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Abstract

Purpose: The aim of this study was to identify and indepen-
dently validate a novel gene signature predicting locoregional
tumor control (LRC) for treatment individualization of patients
with locally advancedHPV-negative head andneck squamous cell
carcinomas (HNSCC) who are treated with postoperative radio
(chemo)therapy (PORT-C).

Experimental Design: Gene expression analyses were
performedusingNanoString technology on amulticenter training
cohort of 130 patients and an independent validation cohort of
121 patients. The analyzed gene set was composed of genes with a
previously reported association with radio(chemo)sensitivity or
resistance to radio(chemo)therapy. Gene selection and model
building were performed comparing several machine-learning
algorithms.

Results:We identified a 7-gene signature consisting of the three
individual genes HILPDA, CD24, TCF3, and one metagene com-
bining the highly correlated genes SERPINE1, INHBA, P4HA2,

and ACTN1. The 7-gene signature was used, in combination with
clinical parameters, to fit a multivariable Cox model to the
training data (concordance index, ci ¼ 0.82), which was success-
fully validated (ci ¼ 0.71). The signature showed improved
performance compared with clinical parameters alone (ci ¼
0.66) and with a previously published model including hypox-
ia-associated genes and cancer stem cellmarkers (ci¼ 0.65). It was
used to stratify patients into groups with low and high risk of
recurrence, leading to significant differences in LRC in training
and validation (P < 0.001).

Conclusions: We have identified and validated the first
hypothesis-based gene signature for HPV-negative HNSCC
treated by PORT-C including genes related to several radiobi-
ological aspects. A prospective validation is planned in an
ongoing prospective clinical trial before potential application
in clinical trials for patient stratification. Clin Cancer Res; 24(6);
1364–74. �2018 AACR.
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Introduction
Head and neck cancer is the sixth most frequently occurring

tumor entity worldwide (1) with an overall 5-year survival rate of
about 50% (2). Patients with resectable, locally advanced head
andneck squamous cell carcinomas (HNSCC)whoare at high risk
for tumor recurrence are being routinely treated with postoper-
ative radiochemotherapy (PORT-C). According to the results of
three randomized clinical trials, concurrent chemotherapy leads
to improved locoregional tumor control (LRC) and prolonged
overall survival (OS) compared with postoperative radiotherapy
(PORT) alone (3–5).Within the last years, radiotherapy of locally
advanced HNSCC has been further improved through the devel-
opment of new treatment techniques, such as intensity-modulat-
ed radiotherapy. Despite the increase in treatment efficacy,
patients show a very heterogeneous treatment response. There-
fore, the consideration of the individual tumor biology by appro-
priate biomarkers in addition to well-established clinical para-
meters may further improve patient stratification for treatment
escalation or deescalation strategies.

Besides the consumptionof alcohol and tobacco aswell-known
risk factors for the development of HNSCC, infection with the
human papillomavirus (HPV) has been identified as another
independent parameter. Also, the incidence of HPV infection in

HNSCC has been increasing within the last decade (6). Preclinical
and clinical studies have shown that HPV-positive HNSCCs are
more radiosensitive than HPV-negative tumors (7, 8). To inves-
tigate the impact of HPV in patients who receive PORT-C and to
identify additional biomarkers for patient selection, a retrospec-
tive, multicenter study of the German Cancer Consortium Radi-
ation Oncology Group (DKTK-ROG) was conducted (9–13). For
this cohort, we have shown that patients with HPV16 DNA–
positive tumors have superior LRC and OS compared with
patients with HPV-negative tumors (9). In particular, 98% of the
HPV-positive and only 80% of the HPV-negative oropharyngeal
tumors were locoregionally controlled. For patients with HPV
DNA–negative tumors, additional biomarkers are urgently need-
ed to identify subgroups of patients, who are unlikely to respond
to PORT-C andmay benefit from treatment escalation, or who are
not anticipated to develop locoregional recurrences.

Tumor hypoxia has been shown to be correlated with increased
radioresistance (14). For patients with locally advanced HNSCC,
pretreatment hypoxiawas significantly associatedwith low tumor
control and OS after primary radio(chemo)therapy compared
with patients with highly oxygenated tumors (15, 16). Several
hypoxia gene classifiers have been developed in the last decade to
assess hypoxia or hypoxia-related changes on the transcriptional
level using routinely taken pretreatment biopsies (17, 18). We
have recently shown their prognostic validity for patients at high
risk of loco-regional failure receiving PORT-C (12). The associa-
tion of hypoxia and LRC after PORT-C is unexpected as the gross
tumor has been removed and subsequently remaining tumor cells
are very unlikely to differ in hypoxia (12). This suggests that
hypoxia impacts LRC not only by a direct biochemical effect on
cellular radioresistance but also by other radiobiologicalmechan-
isms (12, 19). Recent studies reported that hypoxia as an external
factor also favors increased radioresistance of cancer stem cells
(CSC) and invasive tumor growth (reviewed in refs. 20, 21), and
CSCs are known to play amajor role in radioresistance and tumor
recurrence (reviewed in ref. 22). The putative CSCmarkers CD44,
SLC3A2, and MET were shown to be prognostic for LRC in
patients who received PORT-C (12). The combined application of
hypoxia-associated gene panels and CSCmarkers further improved
patient stratification regarding their risk of locoregional treatment
failure (23, 24), which was independently validated (25).

