed by studies
that examined urine. The studies used proton nuclear
magnetic resonance spectroscopy (NMR)- or mass
spectrometry (MS)-based methods for metabolite quan-
tification, and were conducted predominantly in pop-
ulations of European ancestry. The high number of
citations despite the relatively recent publication date
of many of the articles illustrates the impact of these
studies and the initiation of multiple follow-up projects
(Table 1).
INSIGHTS INTO (PATHO-)PHYSIOLOGIC KIDNEY
FUNCTIONS: MGWAS OF BLOOD METABOLITE
CONCENTRATIONS

Genetic studies of blood metabolite concentrations in
the general population can implicate processes related
to renal metabolite handling and hence kidney function
physiology. If the identified genetic variants addition-
ally are associated with kidney function and CKD end
points, the implicated metabolites may represent causes
(intermediate phenotypes) or consequences of CKD
(reverse causation). Although insights into causes of
CKD improve our understanding of the molecular
processes of disease and may provide a basis for the
development of targeted therapies, the identification of
metabolic consequences of CKD may be useful for
understanding comorbidities and disease progression.
mGWAS of Single Metabolites

In a low-dimensional setting, GWAS of individual
metabolites already have been conducted before the
advent of metabolomics techniques that enable the
simultaneous quantification of a wide range of metab-
olites. In fact, many biomarkers used in routine clinical
biochemistry are metabolites such as lipids, glucose, or
uric acid (serum urate). As an example, a GWAS of
serum urate concentrations in 2008 identified signifi-
cantly associated genetic variants that mapped into the
ABCG2 locus.11 ABCG2 encodes for a multidrug
resistance transporter that had not been linked previ-
ously to urate transport and whose physiological
function was unclear. Follow-up studies showed that
ABCG2 is a human urate transporter expressed at the
apical membrane of renal tubular cells and the intes-
tine, where it mediates urate secretion. A common
ABCG2 loss-of-function variant, Q141K, was identi-
fied and confirmed experimentally.12 This example
illustrates the potential of mGWAS to not only provide
new insights into renal physiology, but to also be of
direct pathophysiological relevance: increased serum
urate concentrations can cause gout, the most common
inflammatory arthritis. More generally, studying the
genetics of metabolite concentrations in the general
population enables insights into diseases that result
when the respective metabolites exceed their physio-
logical ranges. In nephrology, this could be of interest
for the study of diabetic kidney disease and kidney
stones, among others.
mGWAS Using Metabolomics

An example of insights into tubular transport mecha-
nisms from a high-dimensional setting was reported by
Suhre et al.7 This study of hundreds of blood metab-
olites quantified via a nontargeted MS-based approach
identified, among many other loci, genetic variants in
SLC16A9 that were associated with free carnitine
concentrations. The investigators experimentally con-
firmed that human SLC16A9 (monocarboxylate trans-
porter 9) functioned as a carnitine efflux transporter
using the Xenopus oocyte system. Antibody staining
for monocarboxylate transporter 9 protein in human
tissues shows expression in the basolateral membrane
of intestinal epithelial cells and the apical membrane of
renal tubular epithelial cells,13 suggesting that the



Genetics of Metabolites in Nephrology 153



A. Köttgen et al.154



Genetics of Metabolites in Nephrology 155
transporter may be important in the intestinal absorp-
tion and renal reabsorption of free carnitine. Interest-
ingly, genetic variants in SLC16A9 also have been
identified in association with serum urate.14 Most
human transport proteins studied to date do not
exclusively transport a single substrate, even if affinity
across substrates varies. Because the coverage of the
human metabolome in metabolomics experiments con-
stantly is expanding, it is likely that mGWAS will
continue to deliver important insights into renal metab-
olite handling in human beings (eg, by identifying new
transporter substrates), even if the study population
size remains constant.
mGWAS: Insights into Genetic Risk Loci for CKD

The association of genetic variants in loci detected in
GWAS of kidney function and CKD with metabolite
concentrations is particularly interesting because it may
illuminate the pathophysiology of causes and/or con-
sequences of CKD. We therefore performed a system-
atic search of metabolite associations for known
genetic loci linked to kidney function or CKD.
Table 2 represents an overview of 16 loci identified
through this search, all of which contained genetic
variants associated with metabolite concentrations in
blood.

