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Abstract

As part of a broader collaborative network of exome sequencing studies, we developed a

jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a

resource of site and allele frequencies, which should serve as a reference for medical genet-

ics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gno-

mAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles

present in the Ashkenazi Jewish population at frequencies greater than 0.2% are signifi-

cantly more frequent (mean 15-fold) than their maximum frequency observed in other refer-

ence populations. Arising via a well-described founder effect approximately 30 generations

ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall

prevalence of diseases between populations. As validation we document 148 AJ enriched

protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at

https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those

that account for 10–100 fold differences in prevalence between AJ and non-AJ populations

of some rare diseases, especially recessive conditions, including Gaucher disease (GBA,

p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrich-

ment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5,

12-fold enrichment). We next sought to use this catalog, of well-established relevance to Men-

delian disease, to explore Crohn’s disease, a common disease with an estimated two to four-

fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare

alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the

same founder-effect, contribute excess genetic risk to Crohn’s disease in AJ, and find that ten

rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several

novel contributing alleles, show evidence of association to CD. Independently, we find that

genomewide common variant risk defined by GWAS shows a strong difference between AJ

and non-AJ European control population samples (0.97 s.d. higher, p<10−16). Taken together,

the results suggest coordinated selection in AJ population for higher CD risk alleles in general.

The results and approach illustrate the value of exome sequencing data in case-control stud-

ies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.

org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable

disease predisposition across populations.

Author summary

The Ashkenazim are a people with ancestry in northern-European Jewish groups. A

founder effect caused a bottleneck in this population approximately one thousand years
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ago, resulting in a group of enriched alleles in their genetic makeup. A higher documented

prevalence of Crohn’s Disease in the Ashkenazim indicates that some enriched alleles may

confer risk of having this disease. By studying which genes are enriched, and which of

these contribute to Crohn’s Disease risk, we are better able to understand the genetic

architecture of the affected population, and of the disease itself. Further, we are able to

develop a resource containing tables of significantly enriched alleles that are known or

suspected to contribute to other disease.

Introduction

Genetic population isolates like the Ashkenazim, Jews who trace their ancestry to eleventh cen-

tury central European Jewish groups[1], have previously facilitated the mapping of alleles con-

tributing to human disease predisposition[2–5]. The documented 2–4 fold enrichment of

Crohn’s Disease (CD) prevalence in the Ashkenazi Jewish (AJ) population[6,7] motivated the

use of exome sequencing and genome-wide array data to evaluate the degree to which bottle-

neck-enriched protein-altering alleles and unequivocally implicated common variants contrib-

ute an excess CD genetic risk to AJ[6]. Despite the progress in mapping genes and alleles for

rare diseases with increased prevalence in the AJ population, precise estimates of the risk-allele

frequency and the carrier rate in the AJ population have not yet been determined[8]. Through

this study, we provide a frequency resource of protein-coding alleles from over 2,000 non-CD

AJ individuals with low admixture that will serve to improve interpretation of rare disease risk

alleles in the AJ population and which we employ to discover new Crohn’s risk alleles by com-

parison to 1855 AJ Crohn’s cases.

Results

We generated a jointly called whole-exome sequence dataset consisting of 18,745 individuals

from international Inflammatory Bowel Disease (IBD) and non-IBD cohorts[9,10] (S1 Fig).

Given the increased prevalence of Crohn’s disease in the AJ population, our global sequencing

efforts had specifically included 5,652 individuals self-reporting as Jewish and, as we aimed to

focus on variation observed in the AJ population in comparison to reference populations in

ExAC[9,11] (including non-Finnish Europeans (NFE), Latino (AMR), and African/African-

American (AFR)) populations, we chose a model-based approach to estimate the ancestry of

the study population using ADMIXTURE[12].

To identify AJ individuals and estimate admixture fractions we used a set (n = 21,066) of

LD-pruned common variants (MAF>1%, see Supplementary Note for additional details) fil-

tered for genotype quality (GQ>20). The 18,745 individuals were assigned to four groups

(K = 4) using ADMIXTURE (further described in Supplementary Note, also see S3 Fig). One

group of 5,685 individuals was found consisting mostly (84%) of self-reported AJ individuals,

while 3,522 of these individuals were further found with high ancestry fraction (> 0.9) map-

ping to this group (S2 Fig, S1 Table). Thus, many self-reported AJ individuals were not

included, as they did not have high enough ascertained AJ ancestry fraction. As we were inter-

ested in computing an enrichment statistic that would not be affected by possible admixture,

we obtained alternate (non-reference) allele frequency estimates by restricting the enrichment

analysis to the 2,178 non-IBD Ashkenazi Jewish individuals that passed QC and relatedness fil-

tering and had AJ ancestry fraction (genotype ancestry grouping closely with other AJ individ-

uals) of> 0.9. Our study includes exomes throughout Europe and Israel but the vast majority
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(86%) of these high ancestry fraction AJ individuals were collected in major US cities including

Los Angeles, Boston, Baltimore, and New York (S2 Table).

To explore AJ exome population genetics, including proportion of enriched alleles and

degree of enrichment, we used the observed alternate allele counts and total number of alleles

available from ExAC release 0.3 dataset [ntotal = 60,706; NFE (n = 31,902; after excluding AJ

individuals from ExAC), AFR (n = 5,203), and AMR (n = 5,789)]. We focused on protein-cod-

ing alleles with estimated allele frequency of at least 0.002 and less than .1 in AJ (nalleles =

73,228; practical cutoff of what could be statistically defined as convincing enrichment, see S4

Fig), and applied a one-sided Fisher’s exact test on allele counts (see Supplementary Note), to

classify the observed alleles into two groups: “enriched” or “not enriched”. This analysis identi-

fied 34% of protein-coding alleles as significantly enriched, with mean 15-fold increased odds

of the alternate allele compared to other populations. Different proportions of alleles belong to

the enriched group depending on variant annotation: 36% for predicted protein-truncating

variants (PTV); 38% for predicted protein-altering variants (PRA); and 31% for synonymous

variants. The substantially higher PTV+PRA:synonymous ratio observed in the enriched cate-

gory is consistent with those alleles being drawn randomly from a large pool of much rarer

alleles (where the functional:synonymous ratio is higher[3]) and abruptly boosted in frequency

(Fig 1, p< 10−16 across comparisons of PTV and PRA to synonymous variants, two-propor-

tion test, Supplementary Note). Since much rarer alleles have a higher probability of being

damaging (e.g., they have a higher missense/synonymous ratio), the advantage to gene map-

ping arises from the fact that enriched alleles of a certain frequency are more damaging/delete-

rious on average than non-enriched alleles of the same frequency.

Additionally, we may expect that a “depleted” set of alleles arises from the founder effect,

but in reality, many of these already rare variants are simply eliminated during the bottleneck.

