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Abstract

Encapsulation of primary bovine adrenocortical cells in alginate is an efficacious model of a

bioartificial adrenal cortex. Such a bioartificial adrenal cortex can be used for the restoration

of lost adrenal function in vivo as well as for in vitro modeling of the adrenal microenviron-

ment and for investigation of cell–cell interactions in the adrenals. The aim of this work was

the optimization of a bioartificial adrenal cortex, that is the generation of a highly productive,

self-regenerating, long-term functioning and immune tolerant bioartificial organ. To achieve

this, it is necessary that adrenocortical stem and progenitor cells are present in the bioartifi-

cial gland, as these undifferentiated cells play important roles in the function of the mature

gland. Here, we verified the presence of adrenocortical progenitors in cultures of bovine

adrenocortical cells, studied the dynamics of their appearance and growth and determined

the optimal time point for cell encapsulation. These procedures increased the functional life

span and reduced the immunogenicity of the bioartificial adrenal cortex. This model allows

the use of the luteinizing hormone-releasing hormone (LHRH) agonist triptorelin, the neuro-

peptide bombesin, and retinoic acid to alter cell number and the release of cortisol over long

periods of time.

Introduction

Adrenal insufficiency is a life-threatening disorder that requires a complex and permanent hor-

mone replacement. Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is
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the most common form of adrenal insufficiency. Current treatment options with glucocorticoid

substitution can only partially reverse the symptoms and exhibit unpleasant side effects [1].

Despite different treatment regimens, CAH remains a major therapeutic challenge sometimes

requiring drastic therapeutic procedures such as bilateral adrenalectomy [2]. Transplantation of

adrenal cells may be a feasible therapeutic alternative for those patients. However, this strategy

is critically limited by a persistent lack of human donor organs and the requirement of chronic

immune suppression.

Those problems could be solved by the transplantation of immunoisolated xenogeneic

adrenal cells. Recently, we succeeded in creating a bioartificial adrenal cortex—a transplant,

developed on the base of 3D xenogeneic primary Bovine Adrenocortical Cell (BAC) cultures,

embedded in alginate [3]. This improved both the capacity of the adrenal cells for stable, long-

term basal cortisol release as well as the response to stimulation with pituitary adrenocortico-

tropic hormone (ACTH). In addition, we successfully transplanted these bioartificial adrenal

cortices intraperitoneally and subcutaneously into rats for a short period of time (approx. 3

weeks) within an implantable medical device without the use of immunosuppressive drugs [3].

Here, we improved this bioartificial adrenal cortex system by generating a long-term func-

tioning, highly productive bioartificial organ that aims to induce minimal immunological

responses. In this system, BACs were expanded in vitro in monolayer cultures for 1–7 days and

then embedded in an alginate matrix for 3D growth for additional 114 days.

Because most BACs are mature cells with limited life span, it is essential that the cells in the

bioartificial adrenal cortex include a population of adrenocortical progenitors. Previous

reports showed the presence of adrenocortical progenitor cells in the adult rat adrenal cortex

[4], suggesting that appropriate modeling of this organ should include immature cell popula-

tions. The presence of a side population of cells with stem and progenitor properties has also

been demonstrated in mice [5, 6]. Experiments with transplantation of primary adrenocortical

cells indirectly support the existence of adrenocortical progenitors in primary cultures of adre-

nocortical cells [5]. However, to our knowledge, no direct evidence of the presence of adreno-

cortical progenitor cells in primary cultures of bovine adrenocortical cells has been

demonstrated.

Recently, the Sonic Hedgehog (Shh) signaling pathway was demonstrated to play an impor-

tant role in the development of the adrenal cortex and to represent a population of undifferen-

tiated cells [4, 7]. Shh-expressing cells are long-lived nonsteroidogenic progenitors of all

steroidogenic cell types [8]. Additionally, these cells display a relatively high level of prolifera-

tion [4] and could replace apoptotic mature steroidogenic cells, thereby increasing the func-

tional life span of the bioartificial adrenal cortex. Therefore, we investigated the expression of a

transcription factor induced by Hh signaling, GLI1 and its receptor Patched1 in our BAC

cultures.

DAX1 is critical for maintenance of adrenocortical progenitor cells, as previously reported

by other labs [9]. Therefore we employed DAX1 as another marker of adrenocortical

progenitors.