A gene signature including additional radiobiological aspects
may predict patient outcome with even higher accuracy. In the
literature, the number of gene panels for stratification of patients
with HNSCC is steadily growing. However, to the best of our
knowledge, they have been developed for patients who received
primary radiotherapy (26, 27) or havenot been linked to a specific

Translational Relevance

Patients withHPV-positive, locally advanced head and neck
squamous cell carcinomas (HNSCC) show a very good loco-
regional tumor control (LRC) after postoperative radioche-
motherapy (PORT-C) and are therefore candidates for trials on
treatment deescalation to reduce toxicity. For patients with
HPV-negative HNSCC, additional biomarkers are urgently
needed to identify subgroups of patients, (i) who are unlikely
to respond to standard PORT-C and may benefit from treat-
ment escalation, or (ii) who will likely not develop locore-
gional recurrences. We developed and independently validat-
ed a 7-gene signature prognostic for LRC of HPV-negative
tumors, which is based on several radiobiological parameters
or mechanisms. The prognostic performance of this radiobi-
ology-based signature combined with clinical parameters was
higher than that of a model containing hypoxia-associated
genes and CSC markers only. After additional prospective
validation, the 7-gene signature may be applied in clinical
trials for patient stratification.
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treatment (28–30).Gene signatures prognostic for the response of
patients with locally advanced HNSCC to PORT-C covering a
broad spectrum of radiobiological aspects are still missing.

Therefore, the major aim of this study was to develop and
validate a gene signature and corresponding statistical model for
patient stratification beyond HPV infection status to improve the
risk assessment for patients with locally advanced HNSCC who
receive PORT-C. For the development of this gene signature, a gene
set was composed in-house using a hypothesis-driven approach.
The gene set incorporated genes that cover many radiobiologically
important aspects such as DNA repair, cell cycle, epithelial–mes-
enchymal transition, CSC markers, hypoxia, proliferation, inva-
sion, metastasis, as well as genes that were reported to be involved
in cisplatinum resistance. The signature was developed and inde-
pendently validated on two large patient cohorts for the primary
endpoint LRC and the secondary endpoints OS and freedom from
distant metastases (DM). To find the optimal results, internal
validation methods were applied, and several statistical methods
were compared, including advancedmachine learning techniques.

Materials and Methods
Patients

Two different cohorts of patients with locally advanced HNSCC
were being considered for this study. The training cohort consisted
of 221 patients who were treated with PORT-C between 2004 and
2012 within the 9 partner sites of the DKTK-ROG. Inclusion
criteria, data collection, handling and analyses of biomaterial were
previously described (9, 12). Briefly, all patients received curatively
intended cisplatinum-based PORT-C according to standard pro-
tocols with a minimum follow-up of 24 months and presented
with a tumor stage pT4 and/or >3 positive lymph nodes and/or
positive microscopic resection margins and/or extracapsular
spread. The validation cohort consisted of 152 patients who were
enrolled by the following criteria: not included in the previous
DKTK-ROG training cohort, histologically proven HNSCC, treat-
ment between 1999 and 2006 with PORT or PORT-C according to
standard radiotherapy protocols with curative intention (25).

Preparation of biomaterials and biomarker analyses
Formalin-fixedparaffin-embedded (FFPE)blocks of the primary

tumor specimens (removed by surgery) were first subjected to
hematoxylin and eosin staining to histologically confirm the
presence of squamous cell carcinoma. Afterwards, they were pro-
cessed under standardized procedures for biomarker investiga-
tions. DNA extraction and PCR-array based analyses of HPV status
have been performed as described previously (9). Briefly, genomic
DNA was extracted from 5-mm FFPE sections using the QIAamp
DNA FFPE tissue kit (Qiagen). HPV DNA analyses including
genotyping were performed using the LCD-Array HPV 3.5 kit
(CHIPRON GmbH) according to the manufacturer's instructions.