Of course, it is more difficult and less interesting to search for depleted alleles, as their absence

provides no opportunity to obtain significant statistics on population enrichment or disease

association.

We intersected the list of protein-coding alleles identified in the AJ exome sequencing

study with alleles reported to be pathogenic with no conflicting evidence (n = 42,226) in Clin-

Var[14] resulting in 148 alleles found both in ClinVar and with p-value less than .005 of

belonging to the AJ enriched set (S1 Data File). In OMIM, 48 of the 148 alleles included docu-

mentation of a disease subject with AJ ancestry (Table 1). This set of enriched alleles includes

all of the major AJ mutations for 8 diseases described in the American College of Medical

Genetics and Genomics 2008 screening guideline study[15]. In the setting of autosomal reces-

sive disorders these differences in population allele frequencies may contribute a factor pro-

portional to the squared enrichment difference to genetic risk and prevalence between

populations (see Supplementary Note). For instance, a 19-fold enriched frameshift indel, p.

Tyr427IlefsTer5, in HEXA, contributes a 361-fold enrichment in genetic risk in AJ to non-AJ

population to Tay-Sachs disease. Enrichment in this large adult Ashkenazi exome database

reinforces recent publications of founder mutations for rare pediatric disorders including

FKTN (Walker Warburg syndrome)[16], CCDC65 (Primary ciliary dyskinesia)[17], TMEM216
(Joubert syndrome)[18], C11orf73 (Leukoencephalopathy)[19]; PEX2 (Zellweger syndrome)

[20], VPS11 (Hypomyelination and developmental delay)[21] and BBS2 (Bardet-Biedl syn-

drome)[22]. While many alleles on this pathogenic list may demonstrate incomplete pene-

trance (as in the case of p.V726A in MEFV[23] for Familial Mediterranean fever) and some

may not show recessive inheritance, this resource should provide considerable assistance in

gene discovery and clinical genetic screening in AJ (S2 Data File).

To assess whether AJ-enriched protein-coding alleles also contribute to the established dif-

ference in CD genetic risk we performed case-control association analyses. Since individuals
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with only partial AJ ancestry will still carry bottleneck-enriched alleles, here we included sam-

ples with estimated AJ ancestry fraction > 0.4 (Supplementary Note, S2 Fig), resulting in a

dataset of 4,899 AJ samples (1,855 Crohn’s disease and 3,044 non-IBD). To improve ability to

detect a true association, we performed a meta-analysis with CD and non-IBD case-control

exome sequencing data from two additional ancestry groups: 1) non-Finnish European (NFE)

(2,296 CD and 2,770 non-IBD); and 2) Finnish (FIN) (210 CD and 9,930 non-IBD samples)

from a separate callset described in a previous publication[24] for a total of 4,361 CD samples

and 15,744 non-IBD samples. By calling additional non-AJ samples, we hoped to discern

which of the AJ-enriched alleles contributed a significant risk factor across all populations.

The meta-analysis performed across several populations described should mitigate biases by

confirming consistency in effect size across these population groups.

Study-specific association analysis was performed with Firth bias-corrected logistic regres-

sion[25,26] and four principal components as covariates using the software package EPACTS

[27] (S5 Fig). We combined association statistics in a meta-analysis framework using the

Bayesian models in Band et al.[28]. We used the correlated effects model, obtained a Bayes fac-

tor (BF) by comparing it with the null model where all the prior weight is on an effect size of

zero, reported p-value approximation using the BF as a test statistic, and assessed whether het-

erogeneity of effects exist across studies for downstream QC (see Supplementary Note). We

Fig 1. Enrichment of alleles discovered in AJ exome sequencing project. A) Histogram of estimated log enrichment statistic, defined as the log of the bias

corrected odds ratio comparing the allele frequency in AJ population to the maximum allele frequency estimated from NFE, AFR, and AMR populations in

ExAC. For each histogram bin we show a bar plot of the expected number of alleles belonging to the two groups we analyzed: 1) enriched (green) and 2) not

enriched (white). B) Bar plots of estimated percentage of alleles belonging to the two groups we analyzed for all protein-coding (ALL), synonymous (SYN),

protein-altering (PRA), and protein-truncating variants (PTV). An estimate of 34% of protein-coding alleles observed in AJ have a mean shift of 15-fold

increased odds of the alternate allele compared to other reference populations. This observation is supported by the property that compared to intergenic

variants, coding variants tend to be younger for a given frequency and the more pathogenic a variant, the younger it is, therefore tending to be population

specific[13].

https://doi.org/10.1371/journal.pgen.1007329.g001
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Table 1. Forty-eight ClinVar “pathogenic” alleles enriched in AJ. HGVS and Gene is the allele nomenclature in ClinVar and gene symbol, respectively. Enrichment

odds ratio corresponds to the bias corrected comparison of allele frequency in AJ (AJ AF) to maximum frequency among three population groups (max EXAC AF): 1)

NFE; 2) AMR; and 3) AFR. Curated trait is based on the trait description in the Online Mendelian Inheritance in Man (OMIM) and is independent of effect size as a

Crohn’s risk allele. Inheritance corresponds to the inheritance description in OMIM (AR: autosomal recessive, AD: autosomal dominant, risk factor: not specified genetic

risk factor). Alleles are sorted in decreasing order by AJ AF.

Variant HGVS Gene Enrichment Odds

Ratio

AJ AF Max ExAC

AF

Curated Traits Inheritance

16:3293310:A:G p.Val726Ala MEFV 26.08 0.0416 0.0017 Familial Mediterranean fever AR

5:150723155:C:A p.Gly87Val SLC36A2 3.51 0.0414 0.0122 Hyperglycinuria AD

1:155205634:T:C p.Asn409Ser GBA 11.16 0.0296 0.0027 Susceptibility to Lewy bod dementia, Gaucher’s disease,

Susceptibility to late onset Parkinson’s disease

AR

4:187201412:T:C p.Phe301Leu F11 47.17 0.0273 0.0006 Hereditary factor XI deficiency AR

13:20763553:CA:

C

p.Leu56Argfs GJB2 39.19 0.0199 0.0005 Autosomal recessive deafness AR

4:187195347:G:T p.Glu135Ter F11 28.20 0.0195 0.0007 Factor XI deficiency AR

12:14421038:G:A p.Arg49Cys PRB3 16.12 0.0189 0.0012 Salivary peroxidase AR

9:111662096:A:G c.2204+6T>C IKBKAP 45.22 0.0168 0.0004 Familial dysautonomia AR

15:72638920:G:

GGATA

p.Tyr427IlefsTer5 HEXA 19.14 0.0122 0.00064 Tay-Sachs disease AR

1:125848678:C:T p.Arg4192His USH2A 13.63 0.0106 0.0008 Retinitis pigmentosa AR

22:29091207:G:A p.Ser428Phe CHEX2 50.06 0.0103 0.0002 Hereditary cancer, multiple types Risk factor