Several of these loci, including GCKR, NAT8, and
CPS1, represent hubs of metabolism, as illustrated by
the numerous associated metabolites. Moreover,
GCKR especially was identified in GWAS of many
other complex traits and diseases not listed in Table 1.
Of special interest to nephrology is NAT8. It encodes
for N-acetyl-transferase 8, an enzyme specifically
expressed in liver and kidney. NAT8 has been pro-
posed as important for the acetylation of the α-amino
group of cysteine S-conjugates to form mercapturic
acids that then can be excreted in bile and urine. The
pathway therefore represents a major route of detox-
ification.15 Interestingly, the major A allele at the
missense index variant rs13538 in NAT8 is associated
with a lower eGFR,16,17 higher blood concentrations of
few metabolites (N-δ-acetylornithine, 2-aminoocta-
noate, methionine sulfone), but lower blood concen-
trations of many N-α-acetylated amino acids (Table 2).
The latter could be considered products of the N-
acetylation reaction catalyzed by NAT8. Consistent
with the mGWAS findings, higher concentrations of N-
δ-acetyl-ornithine in blood were associated with lower
eGFR in the general population,1,7 and N-δ-acetyl-
ornithine–associated variants in NAT8 were associated
with new-onset CKD in another study.18 These obser-
vations could be explained by a genetically encoded
lower ability to detoxify waste products that leads to
the accumulation of toxic substances and subsequent
kidney dysfunction and disease. An alternative
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explanation could be that NAT8 function reflects a
different but correlated aspect of kidney health than
does glomerular filtration, leading to the identification
of the same associated variants with both eGFR and
NAT8-related metabolites. This shared genetic associ-
ation with complementary but correlated read-outs of
kidney function is exemplified in the large overlap of
genetic loci associated with serum creatinine and
blood urea nitrogen.19 Future studies that could further
evaluate the aspect of cause versus consequence of
mGWAS findings include studies of the corresponding
metabolites among CKD patients, in prospective stud-
ies, through the use of Mendelian randomization,20 as
well as experimental studies.

Another theme among the loci in Table 2 is that
many of them contain genes encoding for transport
proteins expressed in the kidney, including SLC7A6,
SLC7A9, and SLC34A1. Both SLC7A6 and SLC7A9
encode for proteins that transport cationic amino
acids21 and showed associations with lysine concen-
trations in mGWAS. Although the SLC7A6 variant
associated with lower eGFR was associated with lower
blood lysine concentrations, the variant in SLC7A9 that
was associated with lower eGFR was associated with
higher blood concentrations of homocitrulline and
lower concentrations of lysine concentrations in urine.
A direct comparison and interpretation of these find-
ings is complicated by the nonoverlapping metabolite
panels across mGWAS, the different biofluids studied,
and by our limited knowledge of the precise tissue
distribution and localization, as well as of the unknown
substrates of many transport proteins. The observa-
tions, however, are consistent with the hypothesis that
the function of transport proteins as quantified by their
transported metabolites may represent a read-out of
kidney health.

Finally, some loci in Table 2 such as gene (GATM)
and SLC6A13 may illustrate that the use of eGFR as a
creatinine-based measure of kidney function can lead
to the identification of genetic variants related to
creatinine metabolism per se, but not to kidney filtra-
tion function. GATM encodes for an enzyme involved
in the generation of guanidinoacetic acid, the immedi-
ate precursor of creatine. The association of genetic
variants with eGFR estimated from creatinine but not
from cystatin C, an alternative peptide marker of
kidney function, supports a role of GATM in creatinine
synthesis rather than reduced eGFR.22 Likewise, the
index variant in SLC6A13 was associated with crea-
tinine-based, but not cystatin-C–based, eGFR in a large
GWAS meta-analysis of kidney function.17 Although
SLC6A13 is known as a γ-aminobutyric acid (GABA)
transporter, it shows high homology with a known
creatine transporter, SLC6A8. This opens up the
possibility that SLC6A13 may have a wider range of
substrates than currently appreciated.
INSIGHTS INTO (PATHO-)PHYSIOLOGIC KIDNEY
FUNCTIONS: MGWAS OF URINE METABOLITE
CONCENTRATIONS

The study of genetic determinants of metabolite con-
centrations in urine has the potential to show additional
insights beyond those that can be gained by studying
blood. For example, urine metabolite concentrations
may reflect kidney-specific processes such as active
tubular secretion or reabsorption, or may be more
amenable to the detection of GIMs because of higher
concentrations of some metabolites in urine compared
with blood.

