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Abstract
The International Mouse Phenotyping Consortium (IMPC) is building a catalogue of mammalian gene function by producing 
and phenotyping a knockout mouse line for every protein-coding gene. To date, the IMPC has generated and characterised 
5186 mutant lines. One-third of the lines have been found to be non-viable and over 300 new mouse models of human dis-
ease have been identified thus far. While current bioinformatics efforts are focused on translating results to better understand 
human disease processes, IMPC data also aids understanding genetic function and processes in other species. Here we show, 
using gorilla genomic data, how genes essential to development in mice can be used to help assess the potentially deleterious 
impact of gene variants in other species. This type of analyses could be used to select optimal breeders in endangered species 
to maintain or increase fitness and avoid variants associated to impaired-health phenotypes or loss-of-function mutations 
in genes of critical importance. We also show, using selected examples from various mammal species, how IMPC data can 
aid in the identification of candidate genes for studying a condition of interest, deliver information about the mechanisms 
involved, or support predictions for the function of genes that may play a role in adaptation. With genotyping costs decreasing 
and the continued improvements of bioinformatics tools, the analyses we demonstrate can be routinely applied.
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The IMPC: a functional catalogue 
of the mammalian genome

The goal of the International Mouse Phenotyping Consor-
tium (IMPC, http://www.mouse pheno type.org) is to gener-
ate a functional catalogue of the mammalian genome by 
producing a knockout mouse line for every protein-coding 

gene. This is achieved by characterising the phenotypes of 
mutants and controls, which increases our understanding of 
development and gene function, and identifies models for 
disease. Knockout mouse lines are produced on a uniform 
genetic background using either gene targeted embryonic 
stem cells (Skarnes et al. 2011) or, increasingly, nuclease-
mediated genome editing with CRISPR/Cas9-based methods 
(Singh et al. 2015; Mianne et al. 2017). A uniform genetic 
background across controls and mutant lines is necessary to 
allow for reproducible and comparable results. Some pheno-
types will be strongly influenced by the genetic background 
and, therefore, this is an important consideration to take 
into account, particularly when translating mouse findings 
(inbred) to other species (outbred, or mostly outbred; see 
Discussion). Mice are characterised across a dozen research 
centres in a standardized phenotyping pipeline (IMPReSS, 

Violeta Muñoz-Fuentes and Pilar Cacheiro shared first authorship.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1059 2-018-1072-9) contains 
supplementary material, which is available to authorized users.

 * Violeta Muñoz-Fuentes 
 vmunoz@ebi.ac.uk

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3574-546X
http://orcid.org/0000-0002-6335-8208
http://orcid.org/0000-0003-1980-3228
http://orcid.org/0000-0002-4694-7107
http://www.mousephenotype.org
http://crossmark.crossref.org/dialog/?doi=10.1007/s10592-018-1072-9&domain=pdf
https://doi.org/10.1007/s10592-018-1072-9


 Conservation Genetics

1 3

the International Mouse Phenotyping Resource of Stand-
ardised Screens) that includes strict data quality standards 
and requires the minimum number of animals necessary to 
achieve statistical significance for each test (Hrabe de Ange-
lis et al. 2015). The IMPC data is integrated and reviewed, 
and statistically significant outlier phenotypes for individual 
lines are annotated using PhenStat (Kurbatova et al. 2015) 
and the Mammalian Phenotype Ontology (MPO) (Beck et al. 
2009; Smith and Eppig 2015), which is actively developed 
to capture phenotypes of mutant mouse lines by Mouse 
Genome Informatics (MGI) based at Jackson Laboratory. 
All raw data, results of statistical pipelines and curated 
phenotype data are made publicly available through the 
IMPC website. The data are further integrated with other 
resources, including OMIM, MGI and Ensembl. The IMPC 
database is searchable by gene name, phenotype and disease, 
allows batch queries and the download of all data, dedicated 
reports, graphs and images.