For both cohorts, gene expression analyses were performed
consecutively using nanoString elements technology (nanoString
Technologies, Seattle, WA, USA) as described in (12, 25). Briefly,
total RNA as well as reporter and capture probes specific to the
genes of interest were mixed and incubated at 62�C for 22 hours.
Samples were then kept at 4 �C for a maximum of 18 hours and
subjected to the nCounter system. Raw counts were logarithmized
and then normalized by subtracting the mean of the log-
transformed counts of the reference genes ACTR3, B2M, GNB2L1,
NDFIP1, POLR2A, RPL11, and RPL37A. Because of insufficient

tumor material or too low RNA yield, some of the samples had to
be omitted from the analysis. In the training and validation cohort,
NanoString andHPVanalyses couldbeperformed for 195and142
samples, respectively. The expression levels of 178 genes were
evaluated by NanoString analyses for both cohorts. The genes
were selected by a literature search on a hypothesis-driven basis.
Genes were included that have previously been reported to be
associated with sensitivity or resistance to radio(chemo)therapy,
that is, genes involved in proliferation, invasion, and metastasis;
tumor hypoxia–associated genes, genes encoding for putative CSC
markers, andDNA repair aswell as genes that have been associated
with cisplatinum resistance (see Supplementary Table S1).

Study design
Theaimof this studywas todevelopandvalidateagene signature

for patient stratification beyond HPV infection status to further
improve the risk assessment for patients with locally advanced
HNSCCwho receive PORT-C. Therefore, only patients withHPV16
DNA–negative tumors and available NanoString gene expressions
were included (N ¼ 130/221 training, N ¼ 121/152 validation).
The studydesign is presented in Fig. 1. Prognosticmodels including
the following parameters should be compared: the identified gene
signature alone, clinical parameters alone, and the combination of
clinical parameters and the identified gene signature.

Statistics and clinical endpoints
The primary endpoint was locoregional tumor control (LRC).

Secondary endpoints were freedom from distant metastases (DM)
and overall survival (OS). All endpoints were calculated from the
first dayof radiotherapy to thedate of event or censoring.Deathwas
considered a competing risk for locoregional recurrence and DM,
while locoregional recurrence and DM did not cause censoring.
Survival curves were estimated by the Kaplan–Meier method and
compared by log-rank tests. Differences between the training and
validation cohort were evaluated by Mann–Whitney U tests for
continuous variables and by c2 tests for categorical variables.
Descriptive analyses and the described statistical tests were per-
formed using SPSS 23 (IBM Corporation). A statistical framework
was developed to identify gene signatures and corresponding

Figure 1.

Study design.
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prognostic models to optimally and robustly predict the primary
and secondary endpoints. This framework is described in the
Supplementary Materials in detail. To evaluate the prognostic
performance of the developed models, the concordance index (ci)
was calculated (31).While ci¼0.5 isobtained for anoninformative
model, ci¼ 1.0 represents a perfectly predictingmodel. To compare
the performance between nested multivariable Cox models, the
likelihood ratio test was applied. The framework to determine gene
signatures and correspondingprognosticmodelswas implemented
in R Statistics version 3.3.2 (R Foundation for Statistical Comput-
ing, Vienna; refs. 32 and 33) and Python (Python Software Foun-
dation. Python Language Reference, version 2.7). An overview of
the used programs and packages is given in Supplementary Table
S2. For all analyses, two-sided tests were performed and P values
below 0.05 were considered as statistically significant.

Statistical framework to identify gene signatures and perform
model predictions

The statistical framework to identify gene signatures consists of
four main steps, which are described in detail in Supplementary
sections S1–S3: (i) the gene expression data are preprocessed.
Genes are removed from analysis, if their median expression is
below twice the median negative control in the training cohort.
The expression of each gene is z-transformed to mean 0 and SD 1
on the training cohort, which is favorable for most machine-
learning algorithms. The gene expressions of the validation cohort
are transformed on the basis of the means and SDs of the training
cohort; (ii) a feature selectionmethod is applied to select themost
relevant genes using internal 3-fold cross validation on the train-
ing cohort (repeated 333 times). The genes are combined to an
ensemble signature based on their frequency of occurrence and
their importance (Fig. 2). The resulting signature is then used to
build prognostic models on 1,000 bootstrap samples of the
training cohort to predict the considered outcome. Several feature
selection methods, prognostic models, and different signature
sizes (1–10) are compared and the best signature is chosen using

the out of the bag data of the bootstrap samples; (iii) to increase
the robustness of the signature, genes which are highly correlated
to one of the signature genes in the training cohort are combined
with this gene to create a newmetagene (median expression of the
highly correlated genes). The resulting metagene replaces the
original gene within the gene signature; (iv) finally, the model
is validated using the independent validation cohort. The 95%
confidence interval (CI) of the ci is estimated from 1,000 boot-
strap samples of the validation cohort. Finally, the validation is
declared successful if the 95% CI does not contain 0.5.

Data and materials availability
Thefinalmodels and the raw genomic data used for creating the

models are available upon request.