10:99371368:

TGAG:T

p.Glu315del HOGA1 29.28 0.0101 0.0003 Primary hyperoxaluria AR

7:117282620:G:A p.Trp1282Ter CFTR 23.64 0.0085 0.0004 Cystic fibrosis AR

11:17418602:C:T c.3992-9G>A ABCC8 40.62 0.0076 0.0002 Hyperinsulinemic hypoglycemia AR, AD

17:3402294:A:C p.Glu285Ala ASPA 40.36 0.0076 0.0002 Canavan disease AR

2:98986540:G:A c.101+1G>A CNGA3 26.11 0.0074 0.0003 Achromatopsia AR

13:32914437:GT:

G

p.Ser1982Argfs BRCA2 27.57 0.0069 0.0003 Hereditary cancer, multiple types Risk factor

9:97934315:T:A c.456+4A>T FANCC 42.75 0.0069 0.0002 Fanconi anemia AR

9:108382330:G:

GA

p.Phe390Ilefs FKTN 32.62 0.0067 0.0002 Limb-girdle muscular dystrophy-dystroglycanopathy AR

12:40734202:G:A p.Gly2019Ser LRRK2 20.64 0.0064 0.0003 Parkinson’s disease Risk factor

17:41055964:C:T p.Arg83Cys G6PC 11.04 0.0062 0.0006 Glycogen storage disease AR

1:26764719:A:G p.Lys42Glu DHDDS 64.83 0.0051 0.0001 Retinitis pigmentosa AR

3:150690352:A:C p.Asn48Lys CLRN1 46.26 0.0051 0.0001 Usher syndrome AR

12:49312533:

GTA:G

p.Ile293Profs CCDC65 25.75 0.0048 0.0002 Ciliary dyskinesia without situs inversus AR

6:80878662:G:C p.Arg183Pro BCKDHB 29.42 0.0046 0.0002 Maple syrup disease AR

10:56077147:G:A p.Arg245Ter PCDH15 26.58 0.0046 0.0002 Usher syndrome AR

7:107555951:G:T p.Gly229Cys DLD 26.55 0.0046 0.0002 Maple syrup disease AR

15:72638575:C:G c.1421+1G>C HEXA 52.65 0.0044 0.0001 Tay-Sachs disease AR

15:72105913:G:A p.Arg311Gln NR2E3 9.86 0.0042 0.0004 Enhanced s-cone syndrome AR

5:178699927:G:A p.Gln225Ter ADAMTS2 129.41 0.0041 0.0000 Ehlers-Danlos syndrome, dermatosparaxis type AR

16:50745656:G:A p.Ala612Thr NOD2 12.48 0.0039 0.0003 Early-onset sarcoidosis Risk factor

11:6415434:G:T p.Arg498Leu SMPD1 41.53 0.0039 0.0001 Niemann-Pick disease AR

11:61161437:G:T p.Arg73Leu THEM216 27.77 0.0039 0.0001 Joubert syndrome AR

1:53676583:CAG:

C

pLys414ThrfsTer7 CPT2 78.34 0.0037 0.0000 Carnitine palmitoyltransferase II deficiency AR

1:53676688:T:C p.Phe448Leu CPT2 78.35 0.0037 0.0000 Carnitine palmitoyltransferase II deficiency AR

3:172737276:C:T p.Arg283Gln SPATA16 9.79 0.0037 0.0004 Spermatogenic failure AR

11:86017416:G:C p.Val54Leu C11orf73 47.03 0.0037 0.0001 Hypomyelinating leukodystrophy AR

(Continued)
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separately assessed CD associations of enriched protein-altering (PRA) and synonymous

(SYN) alleles in protein-coding genes in CD implicated GWAS loci (ngwas,pra = 351; ngwas,syn =

167), and outside implicated GWAS loci (nnon-gwas,pra = 12,529; nnon-gwas,syn = 6,202, Fig 2). See

Methods and Materials for a description of these loci.

We identified ten AJ enriched CD risk alleles (p<0.005): the previously published risk hap-

lotypes in LRRK2 and NOD2 (LRRK2: p.N2081D; NOD2: p.N852S, p.G908R, p.M863V+p.

fs1007insC)[29,30], in addition to newly implicated alleles (NOD2: p.A612T, p = 2.8x10-9; c.74-

7T>A, p = 1.4x10-4; p.L248R, p = 6.4x10-4; p.D357A, p = 0.0011; LRRK2: p.G2019S, p = 0.0014,

a Parkinson’s disease risk allele[31]). To assess whether the new NOD2 enriched alleles are con-

ditionally independent of the previously established associated NOD2 alleles we performed con-

ditional haplotype association analysis in PLINK and Bayesian model averaging[32] for variable

selection, both of which suggested independent effects for all alleles (S6 Fig, S3 Table).

Deviation from additivity can contribute additionally to individual risk but has been diffi-

cult to document in complex disease associations with modest ORs. Despite the functional

relationship between LRRK2 and NOD2[33], we do not observe deviation from additivity

between LRRK2 and NOD2 (p = 0.273); that is, the effect of mutations in both LRRK2 and

NOD2 is no greater than the sum of their individual effects. We assessed whether composite

risk carriers (carrier of more than one variant allele) had evidence of deviation from additivity.

Deviation from additivity has been reported for p.fs1007insC, p.G908R, and p.R702W in

NOD2[34,35]. In our AJ exome sequencing data set we estimate a 1-hit effect equal to 1.82

(95% confidence interval [1.59, 2.07]) and a 2-hit effect equal to 8.24 (95% confidence interval

[6.06, 11.21]; we found similar evidence for departure from additivity when restricting the

analysis to the newly reported alleles only: p = 0.00357, odds ratio = 7.53). We confirmed this

finding using the larger non-AJ Crohn’s disease ImmunoChip dataset to provide a more pre-

cise estimate of the 1-hit effect (OR = 2.17; 95% confidence interval [2.07, 2.27], S4 Table) and

the non-additive 2-hit effects in NOD2 (OR = 9.93; 95% confidence interval [8.88, 11.13], S5

Table). We found no evidence of deviation from additivity for the associated protein-altering

alleles in LRRK2 (p = 0.418).