To date, 5186 mutant lines have been phenotyped (data 
release 7.0), with an average of 163 parameters measured 
on any given mouse, represented by over 128,000 knockouts 
and 35,000 wildtype or control mice. In addition, embry-
onic lethal mouse lines are analysed in a specialized embry-
onic development pipeline that utilizes high-resolution 3D 
imaging to understand structural changes (Dickinson et al. 
2016). These data allow the IMPC to identify the physiologi-
cal systems that are disrupted when a gene is disabled and 
make new gene-phenotype associations. Evolutionary con-
servation of fundamental processes governing development 
and support of metazoan life allows functional knowledge 
gained in one species to be translated to others (Kirschner 
and Gerhart 2006; Liao et al. 2006; Saenko et al. 2008; Bel-
len et al. 2010; Greek and Rice 2012). The IMPC uses its 
new gene-phenotype associations to identify models for 
human disease based on phenotypic similarity scores using 
PhenoDigm (Smedley et al. 2013), which establishes a link 
between IMPC mouse phenotypes mapped to the Mam-
malian Phenotype Ontology and the clinical descriptions 
of human diseases, as featured in OMIM and Orphanet, 
mapped to terms of the Human Phenotype Ontology (Kohler 
et al. 2017). Based on data from 3,328 genes, 360 new dis-
ease models have so far been identified by the IMPC, allow-
ing researchers to investigate molecular mechanisms under-
pinning human genetic diseases, and explore new routes of 
therapeutic intervention (Meehan et al. 2017). While the 
IMPC has focused on translating knowledge from mouse to 
human, the translation to other species, including wild and 
endangered, is relevant as well.

Wild species may benefit from functional 
knowledge accumulated in the laboratory 
mouse

Endangered species typically suffer dramatic declines before 
remedial measures are put into place. During a species 
decline, genetic erosion results in the loss of genetic varia-
tion that limits a species’ ability to adapt to changes in the 
environment and increases the chances for the accumulation 
of deleterious mutations that affect reproduction and fitness. 
Fertility-related disorders have been documented in the Afri-
can cheetah, Acinonyx jubatus (Wildt et al. 1983; Crosier 
et al. 2007), the Florida panther, Puma concolor coryi (Roe-
lke et al. 1993; Johnson et al. 2010) and the Iberian lynx, 
Lynx pardinus (Ruiz-Lopez et al. 2012). Similarly, bone and 
dental anomalies have been observed in inbred wolf (Canis 
lupus) populations in Isle Royale in North America and 
Scandinavia (Raikkonen et al. 2009, 2013). In an attempt 
to reverse these situations and decrease inbreeding, breed-
ing with closely related species has been implemented in 
the case of the Florida panther and the puma Puma con-
color stanleyana (Johnson et al. 2010). These genetic rescue 
approaches need to be carefully considered, as they may 
cause increased inbreeding as well as loss of species-specific 
adaptations (Hedrick and Fredrickson 2010), and even for-
feiture of legal protected status, e.g., Endangered Species 
Act (Haig and Allendorf 2006). Clearly, identifying the criti-
cal genes associated with disorders as well as species-spe-
cific adaptations is important from a conservation perspec-
tive to maximise conservation of adaptive potential and, if 
needed, preserve genetic fitness through selective breeding.

The genomes of many mammals have been sequenced in 
the last 15 years. We selected a number of mammalian spe-
cies for which functional adaptations have been explored and 
illustrate how knockout mouse phenotype information can 
support or complement predictions for the function of genes 
that may play a role in adaptation, provide a panel of genes 
for studying a phenotype of interest, or aid deciphering the 
mechanisms involved in underlying certain conditions.

Essential genes in mice and humans: mining 
wildlife genomes for LoF gene variants 
to identify basis of reduced fitness—a pilot 
study

A previous analysis of IMPC’s high-throughput mammalian 
embryonic phenotype data for 1751 knockout mouse lines 
resulted in 24, 11 and 65% of the lines being associated 
to a lethal, subviable and viable phenotype, respectively; 
this led to the conclusion that, in mice, approximately 35% 
of the genes are essential for organism viability (Dickinson 
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et al. 2016). We hypothesize that these genes are essential in 
other mammalian species, and variants causing loss of func-
tion in these critical genes might, therefore, be undesirable. 
To test this hypothesis, we first compared genes identified 
as essential in IMPC mice with those identified in humans 
based on cell viability. We then used these essential genes 
to gain further insight into loss-of-function (LoF) variants 
(protein-coding genes containing substitutions that introduce 
a stop codon, frameshift indels, or modifications of essential 
splice sites) identified in inbred populations of gorillas.