Results
Patient cohorts

In this retrospective study, a multicenter training cohort of 130
patients and an independent, monocenter validation cohort of
121 patients with HPV16 DNA–negative locally advanced
HNSCC were available for the development of a gene signature
to predict the clinical endpoints LRC, OS, and DM. Patient data,
treatment parameters, and tumor characteristics of both patient
cohorts were published previously (9, 34) and are summarized
in Table 1. Patients in the validation cohort were treated with
PORT (n ¼ 90) or PORT-C (n ¼ 31), while all patients of the
training cohort received PORT-C as the standard treatment. The
training cohort included 44.6% patients with oropharyngeal and
37.7% patients with oral cavity carcinomas. In the validation
cohort, 21.5% of the patients have been diagnosed with oropha-
ryngeal and 62.0% with oral cavity carcinomas. Patients in the
validation cohort showed lower LRC (statistical trend) and OS,
while the incidence of DM was not significantly different. Actu-
arial rates of LRC, freedom from DM, and OS two years after
radiotherapy for the training and validation cohort were 83.8%

Figure 2.

Cross-validation scheme for
identifying the ensemble gene
signature. The training cohort was
randomly split into 3 equal parts. Each
part was used for internal validation
and the remaining patients for internal
training. This was repeated 333 times.
Feature selection was performed on
each internal training sample, and a
prognostic model was trained using
the selected genes. This model was
subsequently internally validated.
Finally, the occurrence and
importance of the genes as well as the
validation ci of all cross-validation
experiments were used to define the
ensemble gene signature.

7-Gene Signature for HPV-Negative HNSCC Treated by PORT-C
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versus 75.0% (P ¼ 0.096), 79.0% versus 82.8% (P ¼ 0.72), and
76.4% versus 64.9% (P ¼ 0.042), respectively.

7-Gene signature predicts LRC for HPV16DNA–negative tumors
To identify a prognostic gene signature for the primary end-

point LRC, the four steps (i)–(iv) of the statistical framework
outlined in Materials and Methods were performed.

During the preprocessing step (i), the genes FGFR2, PROM1,
and TAF7L were removed from the analysis. The mean
validation ci from the 3-fold internal cross validation of step (ii)
ranged between 0.57 and 0.68 and was similar between different
feature selectionmethods and statistical models (see Supplemen-
tary Fig. S1 for signature size 4). An ensemble gene signature was

determined for each combination of feature selectionmethod and
prognostic model, as described in Supplementary Section S4. The
performance of these signatures was evaluated using 1,000 boot-
strap samples of thewhole training cohort (see Fig. 3). The highest
mean ci of 0.78 was obtained for a signature, which contained the
genes SERPINE1, CD24, HILPDA, and TCF3. For the final predic-
tionmodel, Cox regression was chosen, as it is the most simple of
thewell performingmodels. Signature size 4was chosen based on
the mean ci and the signature score of the genes (Supplementary
Section S4; Supplementary Fig. S2). The signature score was
highest for SERPINE1, followed by CD24, HILPDA, and TCF3,
which showed a similar score (see Supplementary Fig. S3). To
improve the robustness of the identified 4-gene ensemble

Table 1. Patient characteristics for the training and validation cohort

Training cohort (2004-2011) Validation cohort (1999-2006)
Characteristics Median (range) Median (range) P

Follow-up (months) 57.4 (11.5–94.5)a 62.1 (24.7–153.0)a <0.001b

Age (years) 56.5 (32.0–74.0) 52.3 (36.3–70.6) 0.005
Dose (Gy) 64.0 (56.0–68.0) 64.0 (60.0–66.0) 0.006

Number of pts % Number of pts %
Gender
Male/female 101/29 77.6/22.3 105/16 86.8/13.2 0.061

ECE status
No/yes/unknown 62/68/0 47.7/52.3 82/39/0 67.8/32.2/0 0.001

Localization
Oropharynx/oral cavity/Hypopharynx/Larynx 58/49/ 23/0 44.6/37.7/ 17.7/0 26/75/ 13/7 21.5/62.0/ 10.7/5.8 <0.001

Grading
1/2/3/unknown 4/84/ 42/0 3.1/64.6/ 32.3/0 3/67/ 51/0 2.5/55.4/ 42.1/0 0.27

Chemotherapy
Yes/no 130/0 100/0 31/90 25.6/74.4 <0.001

Locoregional recurrences 26 20.0 35 28.9 0.096b

Distant metastases 31 23.8 29 24.0 0.72b

Deaths 54 41.5 73 60.3 0.042b

a95% CI.
bLog-rank test.

Figure 3.