Given that enriched genetic variants in NOD2 and LRRK2 contribute to differences in CD

risk in AJ population, we next asked whether unequivocally established common variant asso-

ciations contribute to differences in CD genetic risk. We performed polygenic risk score (PRS)

analysis using reported effect size estimates from 124 CD alleles including those reported in a

Table 1. (Continued)

Variant HGVS Gene Enrichment Odds

Ratio

AJ AF Max ExAC

AF

Curated Traits Inheritance

8:77896070:G:A p.Arg119Ter PEX2 20.03 0.0034 0.0002 Peroxisome biogenesis disorder AR

11:118951899:T:G p.Cys845Gly VPS11 190.98 0.0030 0.0000 Hypomyelinating leukodystrophy AR

6:80203353:G:A p.Gln279Ter LCA5 29.25 0.0028 0.0001 Leber congenital amaurosis AR

19:7591645:A:G c.406-2A>G MCOLN1 21.93 0.0028 0.0001 Mucolipidosis AR

16:56530894:C:G p.Arg632Pro BBS2 29.37 0.0028 0.0001 Retinitis pigmentosa AR

17:41276044:

ACT:A

p.Glu23Valfs BRCA1 10.04 0.0025 0.0003 Hereditary cancer, multiple types Risk factor

4:100543913:G:T p.Gly865Ter MTTP 40.38 0.0025 0.0001 Abetalipoproteinaemia AR

2:99013302:G:A p.Gly557Arg CNGA3 29.36 0.0023 0.0001 Achromatopsia AR

7:107557794:G:A p.Glu375Lys DLD 26.44 0.0021 0.0001 Maple syrup disease AR

17:41209079:T:TG p.Gln1756Profs BRCA1 8.80 0.0021 0.0002 Hereditary cancer, multiple types Risk factor

10:99371292:G:T p.Gly287Val HOGA1 22.01 0.0021 0.0001 Primary hyperoxaluria AR

https://doi.org/10.1371/journal.pgen.1007329.t001
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previously published study[36] and four variants in IL23R from a recent fine-mapping study

[37], and excluding variants in NOD2 and LRRK2. We observed an elevated PRS for AJ com-

pared to non-Jewish controls (0.97 s.d. higher, p<10−16; Fig 3A; number of non-AJ con-

trols = 35,007; number of AJ controls = 454), and as expected when performing the PRS

analysis using OR calculated from non-Jewish subset of iCHIP data the signal still remains

(p<10−16, S7 Fig). We observed a similar trend for the CD samples (0.54 s.d. higher; p<10−16;

Fig 3B; number of non-AJ CD cases = 20,652; number of AJ CD cases = 1,938). We demon-

strate this is not a systematic property of common risk alleles in AJ by running the same com-

parison using instead the comparable set of established schizophrenia associated alleles from

the Psychiatric Genomics Consortium[38].

Fig 2. Q-Q plots of enriched alleles. Q-Q plots of Crohn’s disease association for AJ enriched A) protein-altering (protein-truncating and

missense) and B) synonymous alleles in GWAS regions; and AJ enriched C) protein-altering and D) synonymous alleles outside of GWAS

regions. For each Q-Q plot variants with a corresponding p-value less than or equal to a threshold where expected number of false

discoveries is equal to one are annotated. The black dashed line is y = x, and the grey shapes show 95% confidence interval under the null.

https://doi.org/10.1371/journal.pgen.1007329.g002
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To quantify the relative contribution of CD-implicated alleles to the difference in genetic

risk between AJ and non-AJ populations we estimated the expected PRS value of an individual

and expected difference in PRS between two populations by simply using summary statistics

including the frequency of the minor allele in the two populations and the corresponding odds

ratio (Supplementary note, S6 Fig).

We applied the approach to all CD implicated alleles and observed that variants in GWAS

loci annotated as IRGM, LACC1, NOD2, MST1, ATG16L1, GCKR, NKX2-3, and LRRK2[36]

contribute substantially (>0.01) to the increased genetic risk observed in AJ. It is possibly

Fig 3. AJ individuals have higher CD polygenic risk score than NJ controls. NJ: non-Jewish; AJ: Ashkenazi Jewish; CD: Crohn’s

disease; PRS: polygenic risk score. A) Density plot of CD polygenic risk scores in 454 AJ (green) and 35,007 NJ(purple)controls. AJ

controls have higher CD polygenic risk score than NJ controls (0.97 s.d. higher, p<10−16). B) Density plot of CD polygenic risk scores in

1,938 AJ (green) and 20,652 NJ CD (purple) cases (0.54 s.d. higher, p<10−16). For both density plots the scores have been scaled to NJ

controls, thus resulting in an NJ control PRS density of mean equal to 0 and variance equal to 1 (see Online Methods). C) Ranked

(decreasing order) CD associated variants by estimated contribution to the differences in genetic risk between AJ and NJ. Associated

variants with estimated contribution greater than or equal to 0.01, computed as 2 log(odds ratio) (AJ frequency—NJ frequency),

assuming additive effects on the log scale, are highlighted in green. Associated variants with estimated contribution less than or equal to

-0.01 are highlighted in purple. Forward slashes represent a break in variants highlighted.

https://doi.org/10.1371/journal.pgen.1007329.g003
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relevant that variants contributing to increased risk in AJ include many autophagy/intracellu-

lar defense genes (IRGM, ATG16L1, LRRK2), while those contributing to increased risk in

non-AJ include many anti-fungal/Th17/ILC3 genes[39] (IL23R, IL12B, CARD9, TRAF3IP2,

IL6ST, CEBPB; Fig 3C).

Both documented variability in the occurrence of CD over time[40,41] and substantial

uncertainty in reported CD prevalence estimates[42,43] impact our ability to precisely estimate

the overall contribution of genetics to the established difference in prevalence between popula-

tions. To interpret the impact of shifts in genetic risk score on differences in prevalence, we

used the logit risk model[35] and evaluated a new estimate of disease probability, pnew, assum-

ing an initial disease probability, p0, and multiple values for the differences in genetic risk.

Assuming log-additive effects, and a logit-risk model, we estimate that the observed differ-

ences in genetic risk between the AJ and non-AJ populations contribute an expected 1.5-fold

increase in disease prevalence in a population with environmental risk factors corresponding

to AJ and baseline genetic risk corresponding to non-AJ populations (S7–S9 Figs). To address

the extent to which non-additive effects in NOD2 may impact the observed prevalence we

assumed 1-hit and 2-hit odds ratios of 2.17 and 9.93, respectively. We attribute a 6.8% differ-

ence in the ratio of estimated disease prevalence in the AJ population to the deviation from

additivity, suggesting a small effect on differences in population prevalence (Supplementary

Note).