The IMPC viability screen identifies genes essential 
for organism viability by identifying mouse lines which 
are lethal (absence of homozygote pups for the knockout 
allele or homozygote null pups), subviable (the frequency 
of homozygote null pups is less than 12.5%, or less than 
50% of the 25% predicted in a heterozygote × heterozygote 
crossing) or viable (all others). We conducted an updated 
analysis on viability data for 4237 genes currently available 
in IMPC DR7.0, which included the 1751 previously ana-
lysed in Dickinson et al. (2016) (see Supplementary Meth-
ods). We found that 25, 9, and 66% of the lines resulted in a 
lethal, subviable and viable phenotype, respectively (Supple-
mentary Datafile S1), nearly identical proportions to those 
reported in Dickinson et al. (2016) (see above). These results 
support the conclusion that about one-third of the genes are 
essential for life, as described in an earlier publication sur-
veying the knockout mouse literature (Adams et al. 2013).

Screens of knockout human cells have identified ~ 2000 
genes essential for cell viability in studies of 11 cell lines 

(Blomen et al. 2015; Hart et al. 2015; Wang et al. 2015). 
Combining these data sets, 18,862 genes were unequivocally 
mapped to their HUGO Gene Nomenclature Committee 
(HGNC) identifiers, of which 17,675 were studied in > 50% 
of the cell lines (at least 6 cell lines). We defined a set of core 
essential genes comprising 1568 genes (9%) which were 
essential for viability in over 50% of the cell lines where 
the gene was studied. To understand how gene essential-
ity compares between human cells and mice, we inferred 
mouse-to-human orthologues and looked at their distribution 
in the IMPC and human-viability categories. We obtained a 
dataset containing 4115 IMPC mouse-to-human orthologues 
(see Supplementary Methods), of which 4026 were included 
in the human cell studies (Supplementary Datafile S2). We 
found that 36% of the mouse genes identified as embryonic 
lethal (i.e., essential) corresponded to genes identified as 
essential in the human cell lines, while 64% corresponded 
to genes that are non-essential in cells. In the case of genes 
identified as embryonic viable in mice (i.e., non-essential), 
almost all (99.6%) were associated with non-essentiality 
in the human cell lines (Table 1). These results indicate a 
strong correspondence between non-essential genes and that 
about two-thirds as many genes are essential for organismal 
than for cell viability.

We then investigated the critical importance of LoF vari-
ants in gorillas Gorilla gorilla, western Africa, and G. ber-
ingei, eastern Africa; Xue et al. (2015). Notably, homozy-
gous LoF alleles were found in 241 genes in apparently 
healthy individuals, and we determined which of these genes 
are identified as essential in mice or humans. We inferred 
gorilla-to-mouse orthologues (Supplementary Methods) 
and obtained a mouse orthologue for 169 out of the 241 
gorilla genes, resulting in 192 mouse genes (due to one-to-
many conversions, Datafile S3). Western lowland gorillas 
(G. g. gorilla) had 136 homozygous LoF orthologues, east-
ern lowland gorillas (G. b. graueri) had 81, and mountain 
gorillas (G. b. beringei) had 84. Overlap with the viabil-
ity data obtained by the IMPC (reported above) indicated 
a distribution of the LoF alleles in the three viability cat-
egories similar to that obtained for any protein-coding gene 
in the IMPC catalogue (Table 2). The percentage of lethal 
genes in the gorilla populations was lower than in the IMPC 

Table 1  Overlap of mouse IMPC lethal and viable genes (DR7.0) and 
human cell essential and non-essential genes

a Essential: genes essential for cell viability in > 50% of the cell lines 
and studied in > 50% of the cell lines (that is, equivalent to ≥ 6 cell 
lines)

Overlaps Number of genes

Mouse Human cell  linesa

Lethal Essential 353 (35.9%)
Lethal Non-essential 631 (64.1%)
Viable Essential 9 (0.4%)
Viable Non-essential 2499 (99.6%)