Performance of ensemble gene
signatures for locoregional tumor
control on the training cohort. For
each combination of feature selection
algorithm and statistical model, the
mean out-of-the-bag (oob) validation
ci of the training cohort and its 95% CI
are shown. Performance for the
endpoint locoregional tumor control
was estimated using 1,000 bootstrap
samples of the entire training cohort
with signature size 4.
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signature, it was extended by other highly correlated genes in step
(iii), as described in Supplementary Section S4. INHBA, ACTN1,
and P4HA2 were found to be highly correlated with SERPINE1,
while for CD24, TCF3, and HILPDA no additional correlated
genes were found (Supplementary Table S3). Thus, our final
7-gene signature for LRC consisted of the genes SERPINE1,
INHBA, ACTN1, P4HA2, CD24, TCF3, and HILPDA. For
evaluation, the median of the z-transformed, reference-gene nor-
malized expression of SERPINE1, INHBA, ACTN1, and P4HA2
was considered as a new metagene variable (Supplementary
Section S4). The whole training cohort was used to fit the final
Cox regression model, leading to a training ci of 0.81 (95% CI,
0.75–0.88). The resultingmodel parameters are shown in Table 2.
In the last step (iv), the validation of the final model was
performed on the independent validation cohort. A validation
ci of 0.69 (0.60–0.77)was obtained, which represents a successful
validation of the gene signature for the endpoint LRC.

Patient stratification into groups of low and high risk of
recurrence was performed for the final Cox model depending on
the risk score, which is given by the linear predictor of the model.
The optimal cut-off was chosen based on the training cohort at a
risk score of 0.10. This cutoff led to the highest fraction of patient
stratifications with a significant difference in LRC, based on 1,000
bootstrap samples of the training cohort (992/1,000). Patients in
the high risk group showed significantly lower LRC than patients
in the low risk group, both for the training (P < 0.001) and the
validation cohort (P ¼ 0.001; see Supplementary Fig. S4).

Inclusion of clinical parameters to the 7-gene LRC signature
For the training cohort, itwas shown that the established clinical

parameters tumor localization and ECE status were significantly
correlatedwith LRCor the secondary endpoints (9, 12).Usingonly
these two parameters in a multivariable Cox model resulted in a
lower performance [training: ci¼ 0.61 (0.53–0.74), validation: ci
¼0.66 (0.57–0.74)] comparedwith the7-gene signature. Finally, a

multivariable Cox model including both, the clinical parameters
ECE status and tumor localization (oral cavity vs. others) as well as
the 7-gene signature, increased the training ci to 0.82 (0.77–0.89)
and the validation ci to 0.71 (0.62–0.78; see Table 2). While in
training the clinical Cox model was significantly improved by
adding the 7-gene signature (P < 0.001), adding the clinical
parameters to the 7-gene signature resulted in only small improve-
ments (P ¼ 0.53). The difference in validation ci was not statis-
tically significant. An additional validation was performed using
only those patients who received concurrent chemotherapy, lead-
ing to similar results (validation ci ¼ 0.72).

The extended model was used to stratify the patients into two
risk groups (cutoff ¼ 0.37), leading to highly significant differ-
ences in LRC for the training (P < 0.001) and the validation cohort
(P < 0.001). The corresponding Kaplan–Meier curves are pre-
sented in Fig. 4 together with a heatmap of the signature for the
training cohort (see also Supplementary Fig. S5).

Comparison with models based on CSC markers and hypoxia
classifiers

In a previous study, it was shown that the expression of CSC
markers and hypoxia-related genes were prognostic in patients
with locally advanced HPV16 DNA–negative HNSCC, who were
treated by PORT-C (12). These results were validated in ref. 25.
Here, the performance of these models was compared with the
7-gene signature. While in ref. 25, the best performing model,
consisting of ECE status, tumor localization, CD44>0.2, and the
15-gene hypoxia classifier (17), showed a validation ci of 0.65
(0.54–0.74), the identified 7-gene signature combined with the
clinical parameters led to a validation ci of 0.71 (0.62–0.78).

7-Gene signature predicts for secondary endpoints
As secondary endpoints, overall survival (OS) and freedom

from distant metastases (DM) were considered. The 7-gene sig-
nature determined for LRC, combined with the clinical features

Table 2. Multivariable Cox regression of locoregional tumor control

Parameter HR (95% CI) P
ci Training
(95% CI)

ci Validation
(95% CI)

ci Validation,
chemotherapy
(95% CI)

7-Gene signature
Metagene from SERPINE1, INHBA, ACTN1, and P4HA2 2.13 (1.18–3.88) 0.012
HILPDA 1.48 (1.00–2.18) 0.049
CD24 0.71 (0.48–1.04) 0.072
TCF3 0.54 (0.32–0.88) 0.017 0.81 (0.75–0.88) 0.69 (0.60–0.77) 0.69 (0.39–0.87)

Clinical parameters
ECE status 1.26 (0.57–2.82) 0.57
Localization oral cavity 2.07 (0.95–4.56) 0.069 0.61 (0.53–0.74) 0.66 (0.57–0.74) 0.65 (0.30–0.84)

7-gene signature and clinical parameters
Metagene from SERPINE1, INHBA, ACTN1, and P4HA2 1.98 (1.09–3.83) 0.026
HILPDA 1.52 (1.02–2.26) 0.041
CD24 0.69 (0.46–1.05) 0.083
TCF3 0.55 (0.32–0.94) 0.031
ECE status 1.40 (0.62–3.24) 0.43
Localization oral cavity 1.27 (0.51–3.19) 0.61 0.82 (0.77–0.88) 0.71 (0.62–0.78) 0.72 (0.43–0.90)