Discussion

Analyzing data from 5,685 Ashkenazi Jewish exomes, we provide a systematic analysis of AJ

enriched protein-coding alleles, which may contribute to differences in genetic risk to CD as

well as numerous rare diseases, many of which are transmitted via autosomal recessive inheri-

tance. We identified protein-altering alleles in NOD2 and LRRK2 that are conditionally inde-

pendent and contribute to the excess burden of CD in AJ. We found evidence that common

variant risk defined by GWAS shows a strong elevated difference between AJ and non-AJ

European population samples (0.97 s.d. higher in controls, 0.54 s.d. higher in cases, p<10−16 in

both), independent of NOD2 and LRRK2[44]. Highly polygenic diseases are unlikely to have

substantially altered incidence as a result of a bottleneck alone—for every enriched variant

there are those depleted or lost entirely and population genetics simulations[45] suggest no

systematic alteration of overall genetic burden as a function of a bottleneck. Thus, the strong

(approximately 1.5-fold, see supplementary note) difference in Crohn’s incidence in concert

with a systematic enrichment of risk-increasing alleles, unlikely to have arisen by chance, sug-

gests non-random selection in the AJ population for higher CD risk alleles. It seems plausible

that, rather than ‘selection for Crohn’s’ per se, this likely suggests a subset of Crohn’s risk

alleles may contribute to a common biological process (e.g., a specific immune response) or

phenotype that was positively selected for in AJ[46–48]. Such weak, widespread ‘polygenic

selection’ has previously been observed with respect to height-associated SNPs in Europe[49],

where drift alone could not explain the systematic enrichment of height-increasing alleles in

populations of Northern Europe vs. Southern Europe. We found that CD risk alleles that are

systematically elevated in AJ are not unusually elevated in another well-established founder

population for which we have extensive genotype data (Finland). In Finns, Crohn’s risk alleles

were not systematically enriched—they were if anything slightly depleted with 69 risk alleles at

higher frequency in Finns than NFE and 79 risk alleles at lower frequency in Finns than NFE.

We also demonstrate this is not a systematic property of common risk alleles in AJ by running

the same comparison using instead the comparable set of established schizophrenia associated

alleles from the Psychiatric Genetics Consortium[50]. We mapped 102 schizophrenia-
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associated index SNPs to AJ frequency data and again observed no uneven distribution where

risk alleles are systematically more or less common. In total, 52 risk alleles were at higher fre-

quency in AJ than NFE and 50 risk alleles were higher frequency in NFE than AJ.

This study of CD in the AJ population confirms population-genetic expectations. First,

recently bottlenecked populations are uniquely powered to discover alleles with markedly

increases in frequency, and, as a consequence, contributors to differences in genetic risk across

population groups. Second, while NOD2 and published common variant associations contrib-

ute substantially to the genetic risk of CD, other genes with causal alleles that failed to pass

through the bottleneck are missed, consistent with predictions from Zuk et al[4].

We provide an exome frequency resource of protein-coding alleles in AJ along with esti-

mates of population-specific enrichment. The sets of enriched alleles should be carefully con-

sidered when performing case-control analysis. Population structure can easily lead to false

positive associations, especially for low frequency and rare variants, if the AJ:nonAJ ratio is

slightly different in cases and controls. Our approach and this resource will likely catalyze our

understanding of the medical relevance of enriched alleles in population isolates. Most impor-

tantly, the frequency reference provides critical guidance in pinpointing or excluding specific

risk factors in individuals in clinical and research settings.

Materials and methods

Initial variant call set

We generated a jointly called dataset consisting of 18,745 individuals from international IBD

and non-IBD cohorts. Sequencing of these samples was done at Broad Institute.

Ethics statement

All patients and control subjects provided informed consent. Recruitment protocols and con-

sent forms were approved by Institutional Review Boards at each participating institutions

(Protocol Title: The Broad Institute Study of Inflammatory Bowel Disease Genetics; Protocol

Number: 2013P002634). All DNA samples and data in this study were denominalized.

Cohort descriptions

For all cohorts, CD was diagnosed according to accepted clinical, endoscopic, radiological and

histological findings.

Target selection

G4L WES is a project specific product. It combines the Human WES (Standard Coverage)

product with an Infinium Genome-Wide Association Study (GWAS) array. In addition to the

array adding to the genomics data, it also acts as a concordance QC, linking 14 SNPs to the

exome data. The processing of the exome includes Sample prep (Illumina Nextera), hybrid

capture (Illumina Rapid Capture Enrichment - 37Mb target), sequencing (Illumina, HiSeq

machines, 150bp paired reads), Identification QC check, and data storage (5 years). Our hybrid

selection libraries typically meet or exceed 85% of targets at 20x, comparable to ~60x mean

coverage. The array consists of a 24-sample Infinium array with ~245,000 fixed genome-wide

markers, designed by the Broad. On average our genotyping call rates typically exceed 98%.

Pre-processing

The sequence reads are first mapped using BWA MEM[51] to the GRCh37 reference to pro-

duce a file in SAM/BAM format sorted by coordinate. Duplicate reads are marked–these reads
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are not informative and are not used as additional evidence for or against a putative variant.

Next, local realignment is performed around indels. This identifies the most consistent place-

ment of the reads relative to potential indels in order to clean up artifacts introduced in the

original mapping step. Finally, base quality scores are recalibrated in order to produce more

accurate per-base estimates of error emitted by the sequencing machines.

Variant discovery

Once the data has been pre-processed as described above, it is put through the variant discov-

ery process, i.e. the identification of sites where the data displays variation relative to the refer-

ence genome, and calculation of genotypes for each sample at that site. The variant discovery

process is decomposed into separate steps: variant calling (performed per-sample), joint geno-

typing (performed per-cohort) and variant filtering (also performed per-cohort). The first two

steps are designed to maximize sensitivity, while the filtering step aims to deliver a level of

specificity that can be customized for each project.

Variant calling is done by running Genome Analysis Toolkit’s (GATK) HaplotypeCaller in

gVCF mode on each sample’s BAM file(s) to create single-sample gVCFs. If there are more than a

few hundred samples, batches of ~200 gVCFs are merged hierarchically into a single gVCF to

make the next step more tractable. Joint genotyping is then performed on the gVCFs of all avail-

able samples together in order to create a set of raw SNP and indel calls. Finally, variant recalibra-

tion is performed in order to assign a well-calibrated probability to each variant call in a raw call

set, and to apply filters that produce a subset of calls with the desired balance of specificity and sen-

sitivity as described in Rivas et al. (2016)[24]. Samples with> = 10% contamination are excluded

from call sets. Exome samples with less than 40% of targets at 20X coverage are excluded.

Variant annotation

Variant annotation was performed using the Variant Effect Predictor (VEP) [cite PMID:

20562413] version 83 with Gencode v19 on GRCh37. Loss-of-function (LoF) variants were anno-

tated using LOFTEE (Loss-Of-Function Transcript Effect Estimator, available at https://github.

com/konradjk/loftee), a plugin to VEP. LOFTEE considers all stop-gained, splice-disrupting, and

frameshift variants, and filters out many known false-positive modes, such as variants near the

end of transcripts and in non-canonical splice sites, as described in the code documentation.