Five mGWAS in urine have been published to
date,23–27 all of which quantified metabolites via
NMR. Across studies, genetic variants in 26 genetic
loci were identified in association with urinary metab-
olite concentrations at genome-wide significance. In
addition, one study reported on the association between
genetic variants on the exome chip and the concen-
tration of urinary metabolites quantified via a MS-
based method.28

Some of the 26 published GIMs in urine have not
been detected in mGWAS studies of blood, but all of
the kidney function and CKD-associated loci high-
lighted in Table 2 that contain associations with urine
metabolites also show metabolite associations in blood.
Raffler et al27 reported that two thirds of 22 urine GIMs
detected in their study also were identified when
studying the respective metabolites’ blood concentra-
tions (or those of a related metabolite) with concordant
effect directions. This suggests that the majority of
associations with metabolites detected in urine is
owing to their glomerular filtration. The ability to
detect genetic loci that translate from blood to urine
because of a metabolite’s active reabsorption or secre-
tion, rather than filtration, also is conceivable. The
direction of such associations in blood and urine will
be determined by the presence and localization of
metabolite-specific transport proteins. In addition, Raf-
fler et al27 also reported instances in which a metabolite
identified in urine could be considered unrelated to the
one(s) previously detected in blood mGWAS. For
example, although genetic variants in PNMT are
associated significantly with high-density lipoprotein
cholesterol in blood,29 the associated metabolites in
urine were histidine and tyrosine.27

As shown in Table 2, significant associations were
identified between genetic variants in SLC7A9 and
urinary lysine concentrations in urine,27 but not blood,
despite the ability to detect other GIMs for lysine in
blood such as SLC7A6.8 This observation can be
explained plausibly by the localization of SLC7A9 at
the apical membrane of tubular epithelial cells, where it
reabsorbs basic amino acids including lysine from
urine in exchange for neutral intracellular amino acids.
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Genetically encoded differences in lysine reabsorption
therefore may be detected more readily in urine.
Interestingly, the SLC7A9 allele associated with lower
kidney function in GWAS of eGFR is associated with
lower urinary lysine concentrations.27 This observation
would be consistent with unfavorable effects of altered
concentrations of extracellular or intracellular SLC7A9
substrate(s) on kidney function. Alternatively, as
described for NAT8 earlier, SLC7A9 activity may
capture a complementary read-out of kidney function
correlated with eGFR, leading to the identification of
the same genetic loci.

The study of metabolite concentrations in the urine
raises an additional methodologic question, how to best
account for interindividual differences in urine dilu-
tion. Different approaches have been used, the most
common ones being indexing of individual metabolite
concentrations to urinary creatinine,24,27,28 or to the
probabilistic quotient.23,30 Some studies in which
metabolites were quantified via nontargeted NMR or
MS-based approaches also used normalization to the
complete metabolite content as represented by the sum
of peak integrals or through standardizing the spectrum
of each individual by Z-transformation based on all
spectral features after binning of the spectra to achieve
a mean of zero and standard deviation of one.26,31

Future efforts should include population-based and
CKD patient-based studies that systematically use
known positive genetic controls to compare and con-
trast different normalization methods.
LOCI ASSOCIATED WITH CONCENTRATIONS OF
THE SAME METABOLITE IN BOTH BLOOD AND
URINE MGWAS

GIMs that are associated with concentrations of the
same metabolite in both blood and urine may be
especially interesting because their effect directions
and sizes can be directly compared. Because of the
small number of urine mGWAS and the difference in
platforms used (NMR versus MS), the number of such
cases still is small but can be expected to grow in the
future. The comparison of effects can be particularly
instructive when effects occur in opposing directions.
For example, although the allele associated with lower
eGFR at SLC6A13 is associated with lower concen-
trations of 3-aminoisobutyrate in blood,9 it is associ-
ated with higher concentrations of 3-aminoisobutyrate
in urine.27 SLC6A13 is known to encode GABA
transporter 2 (GAT2), a transporter of GABA and
betaine that is highly expressed in kidney.32 Both γ-
aminobutyric acid (GABA) and betaine are structurally
related to 3-aminoisobutyrate. Together, the associa-
tions identified in blood and urine mGWAS suggest
that SLC6A13 also may transport 3-aminoisobutyrate
across kidney cells, which could now be tested
experimentally. Associations with opposing genetic
effect directions also were observed for glycine con-
centrations and CPS1. Here, the allele associated with
lower eGFR was associated with lower glycine con-
centrations in blood and higher ones in urine (Table 2).
The biological interpretation, however, is not as
straightforward because the encoded carbamoyl phos-
phate synthetase I operates in the urea cycle and is
highly expressed in liver and intestine. In addition, an
observational study reported a positive association
between higher urinary glycine concentrations and
lower odds of new-onset CKD,28 which is not con-
sistent with the effect direction from genetic studies.
INSIGHTS FROM MAPPING KIDNEY FUNCTION–
ASSOCIATED METABOLITES ONTO THEIR
RESPECTIVE GENES