Improvement of combined model compared to dLL Degrees of freedom P
7-Gene signature only 1.26 2 0.53
Clinical parameters only 24.19 4 <0.001
NOTE: Threemultivariable Cox regressionmodels were built using the training cohort: amodel consisting of only the 7-gene signature (top), amodel consisting only
of the clinical ECE status and tumor localization (center), and amodel combining both the 7-gene signature and clinical parameters (bottom). HRs are givenwith their
95% CIs and the corresponding P values. For each model, the concordance index (ci) is given for the training and validation cohort as well as for the patients of the
validation cohort who received concurrent chemotherapy. Its 95% CI is determined from 1,000 bootstrap samples of the respective cohort. The improvement of the
combined model, including the 7-gene signature and the clinical parameters, compared with the 7-gene signature and clinical parameters alone is shown (bottom)
based on the difference in log-likelihood (dLL).
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ECE status and tumor localization, was trained and validated for
OS and DM (Supplementary Tables S4 and S5). For OS, training
and validation led to a ci of 0.71 (0.65–0.79) and 0.64 (0.57–
0.70), respectively. For DM, the ci was 0.69 (0.64–0.80) for
training and 0.63 (0.52–0.73) for validation. Cox models includ-
ing only the clinical features ECE status and tumor localization led
to a validation ci of 0.60 (0.54–0.66) for OS and of 0.61 (0.52–
0.71) for DM, respectively. Hence, the 7-gene signature could
improve the prognostic performance also for the secondary end-
points OS and DM compared with clinical parameters alone.
Validation on the subgroup of patients receiving concurrent
chemotherapy led to a higher ci for the 7-gene signature [OS:
0.72 (0.56–0.84), DM: 0.74 (0.52–0.90)]. Kaplan–Meier survival
analyses are presented in Supplementary Figs. S6 and S7.

Discussion
The overall aim of this study was to identify and validate a gene

signature for the stratification of patients with HPV-negative,
locally advanced HNSCC who are treated by PORT-C based on
the clinical endpoint LRC.We identified a 7-gene signature, which
contains genes froman extended in-house gene set comparedwith
previous work, which showed that patients with HPV-negative
tumors could be further stratified by the expression of CSC
markers and hypoxia-associated genes (12). In addition to the
HPV infection status, CSC marker expression levels and tumor
hypoxia-associated genes, this gene set included genes related to
DNA repair, cell-cycle regulation, epithelial–mesenchymal tran-
sition, proliferation, or invasion. A statistical framework was
developedwith the objective of identifying a gene signaturewhich
accurately and robustly predicts the risk of locoregional failure.
The framework contains data preprocessing, internal cross vali-
dation, signature selection, model building, and independent
validation.

The identified 7-gene signature contained the genes SERPINE1,
INHBA, ACTN1, and P4HA2 (which were combined into a single
metagene due to high mutual correlation) as well as the genes
CD24, TCF3, and HILPDA. SERPINE1 (also known as PAI-1),
HILPDA, INHBA, and P4HA2 are being induced by the hypoxia-
inducible factor HIF1 leading to extracellular matrix remodeling
(35–37). SERPINE1 plays a role in enhanced migration and cell
proliferation as well as decreased cisplatinum-induced apoptosis
(38, 39). In a prospective clinical study including 190 patients,
high expression of SERPINE1 has been shown to be associated
with poor local recurrence-free, progression-free, and cancer-spe-
cific survival (38). In a panel of head and neck xenograft tumors,
SERPINE1 expression levelswere overexpressed prior to treatment
mainly in hypoxic tumors (40). After fractionated irradiation, a
correlation between SERPINE1 expression levels and local tumor
control was found in vivo (40). In addition,mild hypoxia has been
shown to induce SERPINE1 expression via the hypoxia-inducible
factor HIF1 (37). SERPINE1 is functionally associated with
INHBA (41) and ACTN1 (42). In the hypoxia-associated signa-
tures, HILPDA (also known as HIG2) and P4HA2 have also been
included (17, 43). HILPDA has been shown to promote prolif-
eration and invasion (44). In the literature, conflicting data exist
for CD24, which is expressed in different tumor entities such as
breast cancer and cervical cancer and has shown to be associated
with increased tumor growth andprogression (45).CD24has also
been shown to be involved in cisplatinum resistance (46) and a
shortened progression-free survival was observed for several
tumor entities with higher expression (45, 47). In contrast, CD24
overexpression has been shown to be correlated with better
survival in patientswithoral carcinoma (48). They further showed
that CD24�/� mice are able to develop progressive oral cancer.
Lack of the surface protein CD24 resulted in the expansion of a
highly immunosuppressive CD11bþGr1þ myeloid cell popula-
tion leading to oral cancer progression. To date, very little is

Figure 4.