Table 2  Mouse orthologues with homozygous LoF alleles as identified by Xue et al. (2015) and their association to a lethal, subviable or viable 
phenotype based on viability data collected by the IMPC (DR7.0)

Sample size refers to the number of gorillas as indicated in the original publication

Sample size Lethal (n = 1052) Subviable (n = 383) Viable (n = 2802)

Mountain gorillas (Gbb) 7 5 (24%) 3 (14%) 13 (62%)
Eastern lowland gorillas (Gbg) 9 4 (19%) 3 (14%) 14 (67%
Western lowland gorillas (Ggg) 27 5 (14%) 6 (16%) 26 (70%)
Total (unique) 43 9 (18% 6 (12%) 36 (70%)
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viability data (14–24% vs 25%), but the difference was not 
significant (P = 0.731, P = 0.659 and P = 0.130 for mountain, 
eastern lowland and western lowland gorillas, respectively, 
Table S1).

We then proceeded to gain a better understanding of the 
potential phenotypic impact of the LoF mutations in goril-
las. First, we obtained gorilla-to-human orthologues (168 
human genes, Datafile S4) and assessed their essentiality 
using the data from the human cell studies (Fig. 1a). We 
found that between 5–7% of the genes were essential for 
cell survival, lower than what would be expected for any 
gene selected at random (9%), but the difference was not 
significant (P = 0.818, P = 0.369 and P = 0.736 for mountain, 
eastern lowland and western lowland gorillas, respectively, 
Table S2). When bringing in IMPC and MGI phenotypes, 
the data become increasingly complex and more difficult to 
interpret. For the 191 mouse orthologues, there was phe-
notype information for 62% of the genes, and 34% of the 
genes were associated with an embryonic lethal phenotype 
(Fig. 1b). It is important to note that any given gene may 
not be associated with a lethal phenotype in all mouse lines, 
but be linked to a variety of health-impaired phenotypes 
that do not cause lethality in additional lines (Datafile S3). 
For example, homozygotes of Chd2 investigated in three 
genetic backgrounds resulted in postnatal lethality in two of 
them and in viable individuals in the other, but with health-
impaired phenotypes associated to growth, the skeleton 
and the hematopoietic system. These effects can be due to 

potential differences in genomic modifiers between differ-
ent strains used to generate the knockouts. Further, most 
knockouts, including the IMPC ones, are on inbred back-
grounds, while wild species will be outbred, or at least more 
so than laboratory mouse strains. Based on these results, 
it is therefore possible that gorillas carrying these variants 
may present clinical complications that may impact their 
fitness and thus it will be desirable to reduce the prevalence 
of these alleles, particularly in a recovery population. Alter-
natively, these truncated variants identified in gorillas may 
not be affecting the functional exon of the protein or may 
correspond to genes redundant in function. Although viable 
lines are more likely to have a paralogue than lethal lines, 
there are nevertheless some essential genes with paralogues 
(White et al. 2013; Dickinson et al. 2016) and it is possible 
that these provide functional compensation for the effect of 
LoF variants in the inactivated genes. Further research is 
needed to clarify this situation, including advances to detect 
pseudogenes e.g. Claes and De Leeneer (2014). Humans 
carry LoF variants (MacArthur et al. 2012) at about ~ 100 
putative variants per individual (The Genomes Project 2012) 
and the identification of both deleterious and beneficial vari-
ants has fuelled significant interest in these regions (Balasu-
bramanian et al. 2017).

Fig. 1  Human (a) and mouse orthologues (b) of gorilla genes with 
homozygous LoF alleles and their association to essentiality based on 
human cell studies (a) or IMPC and MGI data (b). (Data in Supple-

mentary Table S3). Gorilla populations, from larger to smaller size in 
the wild: mountain gorillas (Gbb), eastern lowland gorillas (Gbg) and 
western lowland gorillas (Ggg)
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IMPC aids the functional annotation 
of regions putatively targeted by positive 
selection to understand the genomic basis 
of adaptation