The investigation of gene regions encoding for metab-
olites that were linked to kidney function and disease
in nongenetic studies also provided useful insights.
This is illustrated by various examples in Table 3,
which lists genome-wide significant genetic associa-
tions (P o 5.0×10-8) with metabolites that were found
to correlate with incident CKD in the recent metab-
olome-wide study in urine by McMahon et al28 or that
have been linked repeatedly to eGFR, eGFR decrease,
or incident CKD in studies of blood metabo-
lites.1,33,34,35 Additional studies in specific settings,
such as studies of the urine metabolome among
patients with diabetic kidney disease, also exist but
are not the focus of Table 3.36

For instance, serum inositol levels were associated
positively with incident CKD,30 and myo-inositol,
which is the most abundant naturally occurring inositol
stereoisomer, was associated negatively with eGFR1 in
population-based studies. Moreover, myo-inositol also
showed associations with genetic variants at the
SLC5A11 locus: the minor allele at the index variant
rs17702912 was correlated with lower myo-inositol
concentrations in blood,8 while the same variant was
associated significantly with higher myo-inositol con-
centrations in urine.27 The index variant is located
downstream of the gene and was annotated as a
regulatory variant in numerous tissues and cell types.
SLC5A11 is a Naþ-myo-inositol cotransporter
expressed at the apical brush-border membrane of
renal tubular cells,37 where it mediates myo-inositol
uptake from urine into tubular cells.38 Reduced func-
tion of SLC5A11 would result in higher urinary and
lower blood myo-inositol concentrations, as observed
for the reported index variant. Because genetic variants
at the SLC5A11 locus have not been identified in
association with kidney function or CKD and
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consequently are not highlighted in Table 2, this
example illustrates the added potential of integrating
information from kidney function trait to metabolite
and then to gene (Table 3).

Another example of integrating CKD-associated
metabolites in light of their genetic associations to
identify processes that potentially are implicated in
renal disease was shown by McMahon et al.28 In a
nested case-control study within the Framingham Off-
spring cohort with 193 participants who developed
CKD and 193 sex- and age-matched controls, the
investigators found lower urinary glycine and histidine
concentrations to be associated with a higher risk of
incident CKD. Subsequent testing of the association of
exome chip variants with all urine metabolites showed,
among others, an association of a rare missense variant
in SLC36A2 (rs77010315; MAF, 0.01) with higher
urinary glycine levels at a P value of less than 1.0×10-5.
This variant is listed in ClinVar98 as a cause of
autosomal-dominant hyperglycinuria. An association
of a common variant at the same locus (rs3846710)
with urinary glycine has been reported previously in a
GWAS of urine metabolites in a population-based
cohort (Table 3),27 SLC36A2 encodes a solute trans-
porter for small amino acids including glycine and is
expressed in the apical membrane of the proximal
tubule.39 Although localization, monogenic disease,
and gene transport function support the gene’s role in
glycine reabsorption from the urine, genetic variation
in the locus has not been reported in association with
kidney function or CKD. This observation supports the
notion that urinary glycine concentrations are not
simply a complementary and correlated read-out of
kidney function to eGFR that would lead to the
identification of the same genetic loci.

To gain further insights into genes that are poten-
tially involved in the regulation of CKD-associated
glycine, we screened large mGWAS in population-
based cohorts7–9,27,40 that are searchable through http://
snipa.org and http://gwas.eu for associations with
glycine at a genome-wide significance level
(Table 3). In addition to the SLC36A2 locus,27 serum
and urinary glycine levels also were reported in
association with CPS1,7–9,27,40,41 GCSH,40 and
ALDH1L1,40 all of which can plausibly be connected
to glycine metabolism. Similar observations were made
for urinary histidine concentrations (Table 3 and
McMahon et al28).