Patient stratification by the 7-gene
signature and clinical parameters
for locoregional tumor control.
Kaplan–Meier estimates of
locoregional tumor control (LRC) are
shown for the training cohort (A) and
the validation cohort (B). Patients
were stratified into a low-risk group
(LR) or a high-risk group (HR) by the
linear predictor of the multivariable
Cox model which included the 7-gene
signature and the clinical parameters
ECE status and tumor localization. The
cut-off risk score (0.37) was
determined on the training cohort and
applied to the validation cohort.
C, Heatmap of the 7-gene signature as
well as ECE status (0, light; 1, dark),
localization (oral cavity, dark; others,
light), risk group (LR, light; HR, dark),
and LRC during follow-up (yes, light;
no, dark) for the training cohort.
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known about the transcription factor 3 (TCF3) and its potential
role in cancer. TCF3 is a critical cell signaling molecule (49) and
hasbeen shown topromote cellmigrationandwound repair (50).
In contrast, TCF3 was found to be a cell-intrinsic inhibitor of
pluripotent self-renewal through limiting the steady-state levels of
self-renewal factors such as Oct-4, Sox2, and Nanog in mouse
embryonic stem cells (51). Lack of TCF3 leads to increasing levels
of Nanog and other self-renewal genes, minimizing the response
to differentiation stimuli (51). According to the factors of the final
Cox model, overexpression of SERPINE1 (as well as the highly
correlated genes INHBA, ACTN1, and P4HA2) and HILPDA
increased the risk for locoregional failure, which is in line with
the literature (38, 39). In contrast, a high expression of CD24 led
to decreased risk of recurrence. For oral cavity cancer it has been
shown that CD24 dampens the functional expansion of myeloid-
derived suppressor cells and gives rise to a more favorable prog-
nosis as described above (48), which is in line with our findings.
The final Coxmodel also predicted that a high expression of TCF3
is related to improved LRC, which may be due to its role in the
suppression of self-renewal genes (51). However, the functional
role of TCF3 in HNSCC needs to be explored in further mecha-
nistic studies.

The identified 7-gene signature showed a good prognostic
ability for the endpoint LRC on the validation cohort (ci ¼
0.69). When combined with the clinical parameters ECE status
and tumor localization, its performance could be further
improved (ci ¼ 0.71). This indicates that the combination of
well-established clinical parameters and prognostic biomarkers
may lead to a more accurate prognosis than each of them alone.
The model including only the clinical parameters showed the
lowest validation performance (ci ¼ 0.66). In the Cox model
combining clinical parameters with the 7-gene signature, most
signature genes were significantly associated with LRC. While this
may be expected on the training cohort, the impact of the 7-gene
signature in validation is less clear, as the relevant improvement in
ci by 0.05was not statistically significant. Evaluating the signature
combinedwithHPV status for all patients increased the validation
ci to 0.74, which is similar to or even higher than in other studies
(30, 52).

The final Cox model showed a better performance on the
training cohort (ci¼0.82) than on the validation cohort
(ci¼0.71). This difference is expected, since the final Cox model
is adjusted to the training cohort and potential overfitting might
occur. In addition, the validationof theproposed7-gene signature
might be impeded by the significant differences between both
patient cohorts. Patients in the validation cohort were clinically
characterized by a higher percentage of prognostically favorable
R0 resections of primary tumors and less lymph nodes with ECE.
On the other hand, the validation cohort had a higher percentage
of prognostically unfavorable oral cavity tumors, much less
concurrent chemotherapy (31/121) than the training cohort and
was treated with outdated radiation technologies (53). These
negative prognostic factors outbalanced the positive ones result-
ing in worse outcome in terms of LRC (P ¼ 0.096) and OS (P ¼
0.042; ref. 25). Lack of concurrent chemotherapymay impede the
validation of genes related to cisplatin resistance. For the 7-gene
signature, however, only CD24 has been reported to be strongly
involved in resistance to cisplatin (46), but also in other mechan-
isms (48).

On the basis of the final Cox model, a risk score was calculated
for each patient, which allowed stratification into groups of low

and high risk of recurrence. However, mean gene expressions
(Supplementary Table S6) as well as clinical parameters were
significantly different between the training and validation cohort.
These differences caused a shift in the risk score, such that the
stratification cutoff, whichwas based on the training cohort, led to
imbalanced patient risk groups for the validation cohort. While in
training approximately 45% of the patients were stratified in the
low-risk group and 55% in the high-risk group, for the validation
cohort only about 12% of the patients were classified as high risk.
Such imbalances may be caused by the differing tumor and
treatment characteristics between the cohorts. In addition to
clinical reasons, differences in gene expression might also be
caused by several biomaterial-related factors such as storage time
of FFPE material (3–18 years) or batch effects and stability of
reagents and consumables (Supplementary Table S7). Renorma-
lizing the validation data to the training data, as described in
refs. 12 and 54, gives the same fraction of patients in the low- and
high-risk group and similar LRC rates for both cohorts (Supple-
mentary Fig. S5). However, to apply this renormalizationmethod
for individual patient prognosis within clinical trials, the inclu-
sion of reference samplesmay be required, for which the expected
gene expression levels are known. This methodology will be
applied to the planned prospective validation of the 7-gene
signature. In addition, the application of broadly available and
cost-effective PCR-based methods may further improve biomark-
er stability.