Nestin was originally identified as a marker of neural progenitor cells [10, 11]. However,

later it was also shown to identify stem/progenitor cells in various tissues, including muscle,

umbilical cord blood, testis, odontoblasts, hair follicle sheath, liver, and kidney [12]. Nestin-

positive cells are also present in the human and murine adrenal cortex [13–15]. We have previ-

ously shown that Nestin-positive progenitor cells reside in the murine adult adrenal medulla

and respond to stress by differentiation [16]. Another study revealed that Nestin-positive cells

isolated from pancreatic islets are multipotent andable to differentiate into endocrine, exocrine

and hepatic phenotypes [17]. In this research we reveal that Nestin-expressing cells originating
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from the adrenal cortex are sensitive to stimulation with ACTH. These observations suggest

Nestin as an alternative progenitor marker.

Our concept is to identify adrenocortical stem and progenitor cells in the BAC culture, to

determine the optimal time point for the onset of the 3D culture phase, when the cell culture

has the maximal amount of progenitors, and to balance the volume of progenitors with the

functionality of the bioartificial adrenal with the help of pharmacological agents. All these

measures were designed to improve the outcome of adrenal replacement by transplantation of

a bioartificial adrenal cortex.

Materials and methods

Cell preparation and culture

Adrenocortical cells were isolated from bovine adrenal glands shortly after slaughtering of 1–3

years old cattle as previously described [3]. Briefly, adrenal glands were transported to the labo-

ratory in ice-cold Euro Collins Solution supplemented with 1% (vol/vol) penicillin-streptomy-

cin solution (Thermo Fisher Scientific). The glands were then liberated from fat and connective

tissue and rinsed several times with PBS through the central vein to remove remaining blood.

Afterwards a longitudinal incision was made to cut the adrenals in halves, the medulla was

removed and the cortex was scraped off the capsule and cut in small pieces. Adrenal capsule

was discarded. Adrenal cortex was digested for 50 min in Dulbecco’s modified Eagle’s /Ham’s

F12 (DMEM/F12) medium (Thermo Fisher Scientific), containing 2 mg/ml collagenase and 0.1

mg/ml DNase (both from Sigma-Aldrich) at 37˚C while shaking. Obtained cells were washed

with cultivation medium, pelleted by centrifugation (8 min, 300 x g) and filtered through

100-μm cell strainers (Becton Dickinson). After that, primary adrenocortical cells were placed

in cell culture flasks (Thermo Fisher Scientific) and cultivated at 37˚C in a humidified atmo-

sphere (95% air, 5% CO2) in DMEM/F12 medium with 10% (vol/vol) FBS, 10% (vol/vol) horse

serum (both from Thermo Fisher Scientific), 0.1 ng/ml recombinant FGF-2 (PromoCell

GmbH) and 1% (vol/vol) penicillin-streptomycin solution. Medium change was performed

every 2–3 days. Those cells that were cultivated for 7 days were stimulated with 3 ng/ml

ACTH1-24 (Synacthen, Sigma-tau Arzneimittel GmbH) for 24 h on the 5-6th day of cultivation.

Cell encapsulation

Encapsulation of bovine adrenocortical cells in alginate was performed as previously described

[3]. Briefly, the cells were dissociated from the culture flasks by trypsinization (TripLE, Thermo

Fisher Scientific), pelleted by centrifugation and gently mixed with 3.5% (wt/vol) sterile alginate

(UP-MVG, Novamatrix) dissolved in Custodiol-HTK solution (H.S. Pharma). Then 30 μl of the

mixture of cells and alginate was placed on a glass plate and cross-linked with 70 mM strontium

chloride containing 20 mM Hepes. Each bioartificial adrenal cortex contained 2 x 105 cells. Dur-

ing the cultivation period, the bioartificial adrenal cortices were stimulated with 3 ng/ml ACTH

once a week for 24 h. Medium change was performed every 2–3 days.

Steroid release and measurement

To reveal how ACTH stimulation affects relative gene expressions, isolated BACs were seeded

in 6 well plates. For stimulation of cortisol production one half of the cells was incubated in

cultivation medium containing 3 ng/ml ACTH1-24 for 24 h on day 1, 7 and 10 following the

isolation procedure. The remaining cells were cultivated in standard cell culture medium.

RNA was collected from both groups of cells at the indicated time points, and the influence of
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ACTH stimulation on the expression of progenitor markers was measured on day 1, 7 and 10

after cell isolation.

Basal cortisol and aldosterone was measured in the supernatants of cell culture after 24 h of

cultivation. For stimulation of cortisol production the cells were incubated in cultivation

medium containing 3 ng/ml ACTH1-24 for 24 h. The concentration of cortisol or aldosterone

in cell culture supernatants was detected by cortisol ELISA (IBL). Stimulation index was calcu-

lated by division of ACTH stimulated cortisol by basal cortisol.