A common theme arising from the examples in
Table 3 is a link between genes encoding for mito-
chondrial proteins, metabolites indicative of mitochon-
drial function such as glutarylcarnitine, and kidney
function. The kidneys are highly metabolic organs that
contain many mitochondria for energy generation.
These small organs consume approximately 8% of
the body’s resting energy expenditure to perform their
various functions such as active reabsorption, making
the kidneys along with the heart the organs with the
highest resting metabolic rate in human beings.42

Mitochondrial dysfunction causes reduced energy pro-
duction, morphologic and metabolic changes on a
cellular level, increased generation of reactive oxygen
species, and, ultimately, reduced kidney function.43

Such dysfunction has been linked to early as well as
advanced stages of kidney diseases, especially for
diabetic kidney disease36 and acute kidney injury.43

The restoration of mitochondrial homeostasis therefore
has been discussed as a potential therapeutic approach
to improve kidney function and/or prevent CKD
progression.44
INSIGHTS GENERATED FROM THE MODELING OF
KIDNEY-SPECIFIC FUNCTIONS FROM METABOLITES

The renal generation, breakdown, re-absorption, and
secretion of metabolites actively influences their con-
centrations beyond what would be expected from the
pure filtration of blood to urine. These functions of the
kidney can be modeled from metabolite concentrations,
a concept illustrated in Figure 1. The potential of
modeling kidney-specific functions from metabolite
concentrations is exemplified by Raffler et al27 for
the association between myo-inositol and SLC5A11
variants (discussed earlier). When the researchers
directly modeled the transport function of SLC5A11
as the ratio of urinary myo-inositol to blood myo-
inositol concentrations, the strength of the genetic
association increased by several orders of magnitude.27

These findings suggest that the ratio of a metabolite’s
blood and urine concentrations can capture specific
transport functions of tubular cells.

An additional measure of transport mechanisms
across the nephron is a metabolite’s fractional excre-
tion (FE). The FE is defined as the percentage of a
metabolite filtered by the kidney that is excreted in the
urine. In theory, genetic associations with a metabo-
lite’s FE should be a complementary approach to
highlight active transport processes of a metabolite
along the nephron. To date, however, systematic
studies of the genetics of multifluid metabolite con-
centrations have not been reported and represent an
attractive avenue for further research.

In addition to the ratio of a metabolite’s concen-
tration across urine and blood, the ratio of the concen-
trations of two metabolites within the same body fluid
(eg, urine) can provide additional information. Of the
22 replicated loci reported to be associated with the
urinary concentrations of at least one metabolite,27

8 were detected only through the use of ratios. Two
potential explanations for this observation are that the
ratios more closely reflect physiological mechanisms

http://www.snipa.org
http://www.snipa.org
http://www.gwas.eu


Figure 1. Schematic figure illustrating the modeling of metabolites to reflect kidney-specific functions beyond
glomerular filtration. Metabolites can be modeled as their FE in studies that have paired measurements of a
metabolite’s concentration (Met) in both blood (b) and urine (u). Metabolite ratios (MetA/MetB) can be informative
because they may reflect substrate and product of an enzymatic reaction (a), or represent a read-out of a metabolite
exchanger’s affinity or transport rate (b). The FE or metabolite ratios then can be related to genetic variation to gain
insights into the proteins potentially involved in the modeled processes. Nephron courtesy of Michael Köttgen, MD.
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such as enzymatic conversions of one metabolite into
another or genetically encoded changes in substrate
specificity, or that the use of ratios reduces noise
because of the cancellation of systematic errors.