Identification of Finnish samples

Finnish CD patients were recruited from Helsinki University Hospital and described in more

detail previously[52,53]. We used the same exome sequencing dataset described in Rivas et al.

[24]. We applied additional PC correction in the Finnish identified individuals to remove indi-

viduals with membership of Finnish sub-isolate (Northern Finland) and excluded based on

PC2 0.015 (853 excluded, 826 controls, 27 IBD). We recalculated PCs and included the first

four PCs in the association analysis.

Identifying previously implicated GWAS loci

CD implicated GWAS loci were those loci defined as reaching genome-wide significance in

International IBD Genetics Consortium studies (Jostins, Ripke et al., Nature 2012) and (Liu

et al., Nature Genetics 2015)—Credible sets of SNPs around index associations were defined as

in (Huang et al., Nature 2017) for fine-mapped loci, and for others credible sets were defined

as all SNPs with r2 > 0.6 to the index variant. Genes within 50 kb of the span of credible set

SNPs were considered “implicated’ by GWAS.
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Ancestry estimation and quality control

As the present study aimed to focus on variation observed in Ashkenazi Jewish (AJ) population

in comparison to reference populations in ExAC including (non-Finnish Europeans (NFE),

Latino (AMR), and African/African-American (AFR)) we chose a model-based approach to

estimate the ancestry of the study population using ADMIXTURE[12]. To identify AJ individ-

uals and estimate admixture proportions we included a set (n = 21,066) of LD-pruned com-

mon variants (MAF>1%) after filtering for genotype quality (GQ>20) using the PLINK LD-

pruning algorithm, whose description is available at http://pngu.mgh.harvard.edu/~purcell/

plink/summary.shtml#prune.

For the parameters, we selected a window size of 50 SNPs, a window shift of 5 SNPs at each

step, and the variance inflation factor (VIF) threshold equal to 2.

The 18,745 samples were assigned to four groups (K = 4), as ancestry was defined as having

a single estimated ancestry fraction� 0.4, and remaining three fractions < 0.4 (S2 Fig). Indi-

viduals mostly representing African/African-American and East-Asian ancestry (1,267 and

569 individuals respectively) were discarded from downstream analysis, as well as the 983

admixed individuals with none of the ancestry fractions� 0.4. Thus, a total of 6,093 individu-

als were considered of Ashkenazi Jewish (AJ) ancestry, while 9,833 were considered to repre-

sent Non-Finnish Europeans (NFE). After sample QC and relatedness check, 5,685 individuals

of Ashkenazi Jewish and 7,240 of non-Finnish European ancestry were found with valid IBD

case/control status (S1 Table). Individuals with Ulcerative Colitis and unspecified and Indeter-

minate Colitis were further excluded, resulting in 4,899 AJ and 5,066 NFE individuals.

Prior to enrichment and association analysis, 81 samples (of total 18,745) were also filtered

due to possible contamination (heterozygous/homozygous ratio < 1), excess of singletons

(n>2000), deletion/insertion ratio (>1.5) and mean genotype quality (<40). 275 samples were

excluded for relatedness (>0.35 cut-off). Genotypes with low genotype quality (<20) were fil-

tered, in addition to variants with low call rate (<80%) and allele balance deviating from 70:30

ratio for greater than 40% of heterozygous samples if at least 7 heterozygous samples were

identified.

As we were interested in computing an enrichment statistic that would not be affected by

possible admixture, we obtained alternate allele frequency estimates by restricting the enrich-

ment analysis to the 2,178 non-IBD Ashkenazi Jewish samples that passed QC and relatedness

filtering and had AJ focused ancestry fraction > 0.9 (S1 Fig). Principal Component Analysis

(PCA) was done in each ancestry group using the 21,066 variants. Sample QC was done using

the Hail software while PCA, differential missingness and sample relatedness analysis was

done using PLINK[54]. Hail is an open-source software framework for scalably and flexibly

analyzing large-scale genetic data sets (https://github.com/broadinstitute/hail). Allele balance

was calculated using PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/).

Estimating fold-enrichment in AJ population compared to reference

populations in ExAC

Statistical methods: Fisher’s exact test. To estimate which alleles are enriched in AJ com-

pared to alleles in reference population groups in ExAC we applied Fisher’s exact test one-

sided alternative (“greater”).

Using the number of alternate and reference alleles observed in AJ non-IBD samples and in

the population (NFE, AFR or AMR) with the highest frequency from ExAC we compute a bias

corrected log odds ratio estimate, bbi , and its standard error, cSEi , for odds of the alternate allele

as described in the Software DataPlot developed by the National Institute of Standards and

Technology (http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/logoddra.htm,
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and http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/logodrse.htm)

bbi ¼ logðORiÞ ¼ log
½ð0:5þ ALTAJÞ � ð0:5þ REFExACÞ�

½ð0:5þ REFAJÞ � ð0:5þ ALTExACÞ�

� �

; and

cSEi
2 ¼

1

0:5þ REFAJ
þ

1

0:5þ REFExAC
þ

1

0:5þ ALTAJ
þ

1

0:5þ ALTExAC
:

Precisely, bbi is the estimate of the log of the odds ratio of finding the alternate allele in AJ vs

in the ExAC population with the highest allele frequency.

We classified a variant as ‘enriched’ if p-value was less than .05/73,228, where 73,228 is the

number of variants analyzed with minor allele frequency between .002 and .1.

To estimate allele enrichment in AJ compared to reference populations we used 2,178 non-

IBD Ashkenazi Jewish samples, after sample and relatedness QC.

We calculated alternate allele frequencies for the Ashkenazi Jewish population and used

allele frequency information for NFE (n = 31,902; after excluding AJ individuals from ExAC),

AFR (n = 5,203), and AMR (n = 5,789) available from ExAC release 0.3 dataset (ntotal = 60,706)

and focused on alleles where allele frequency information was available for AJ and the refer-

ence populations. For the enrichment plot we focused on alleles with estimated frequency of at

least 0.002 in AJ (nalleles = 106,377) and with alleles observed with an estimated frequency of at

least .0001 in the reference populations with depth of coverage of at least 20X in at least 80% of

the samples in ExAC.

Overlap of enriched alleles with ClinVar. We harmonized the XML and TXT releases of

the ClinVar database (April 11, 2016 data release)[14] into a single tab-delimited text file using

scripts that we have released publicly (https://github.com/macarthur-lab/clinvar). Briefly, we

normalized variants using a Python implementation of vt normalize[55] and de-duplicated to

yield a dataset unique on chromosome, position, reference, and alternate allele. A variant was

considered ’pathogenic’ if it had at least one assertion of either Pathogenic or Likely Patho-

genic for any phenotype. A variant was considered ’conflicted’ if it had at least one assertion of

Pathogenic or Likely Pathogenic, and at least one assertion of Benign or Likely Benign, each

for any phenotype. By these criteria, ClinVar contained n = 42,226 identified as pathogenic

and non-conflicted. Intersecting with our dataset revealed that 148 belonged to the AJ

enriched group with p-value less than .005.