A number of recent studies in which mammalian gene func-
tion and adaptations are evaluated allow us to illustrate 
additional ways in which the IMPC may constitute a use-
ful resource for mammals other than humans. The African 
cheetah (Acinonyx jubatus), a species with remarkably low 
levels of genome diversity relative to other mammals, exhib-
its signs of inbreeding depression in captive and free rang-
ing populations, including low fecundity and malformed 

spermatozoa (Dobrynin et al. 2015). An initial panel of 964 
human genes with gene ontology (GO) terms associated to 
reproduction, yielded a set of 18 genes with accelerated rate 
of non-synonymous to synonymous substitution (dN/dS) 
accumulation in the cheetah lineage and damaging mutations 
previously associated to reproductive impairment (Dobrynin 
et al. 2015). We found a mouse orthologue for all genes, 5 
with an IMPC significant phenotype (DR6.0, Datafile S5). 
Two had phenotypes associated with reproduction. One of 
them, Rspo1, was characterized with abnormal morphology 
in seminal vesicles and testes, small testes, lacZ expression 
in the vas deferens and the epididymis. In addition, this gene 
is associated with at least one infertility-related disease, 

Fig. 2  Number of IMPC significant phenotypes for selected mamma-
lian species. A mouse orthologue was found for 71–91% of the genes 
of each species, of which 24–25% had IMPC phenotype information 

(DR6.0, Supplementary Table S4). a Phenotypes classified according 
to the top levels of the Mammalian Phenotype Ontology. b–d Pheno-
types can be classified for more granular ontology terms
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progesterone resistance (affecting females). MGI (http://
www.infor matic s.jax.org/, accessed 17 November 2017) 
had phenotype information for 14 genes, of which 12 were 
related to the reproductive system. With only about ~ 25% of 
the protein-coding genes in the mouse genome explored, the 
IMPC currently contains around 400 mouse genes with phe-
notypes associated with the reproductive system (Fig. 2b), 
a potential useful resource to inform future studies on the 
genetic contributors to low fecundity.

In individuals belonging to the three subspecies of goril-
las (G. g. gorilla, G. b. graueri and G. b. beringei) in the 
above-mentioned study, polymorphisms were identified in 
23 genes corresponding to human disease-causing variants, 
significantly enriched for blood coagulation phenotypes, 
with 3 (TNNT2, KCNE1, PKP2) associated to cardiomyo-
pathies (Xue et al. 2015). Indeed, cardiovascular disease is 
an important cause of death for gorillas in captivity (McMa-
namon and Lowenstine 2012). Mouse orthologues were 
obtained for all except one gene, of which 5 have IMPC 
phenotype information (F13A1, HNF4A, KLKB1, NPC1, 
SHH), two associated to a cardiovascular phenotype, one 
to a skeleton phenotype and two to pre-weaning lethality in 
homozygotes, respectively (Datafile S6). The MGI database 
included 20 of these genes, of which 11 were associated to 
cardiovascular phenotypes and 5 to the hematopoietic sys-
tem. In the IMPC, there are predictions for the association 
of 585 mouse orthologues of Western gorilla genes to car-
diovascular phenotypes, and 844 to hematopoietic system 
phenotypes (Fig. 2a), potentially constituting an important 
resource for understanding cardiomyopathies in gorillas.

A study on speciation and adaptation in polar bears 
(Ursus maritimus) identified 20 genes as strong candidates 
to have been positively selected in polar bears, in what is 
a prime example of speciation through adaptation to an 
extreme environment (Liu et al. 2014). The authors reported 
disease associations in humans and other mammalian model 
organisms, including mice, suggesting a function for 11 of 
these genes associated to adipose tissue development and 
fatty acid metabolism (APOB), cardiovascular function 
(APOB, ABCC6, ALPK3, ARID5B, CUL7, EHD3, TTN, 
VCL, XIRP1) or white fur pigmentation (LYST, AIM1), 
which may be advantageous in the Arctic. Information 
derived from the IMPC and MGI databases (Datafile S7) 
supported these predictions and provided evidence for new 
roles. An exception was AIM1(currently CRYBG1). IMPC 
data indicates no association with coat colour or pigmenta-
tion. Homozygotes for AIM1 were not viable, and the het-
erozygotes presented phenotypes associated with vision and 
the nervous system, but the fur was normal. In addition, 
there were phenotypic associations for 3 genes out of the 9 
for which no function was reported in the paper. Knockouts 
for COL5A3, LAMC3 and SH3PXD28 presented a variety 
of phenotypes, including associations with adipose tissue, 

the cardiovascular and the immune systems and homeosta-
sis, which are functions that the authors indicated might be 
relevant in adapting to the Arctic.