Finally, an elegant example of a direct read-out of
intrarenal functions was described by Rhee et al.30 The
investigators directly sampled blood from patients’
renal artery and renal vein, and applied metabolomics
to evaluate the metabolites’ arteriovenous gradients
across the kidney. They identified several metabolites
with significant concentration changes during renal
passage, which is discussed in more detail in Rhee
et al45 in this issue. Because the study only examined
nine such patients and did not have genetic informa-
tion, it could not use genetics as a tool to facilitate the
identification of mechanism underlying human metab-
olism. However, it may not be likely that future larger
studies will be conducted in an analogous fashion
because of the invasiveness and need for a clear
clinical indication justifying catherization.
MGWAS IN KIDNEY DISEASE PATIENTS

The conduct of mGWAS specifically among CKD
patients could be particularly informative to identify
processes that are up-regulated once kidney function
declines. It is conceivable that detoxification reactions
of accumulating metabolites or active secretion of
metabolites along the nephron increase as kidney
filtration function declines. The accumulation of
metabolites, many of which have been described as
uremic toxins,46,47 could represent a “challenge model”
that aids in the identification of genetic determinants
for these metabolites. This hypothesis has not been
tested to date because data from large-scale CKD
populations with both metabolomics and genomics
measurements was lacking. A comparison of effect
sizes between patients with CKD and individuals
without CKD may additionally be complicated because
of differences in metabolite panels/coverage and/or
data analysis, such as the use of different transforma-
tions across studies. Therefore, studies dedicated to test
the hypothesis that CKD populations allow for the
detection of genetic effects on metabolites that are
more easily detected in the presence of kidney disease
ideally should be designed in a way that allows the
systematic comparison of effect sizes with population-
based studies.
CURRENT LIMITATIONS AND OPEN QUESTIONS

A general challenge for the study of genetic determi-
nants of the human metabolome is how to integrate
these large data sets and to synthesize, interpret, and
display the generated wealth of information. Current
genetic data sets based on standard genome-wide
arrays followed by state-of-the-art genotype imputation
contain approximately 10 million common and well-
imputed variants for individuals of European ancestry.
Current nontargeted MS-based metabolomics plat-
forms such as the services offered by Metabolon
(Durham, North Carolina) return quantitative informa-
tion for more than 1,500 metabolites in biological
fluids. Hence, the study of the genetic basis of the
individual metabolites and their pair-wise ratios
requires the conduct of 1,500 and 1,124,250 GWAS,
respectively, in one biofluid alone. Various methods
such as OmicABLE and MatrixEQTL have been devel-
oped to accelerate the computation of linear models in
a GWAS setting.48,49

Because the number of genome-wide significant
results from well-powered mGWAS typically is high,
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the processing, aggregation, and annotation of results for
further interpretation requires automated procedures. In
recent mGWAS by Shin et al8 and Raffler et al,27 gene
assignment within a locus and determination of the
overlap of associated single-nucleotide polymorphisms
(SNPs) with previous mGWAS and GWAS with
clinical end points, was facilitated through automated
combination of complementary sources of evidence. For
this task, Raffler et al27 made use of the SNiPA
resource,50 which provides SNP-centric information
integrated from various gene- and SNP-based annotation
data sets such as EnsEMBL,51 GTEx,52 GWAS Cata-
log,53 and others together with precalculated linkage
disequilibrium data for all superpopulations from the
1000 Genomes Project.54 Because SNiPA allows for
easy access to 500,000 metabolite quantitative trait loci
(QTLs), 15,000 protein QTLs, 20 million expression
QTLs, 400,000 regulatory clusters, 600,000 microRNA
target sites, 1 million gene-associated enhancers and
promoters, and 330,000 disease and phenotype associ-
ations, we also used the resource for extracting infor-
mation for Tables 2 and 3 in this review.

Another challenge for the interpretation of findings
from mGWAS is that a large part of the metabolome is
still uncharted territory, with new metabolites discov-
ered on a weekly basis. This is illustrated by the
services offered by Metabolon: while Suhre et al7