Assessing Crohn’s disease association of protein-coding variation that may contribute

to difference in disease prevalence in AJ. We focused Crohn’s disease association analysis

of protein-coding variant to alleles that may account for difference in disease prevalence in AJ

population to reference populations. To do so we focused on alleles with high probability of

belonging to the enriched group. We included all samples with ADMIXTURE estimated AJ

ancestry fraction of at least 0.4 (we excluded any samples that had alternative ancestry fraction

of at least .4 in any other group). Samples with Ulcerative Colitis (n = 700), unspecified and

Indeterminate Colitis (n = 86) were excluded from subsequent analysis. This resulted in a data-

set of 4,899 AJ samples (1,855 Crohn’s disease and 3,044 non-IBD).

Study-specific association analysis was performed with Firth bias-corrected logistic regres-

sion test[25,26] and four principal components as covariates using the software package

EPACTS version 3.2.6[27]. Minimum minor allele count (�1) and variant call rate (�0.8) fil-

ters were used.

For meta-analysis we combined association statistics using the Bayesian models and fre-

quentist properties proposed in Band et al[28], which is a normal approximation to the logistic

regression likelihood suggested by Wakefield[56]. As the authors of Band et al. indicate, one
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way of thinking about the approach is that it uses the study-wise estimated log-odds ratio

(beta) and its standard error as summary statistics of the data. For each model of association,

we assume a prior on the log odds ratio which is normally distributed around zero with a stan-

dard deviation of 0.2. By changing the prior on the covariance (or correlation) in effect sizes

between studies we can formally compare models where: 1) the effects are independent across

studies, and 2) the effects are correlated equally between studies. The final report of results is

based on the correlated effects model. To address potential differences in effect sizes for the

reported associated variants, we assessed heterogeneity of effects and did not find evidence

(log10BF> 2). For each model we can obtain a Bayes factor (BF) for association by comparing

it with the null model where all the prior weight is on an effect size of zero. We report p-value

approximation using the Bayes factor as a statistic for model 2 where the effects are correlated

between studies.

Association statistics were combined based on association analysis across three study

groups: 1) AJ (1,855 CD and 3,044 non-IBD samples); 2) NFE (2,296 CD and 2,770 non-IBD);

and 3) Finnish (FINN) (210 CD and 9,930 non-IBD samples) for a total of 4,361 CD samples

and 15,744 non-IBD samples.

Conditional haplotype based testing and variable selection for NOD2 alleles. In the

conditional haplotype-based testing (—chap) analysis we used PLINK v1.08p[54] and set a

minimum haplotype frequency of .001 (—mhf). We used PLINKSEQ (https://atgu.mgh.

harvard.edu/plinkseq/), an open-source C/C++ library for working with human genetic varia-

tion data, and the Python bindings implemented in pyPLINKSEQ to perform Bayesian Model

Averaging (BMA). We applied BMA[32] using the R package ‘BMA’ (https://cran.r-project.

org/web/packages/BMA/BMA.pdf).

Polygenic risk scores. The polygenic risk scores were calculated for the international

inflammatory bowel diseases consortium European samples. Details of these samples includ-

ing the QC procedures were described in previous publications[37]. We used reported effect

size estimates from 124 CD alleles including those reported in a previously published study

[36] and four variants in IL23R from a recent fine-mapping study[37], and excluding variants

in NOD2 and LRRK2. We used 454 AJ controls; 1,938 AJ CD; 35,007 non-Jewish controls and

20,652 non-Jewish CD samples. Polygenic risk scores were calculated using array genotype

data as the sum of the log odds ratio of the variants associated with CD. Scores for missing

genotypes were replaced by the imputed expected value using PLINK[54]. Variants in NOD2
and LRRK2 were excluded from the analysis to assess whether polygenic signal was indepen-

dent of those genes.

Let PRSi be the polygenic risk score of individual i, assuming additive effects on the log-

odds scale, i.e.

PRSi ¼
PM

m¼1
cbmGi;m;

where cbm denotes the estimated log odds ratio for variant m and Gi,m denotes the genotype

dosage of individual i for variant m. More specifically, cbm is the effect size estimate of variant

m on a logit scale in conferring risk of CD in an individual.

In the setting where effects are non-additive, i.e. a genotype-specific effect model,

PRS�i ¼
PM

m¼1
½db

Het
m 1½Het� þ

db
Hom
m 1½Hom� �:

For now, we consider the additive scenario, and later we return to the setting where non-

additive effects exist, which is relevant for quantifying the differences in contribution of NOD2
alleles to genetic risk in two populations.
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The estimated expected PRS value for an individual in population j is

E d½PRS�j ¼
PNj

i¼1

PRSi
Nj

;

where Nj is the number of individuals sampled in population j. Substituting equation for PRSi
and rearranging terms simplifies the equation as a function of variant frequency:

E d½PRS�j ¼
PNj

i¼1

PM
m¼1

cbmGi;m

Nj
;

E d½PRS�j ¼
PM

m¼1

PNj
i¼1

cbmGi;m

Nj

 !

;

E d½PRS�j ¼
PM

m¼1
cbm

PNj
i¼1

Gi;m

Nj

 !

;

where
PNj

i¼1

Gi;m
Nj
¼ cfm;j and cfm;j denotes the frequency of variant m in population j. Thus, the

estimated expected PRS value of an individual in population j is E d½PRS�j ¼
PM

m¼1
ð2cbm

cfm;jÞ.
Assume that we are interested in the expected difference in contribution of the studied vari-

ants to the PRS between two individuals, say from population 1 being AJ and population 2

being NFE. Also, assume that the effect size of variant m is shared across both populations.

Then, using the estimated expected PRS value we define estimated expected difference in con-

tribution of the studied variants to the PRS as the difference in estimated expected PRS value

in two populations:

E½ dDifference PRS� ¼ Ed½PRS�AJ � Ed½PRS�NFE;

E½ dDifference PRS� ¼
PM

m¼1
2cbmð

dfm;AJ � dfm;NFEÞ;

which can be used to get an estimated difference in contribution of a variant m to the polygenic

risk score in two populations,

E½ dDifference PRS�m ¼ 2cbmð
dfm;AJ � dfm;NFEÞ:

To rank variants according to their relative differences in contribution to genetic risk we

included the NOD2 and LRRK2 alleles, used the list of estimated effect size from the published

studies[36,37], and estimates from this study.