A recent study on grey wolves (Canis lupus) from North 
America aimed to identify candidate genes under selection 
and environmentally driven functional variation (Schweizer 
et al. 2016a, b). In this study, nonsynonymous mutations 
were significantly correlated with environmental variables 
in genes associated to lipid metabolism (APOB, LIPG), 
immunity (DLA-DQA, DLA-DRB1), olfaction (OR4S2, 
OR5B17, OR6B1), vision and hearing (PCDH15, USH2A), 
and pigmentation (TYR, TYRP1), where 4 genes had variants 
with predicted deleterious impact LIPG, OR4S2, OR5B17, 
USH2A (Schweizer et al. 2016a). Information derived from 
the IMPC database for 6 of these genes and the MGI data-
base for 23 of them reproduces previous findings and pro-
vides evidence for new roles (Datafile S8). LIPG is reported 
to be associated with the metabolic and cardiovascular sys-
tems, USH2A with the nervous system but also with vision 
and hearing, and no information is available for genes 
OR4S2 and OR5B17, potentially related to olfaction.

We identified at least one study focusing on wild species, 
giant and red pandas Ailuropoda melanoleuca and Ailu-
rus fulgens (Hu et al. 2017) and two on cattle (Kadri et al. 
2014; Biase et al. 2016) that have used the mouse knockout 
database information to further characterize genes or pro-
cesses. The panda species are predicted to have indepen-
dently acquired adaptations in 70 genes to a bamboo-rich 
diet, including a pseudothumb (limb development genes 
DYNC2H1 and PCNT) and features related to digestion 
and nutrient utilization (in particular genes GIF, CYP4F2, 
ADH1C and CYP3A5). The IMPC database complements 
data collected by MGI by providing information for 5 addi-
tional genes (Datafile S9). In the two cattle studies, mouse 
knockout data informed about processes related to infertility 
(Kadri et al. 2014; Biase et al. 2016).

Outlook

Here we show how viability data collected by the IMPC are 
defining a set of essential genes that are likely also relevant 
in other species, particularly mammals. Identifying deleteri-
ous mutations is important for the design of captive breeding 
strategies (Bosse et al. 2015), and we encourage exploring 
the potential of the analyses presented here to identify criti-
cal functional variants. An assessment of human and mouse 
genes orthologous to gorilla genes containing homozygous 
LoF variants indicates that a number of them are strong 
candidates to compromise fitness and, therefore, further 
investigation of the phenotypes of gorillas with these vari-
ants will be required. The phenotypic effects of LoF or any 
other variants will manifest under certain genetic conditions 

http://www.informatics.jax.org/
http://www.informatics.jax.org/
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(genetic background) or environmental conditions. While a 
number of phenotypes in the mouse have shown to correlate 
directly with humans (e.g., Brophy et al. 2017; Santiago-Sim 
et al. 2017), these findings should, in general, be taken as 
indicative of directions for further investigations. Currently, 
mouse outbred stocks that are genetically heterogeneous and 
diverse, and thus more appropriately mimicking human or 
wild animal populations, are being used for mapping genes 
and quantitative trait loci (QTLs) (Winter et al. 2017). Addi-
tionally, the prediction of LoF variants is not straightforward 
and improved methods are under development.

We have shown that the IMPC, by elucidating mam-
malian gene function, provides experimental evidence to 
support novel or previously hypothesised relationships 
between gene function and processes, and aids in character-
ising hereditary diseases in mammalian species other than 
human. The IMPC is focusing on characterizing many of 
the poorly understood genes (the ignorome). It is is also 
making relevant contributions to our understanding of mam-
malian gene function, in terms of sexual dimorphism (Karp 
et al. 2017; Rozman et al. 2018), pleiotropy (Brown et al. 
2018) and disease (Bowl et al. 2017; Meehan et al. 2017; 
Perez-Garcia et al. 2018; Rozman et al. 2018). Formidable 
challenges remain ahead, including understanding, for exam-
ple, incomplete penetrance, co-regulation of promoters or 
gene networks and the function of non-coding sequences, 
especially ultra-conserved non-coding regions that are more 
highly conserved across species than most protein-coding 
genes. Recognizing the effects of processes such as epistasis 
and hitchhiking of variants closely linked to selected genes 
in the wild species genomes pose a challenge. Another obvi-
ous challenge will be to determine gene function of wildlife 
phenotypes not present in human and mouse (e.g. aquatic 
phenotypes) and the co-opting of gene function for other 
biological processes via gene duplication.