reported on 276 blood metabolites in 2011, a recent
study by Long et al9 using an update of the platform
already reported on 486 identified metabolites. In
addition, the studied metabolites included 158
unnamed molecules that can be recognized and quan-
tified (named X-*) but whose identity has yet to be
confirmed using isotope-labeled standards. These
unknown metabolites can represent hitherto-unknown
intermediates or products of human metabolism, or can
be of xenobiotic origin, including medications, toxins,
or products from microbiota or food. Despite major
advances in metabolite identification over the past
years through the development of chemoinformatic
tools that systematically use and integrate spectral
properties of unknown metabolites, annotation of as
yet unidentified signals in nontargeted metabolomics
data sets remains a huge challenge in the field.55 As
shown for both NMR- and MS-based nontargeted
metabolomics, the functions of genes that are associ-
ated with unnamed compounds can provide comple-
mentary biological insights that can aid in metabolite
identification.26,56,57 By combining bioinformatics and
chemoinformatic approaches (eg, using knowledge
about the implicated gene’s function together with
molecule-specific spectral characteristics such as mass
and retention time),58 it may be possible to identify
novel und previously unsuspected molecules of impor-
tance in the etiology and/or progression of kidney
diseases.
Published mGWAS used data from a variety of
platforms. Although many GIMs could be replicated
across platforms, other GIMs were uniquely identified
on particular platforms. Even for the same metabolite,
differences in metabolite quantification as in targeted
versus nontargeted methods can result in a subset of
associations that are unique to each method. As an
example, Yet et al59 investigated how a targeted
(Biocrates (Innsbruck, Austria) panel) and an non-
targeted (Metabolon) MS-based method for metabolite
quantification compared in mGWAS performed in the
same study population. Genetic associations for 43
known metabolites present on both platforms generally
correlated well. There were 18 loci unique to the
Metabolon platform and 1 locus unique to the Bio-
crates platform, which underscores the complementary
nature of different platforms and the potential of
nontargeted metabolomics. The latter also was shown
in the urine mGWAS by Raffler et al,27 who described
genetic loci uniquely identified using a nontargeted
approach or a targeted approach based on the same
measured spectra.

Even if the identity of a metabolite is known and it
is quantified from the same biofluid and was measured
on the same metabolomics platform, the lack of
standardization across published mGWAS studies
complicates a comparison of reported effect sizes.
Differences result from the methods used for data
cleaning, imputation, trait transformations, and data
analysis.

Studies of patients with CKD raise additional ques-
tions: in addition to low eGFR, these patients also
often manifest considerable proteinuria. Depending on
the metabolomics approach used, this may influence
results from mGWAS studies in urine. Although
NMR-based methods quantify the amount of free
metabolite concentrations, the quantified fraction of
total metabolite concentration may vary depending on
the specific procedure of sample preparation (eg,
solvent used, and so forth) that is used in an MS-based
method. This may affect the ability to identify genetic
associations with metabolites that display a high degree
of protein binding such as tryptophan. It is conceivable
that free metabolite concentrations are more relevant
for the identification of metabolite transporters along
the nephron, although a direct comparison of genetic
studies of metabolites quantified via both NMR and
MS in the same samples is lacking.

In most mGWAS, interrelation between metabolites
within pathways are ignored; only a few studies have
used the correlation between metabolites within path-
ways for their analysis.60,61 In some studies, the
investigators inferred metabolic networks based on
partial correlations of metabolite levels, which have
been shown to reconstruct true biochemical relation-
ships, to embed the identified genetic association into
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their metabolic context for aiding biological interpre-
tation.8,56,62,63 Extending this concept to infer higher-
dimensional relationships between metabolites (in
multiple fluids), proteins, and genes across omics
layers is currently limited by the availability of such
multi-omics data for the same samples, but might
provide useful additional insights for kidney function
in the future.64,65
OUTLOOK AND CONCLUSIONS

Future efforts in the mGWAS area should aim to
improve comparability across studies through stand-
ardization of analytic approaches. In the absence of a
unified technology that allows for a comprehensive and
standardized quantification of all metabolites in a
sample, imputation of missing metabolites may be a
fruitful area of future research. Additional areas that
would benefit from further automatization and research
include computational approaches to assign identity to
unknown molecules, and to identify the most likely
causal gene in a genomic interval identified through
mGWAS. Besides translating unknown but quantifi-
able molecules to known ones, the study of additional
human biofluids and from cell- and animal-based
experimental systems also will deliver additional novel
molecules that are not even quantified to date.
Improvements in the connection of metabolites into
networks and in the modeling of higher-dimensional
relationships among metabolites and between metabo-
lites, proteins, transcripts, and so forth should provide
additional insights into metabolic pathways when
associated with genetic information. Our understanding
of the influence of disease states and environmental
influences, that is, the dynamic aspect of the metab-
olome, also should be a major focus of future studies.
Finally, the central question of cause versus conse-
quence for observed metabolite-disease associations
can be addressed experimentally or through large-scale
Mendelian randomization experiments. In summary,
the integration of genomic and metabolomic data is an
exciting research area for the field of nephrology,
which we expect to grow significantly in the coming
years.
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