In this study, several algorithms for gene selection and risk
prediction were compared. Feature selection algorithms based on
mutual information, such as MIFS and MRMR, typically led to a
higher ci than simple univariable methods such as Pearson or
Spearman correlations (Fig. 3). This behavior can be expected, as
the more complex algorithms do not only account for the corre-
lation of the gene expressions to outcome but also consider
correlations between the selected genes. Therefore, each gene in
the signature represents additional information, which increases
the performance of the signature. The performance of prediction
models, ranging from the well-known Cox model to complex
random forests, was similar on the training cohort. Therefore, the
performance of the signaturewasfinally assessed bymultivariable
Cox regression, which allows easy interpretation. Most of the
considered models require additional hyperparameters, such as
the regularization parameters l1 and l2 for penalized Coxmodels
or node size and node depth for random forests (see Supplemen-
tary Section S3). In an initial experiment, these parameters were
chosen based on their default values given in the used software
packages and then tuned by a grid search using 2-fold internal
cross validation on the training cohort. The resulting parameters
were applied in this study and are reported in Supplementary
Table S8. While random forests did not outperform simple Cox
regression in this study, thismaynot hold in other situations (55).

The presented 7-gene signature was identified for patients with
HPV16 DNA–negative tumors and the primary endpoint LRC.
However, it also improved the prognostic value of the clinical
parameters for the secondary endpoint OS, while for DM, no
significant difference was observed. In particular, for patients
receiving concurrent chemotherapy, the validation performance
of the 7-gene signature was improved by 10%. This may further
enhance the clinical potential of this signature.

A limitation of this study might also be the limited number of
genes contained in the initial gene set. Although this has been
composed on a hypothesis-driven basis and comprehensive
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literature search, it may not include all genes of radiobiological
relevance. For example CD44, which has been shown to be a
prognosticator for LRC in patients with locally advanced HNSCC
who received PORT-C (12), had to be omitted from the Nano-
String analysis due to incorrect probe design. Since the set-up of
our gene set, other genes have been shown to be prognostic for
outcome in HNSCC. For example, TCGA analyses (56) suggested
several genes, related to HPV status. Of these genes CCND1,
NOTCH1, YAP1, and SOX2 were found to overlap with our gene
set. In the TCGA dataset, patients with CCND1-overexpressing
tumors, who received surgery with or without postoperative
radiochemotherapy showed worse prognosis. In our study,
CCND1 had no impact on the primary endpoint LRC (P ¼
0.72). Therefore, it was not selected in the gene signature. How-
ever, CCND1 showed a significant correlation to the secondary
endpoints OS and DM using univariable Cox regression for all
195 patients. For the subgroup of patients with HPV-negative
tumors, CCND1 neither correlated with OS nor with DM. This
could be explained by the strong correlation of CCND1 with the
HPV status in our cohort. In contrast, YAP1 was significantly
associated with LRC in our study, but was rated only at rank
14 such that it was not included in the 7-gene signature.NOTCH1
and SOX2 were not related to LRC. Another example is PD-L1,
which was strongly associated with local failure in HPV-negative
HNSCC (13, 57), but not included in our gene set. To consider
these novel developments and identify further biomarkers, whole
transcriptome analyses supplemented by wholemethylome anal-
yses might be performed and potentially further improve patient
stratification.

Currently, an adaptive clinical biomarker matrix trial is set-up
within the DKTK-ROG for dose escalation and deescalation in
HNSCC. In the first stage, patients with HPV-positive tumors
treated by PORT-C will receive a 10% lower radiation dose of the
standard concurrent radiochemotherapy schedule. In the second
stage, the 7-gene signature is one candidate biomarker for select-
ing patients with high-risk HPV–negative tumors for dose esca-
lation. To reduce toxicities, especially at higher doses, proton
therapy will be considered (58).

In conclusion, this study introduces a novel 7-gene signature
predicting LRC for patients with locally advanced HNSCC treated
by PORT-C. A prognostic Cox model was trained on a large
multicenter patient cohort and independently validated.
Although the validation cohort differed in many aspects from
the training cohort, a successful validation was achieved, which
indicates the robustness of the signature. Prospective validation of
the signature is planned within an ongoing prospective clinical

trial of the DKTK-ROG before regular application in clinical trials
for patient stratification.
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