The identification of critical functional variants can be 
of particular importance for endangered species or bottle-
necked populations to aid attempts to reduce the incidence 
of genetically-determined traits that decrease fitness, or limit 
recovery. However, the benefits of a genetic rescue approach 
would require that the conditions that led to the accumula-
tion of deleterious alleles are removed from the population. 
In the case of endangered species with low effective popu-
lation sizes, the effect of genetic drift will be much greater 
than that of natural selection. Hence, even with an optimized 
breeding program in place, the potential gains of selecting 
critical functional variants in the breeders might be offset 
by the stochastic effects of genetic drift. When attempting 
to develop strategies to preserve adaptive variation, a design 
where breeding can be managed closely might be desired. 
For example, the establishment of a captive insurance meta-
population for the Tasmanian devil aims at maximising 
genetic diversity and keeping a healthy stock of individuals 

that can be used as a source population for re-wilding and 
genetic rescue (Gooley et al. 2017).

Advances in genotyping and whole-genome sequenc-
ing are resulting in an increase in the number of available 
genomes and transcriptomes, as well as improved methods 
to analyse these data, infer orthologous relationships and 
generate cross-species knowledge. In addition, integra-
tion of phenotype data is expected to become prominent in 
evolutionary studies. In order to produce databases that are 
computationally tractable and that allow for cross-species 
integrations, as well as to avoid loss of information, adher-
ing to standards and persistent genetic identifiers (e.g., 
Ensembl, HGNC or MGI identifiers), as well as applying 
purpose-oriented ontologies, will be critical. In evolution-
ary biology and phylogenetic systematics, efforts to com-
putationally integrate genetic, phenotypic and anatomical 
data include the ‘Phenotype And Trait Ontology’ (PATO; 
Mabee et al. 2007) and the Phenoscape project (Dahdul et al. 
2010) but improvements in this area will certainly be needed 
(McMurry et al. 2017).

Animal models have proved useful to develop assisted 
reproductive technologies for endangered species, including 
lessons learned from oocyte and embryo culture in domestic 
animals and humans, and oncofertility techniques applied to 
humans (Comizzoli et al. 2010). Recently, cryopreservation 
of gametes was used to recover past genetic diversity in the 
black-footed ferret (Mustela nigripes; Wildt et al. 2016) and 
in vitro fertilization of frozen oocytes and spermatozoa is 
now the only way in which the northern white rhino (Cera-
totherium simum cottoni) may be rescued (Saragusty et al. 
2016). Studies on domestic mammals provide molecular 
markers that can be transferred for use in non-model species 
to inform about molecular processes with potentially pheno-
typic implications (Munoz-Fuentes et al. 2015). Moreover, 
understanding consequences of gene variants in other spe-
cies may be of importance for human health and disease; for 
example, polar bears have evolved adaptations to deal with 
extremely fat-rich diets (see above), which are a major con-
cern in human health. Currently, methods based on genomic 
data are being put forward to improve breeding strategies of 
wild species to attempt to minimize the impact of undesir-
able genetic variants while maintaining acceptable levels 
of genetic diversity (Bosse et al. 2015; Irizarry et al. 2016) 
and rapid advances in CRISPR/Cas9 technology in animal 
models to reduce the risk of off-target mutagenesis opens up 
opportunities to eliminate deleterious mutations in zygotes. 
In the case of wild species, such methods would allow the 
persistence of fitness-linked alleles and the avoidance of del-
eterious mutations without the risks associated with inbreed-
ing or breeding between two similar species. The combined 
accumulation of gene function annotation by the IMPC and 
their advances in the use of CRISPR/Cas9 technology will 
be able to assist in future conservation efforts.
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