If we substitute PRS� for PRS,

E d½PRS��j ¼
XM

m¼1

PNj
i¼1½
db
Het
m 1½Het� þ

db
Hom
m 1½Hom��

� �

Nj

¼
PM

m¼1
½2bfmð1 � bfmÞ

db
Het
m þ

bfm
2 db

Hom
m �:
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Then, the estimated expected difference in PRS� when non-additive effects exist is

E½ dDifference PRS� � ¼
PM

m¼1
½2db

Het
m ð½

cf AJm �
df NFEm � � ½cf AJm

2 � df NFEm
2�Þ þdb

Hom
m ð

cf AJm
2 � df NFEm

2Þ�:

Estimating fold difference in prevalence for a population with shift in

expected genetic risk

Assuming log-additive effects in the logit risk model the disease probability for an individual is

given as p = (1 + exp(−η))−1, where η tends towards a normal distribution with parameters

m ¼ logðp0=ð1 � p0ÞÞ þ
PM

m¼1
2fmbm and s2 ¼ 2

PM
m¼1

fmð1 � fmÞb
2

m [35]. Here p0 refers to a

baseline disease probability.

We can see that μ may be expressed in terms of the expected polygenic risk score, i.e.

m ¼ logðp0=ð1 � p0ÞÞ þ E½PRS�. In the setting where E½PRS� ¼ 0, then

E½p� ¼ ð1þ expð� logðp0=ð1 � p0ÞÞÞÞ
� 1
¼ p0:

To evaluate the impact of a shift in the expected value of polygenic risk score to the expected

value of μ we can express the shift as E½Difference m� ¼ E½Difference PRS�. We can compute

new values of p for new values of μ to obtain a fold-increase in prevalence for a population that

has undergone such a shift.

We see that this requires a value to be chosen for p0 and that log(p0/(1 − p0)) can be repre-

sented as a baseline risk score value β0.To get an estimate of the absolute prevalence of CD in

the AJ population, we must choose a baseline β0, where p0 represents the expected prevalence

with zero non-baseline alleles in the population[35], to which we add a contribution from mul-

tiple non-baseline alleles to calculate: 1) an individual’s probability of disease, or 2) the

expected prevalence of the disease in the population.

Once we have chosen a value for β0, we can calculate the ratio of expected prevalence as fol-

lows. First, use the means (μAJ and μNAJ) and variances (s2
AJ and s2

NAJ ) of risk scores as calcu-

lated above to calculate the probability density function of the disease prevalence. In the case

of the AJ population, we have

f pð Þ ¼
dn
dg

1

sAJ
f

Z � mAJ

sAJ

� �

¼
1

sAJpð1 � pÞ
f

1

sAJ
log

p
1 � p

� �

�
mAJ

sAJ

� �

where η is the risk score associated with prevalence p, g is the link function, so p = g(η) = (1 +

e−η)−1, and f is the standard normal density function.

Next, we integrate to get
R 1

0
p � f ðpÞdp ¼ E½pAJ �. Finally, we can calculate E½pNAJ � in a similar

way, and divide the expected prevalence in the AJ population by that in the non-AJ population

to get the prevalence ratio, E½pAJ �=E½pNAJ �.

The value of β0 = -20.5 was chosen in order to obtain a prevalence in the non-AJ population

of ~0.5%. At this value of β0, the ratio of prevalence in the AJ population to that in the non-AJ

population was estimated to be 1.5 (E½pAJ � = 0.82%, E½pNAJ � = 0.55%).

For different choices of β0, however, this ratio may vary, as the relationship between proba-

bility of disease and risk score is non-linear. S10 Fig shows how the values of the disease preva-

lence and their ratio vary as β0 is changed. We see that the ratio values range from 1.46 to 1.52

for different values of β0 with a range of baseline prevalence of .001 to .01—the range of preva-

lence estimates for Crohn’s disease[41,43,57].

To further understand the effect that choosing a logit-based model had on the results, a

comparison of the standard logit and probit models was done using the values inferred from
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the logit model. No full scale probit modelling was done in this analysis, so the values found

with the probit model represent only a close approximation of the expected results.

In the logit model for population analysis, we may assume that individual risk scores are

chosen from a normal distribution N ðmlogit; s2
logitÞ where μlogit and σlogit represent the mean

and standard deviation of the risk scores as defined above. From here, we may calculate the

probability density function of probit model risk scores μprobit based on that of logit model risk

scores μlogit as

f ðZprobitjmlogit; slogitÞ ¼ f ðZlogitjmlogit; slogitÞdZlogit=dZprobit

and use this to calculate μprobit and σprobit, the estimated mean and standard deviation of the

risk scores in the probit model. Using these values, we obtain a probability distribution for the

frequency of disease in the populations using the probit model.

While the logit model yielded a prevalence ratio of 1.506, the probit estimation yielded a

prevalence ratio of 1.5136, with similar expected prevalence values (E½pAJ � = 0.823%, E½pNAJ � =

0.544%). These values demonstrate that individual logit and probit analyses would likely give

similar results for values of interest. The complete probability densities under the logit and

probit models can be seen in S8 Fig.

Further, it is interesting to compare the relationship between values of risk scores in the

two models. For values of risk scores between -1 and 1 in the logit model, the relationship to

those in the probit model is highly linear, with a formula of ηprobit = 0.6223 � ηlogit, with r2 =

1.0000. This formula may be used to impute single values in one model or the other assuming

that the estimated total risk score is otherwise close to zero, and the imputed value is low. It is

worth noting, however, that this does not work for all values of ηlogit, as the relationship

between risk score in the logit and probit models deviates from this simple linear model when

the risk score values are large.

Difference in prevalence between AJ and NFE attributed to implicated variants. The

difference in prevalence due to multiple alleles can be computed as

Prevalence difference ¼
ððp2 � p1Þ � ði2 � i1ÞÞ

ðp2 � p1Þ
;

where pj denotes the disease prevalence in population j and ij denotes the disease prevalence

without the risk factors in population j, which according to Moonesinghe et al.[58] is

ij ¼
pj

QM
m¼1
ð1þ fm;jðGRRm � 1ÞÞ

2

where GRRm denotes the genotype relative risk for variant m.

We model the CD prevalence accounted for by CD associated enriched protein-altering

alleles separately in both AJ and non-AJ European and determine the amount that CD preva-

lence would be reduced if this variant were absent from each population.

To estimate the difference in prevalence between two populations attributed to genetic risk

factors when non-additive effects exist,

ij ¼
pj

QM
m¼1
ð1þ 2fm;jðGRRHet

m � 1Þ þ f 2
m;jðGRRHom

m � 1ÞÞ
:
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Enirchment testing sensitivity

When modeling enrichment, we chose a standard significance cutoff of p< 0.05/N for clas-

sifying variants as enriched. We noted that the number of variants classified as enriched

does not change significantly when the p-value threshold changes. See S11 Fig for more

information.
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