Reverse-transcription and real-time PCR

Total RNA from bovine adrenocortical cells was isolated using the RNeasy Mini or Micro kit

(Qiagen) where appropriate. DNA was eliminated using gDNA eliminator columns during

RNA preparation according to the manufacturer’s protocol. For reverse transcription, up to

1μg of total RNA was converted to first-strand cDNA using M-MLV reverse transcriptase,

reaction buffer, RNase inhibitor, dNTP mix and oligo(dT) 15/random hexamer primer

according to the manufacturer’s instructions (Promega). Primers were designed by Primer-

BLAST–NCBI software to span at least one intron to prevent nonspecific amplification of

DNA remnants.

Real-time PCR was performed using SYBR green (Qiagen) and a Roche Light Cycler 1.5

(Roche). To normalize data, the RPS9 gene was used as an internal control gene. Evaluation of

different housekeeping genes in our laboratory (GAPDH, β-actin, TBP) revealed that RPS9 is the

most stable gene in our system. Typical genes used as internal controls (GAPDH and β-actin)

increased their expression in cultured cells in response to traumatization compared to freshly

isolated cells. These data corresponds with previously published results [18].Primers used are

presented in Table 1.

Table 1. List of primers and amplification conditions for RT-PCR.

Gene Primer sequence Annealing temperature, ˚C Product size (base pairs)

RPS9 F: CGGAACAAACGTGAGGTCT 60–65 126

R: CGCAACAGGGCATTACCTTC

Patched1 F: GCTGCGAGCGAAGTTTCAAA 60 174

R: ACTCGTCCACCAACTTCCAC

GLI1 F: AGACTCCAGCTCTGGACCG 63 188

R: GACCTGGCAGTCCTTCTGTC

Nestin F: CCCTGGAGCAGGAGAAACAA 60 128

R: AGCCTCTAGGAGGGTCCTGT

IL1β F: CTGCAGCTGGAGGAAGTAGAC 65 277

R: GCCAGTCCTCGGGGTTATTC

IL6 F: ACGAAAGAGAGCTCCATCTGC 63 71

R: AATGGAGTGAAGGCGCTTGT

SF1 F: GCTACGCCGCTGGACTTC 60 388

R: CACGTGTTGCTGGAGGTTTG

CYP17A1 F: GGGGACATCTTCGGGGCTGG 60 497

R: CTCTGCAGCAGCCGGGACAT

DAX1 F: TACTCTTCAACCCGGACCTGC 60 190

R: AACAGTTCAGCCAGGGTGTT

F: forward, R: reverse

https://doi.org/10.1371/journal.pone.0194643.t001
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Immunofluorescence staining and microscopy

FDA/PI staining. Dual fluorescein diacetate and propidium iodide (FDA/PI) staining

was applied to define the viability of the BACs. Stained cells were examined under the micro-

scope (Axioplan, Carl Zeiss). Analysis was performed using Axiovision Software (Carl Zeiss).

Viability was defined by the quantification of live (green) and dead (red) cells on microphoto-

graphs. To quantify cell number in bioartificial adrenals, the cells from six micrographs for

each condition were counted using ImageJ 1.44 software. All images have been treated equally.

CYP11B1 staining. BACs were washed with PBS and fixed in 4% PFA in PBS for 30 min.

After additional washing with PBS the cells were incubated in blocking solution (3% BSA,

0.1% Triton X-100 in PBS for 30 min at room temperature). Then the cells were washed with

PBS and incubated with the primary antibody (CYP11B1, Santa Cruz Biotechnology Inc) over-

night at 4˚C, washed with PBS and incubated for 1 h in secondary antibody (donkey anti-goat

IgG-FITC, Santa Cruz Biotechnology Inc) (both antibodies were diluted 1:100).

Experiments with triptorelin, bombesin and retinoic acid

The luteinizing hormone-releasing hormone (LHRH) agonist triptorelin (decapeptyl, [3]

LHRH) was provided by one of us (AVS). Triptorelin was dissolved in DMSO and then diluted

in culture medium to a concentration of 10μM. Cell culture medium, containing DMSO in a

concentration 0.1% (vol/vol) was used as a control. Synthetic bombesin (Bachem) was dis-

solved in 0.9% NaCl and then diluted in culture medium to a concentration 0.5 μg/ml. Reti-

noic acid (Sigma-Aldrich) was dissolved in absolute ethanol (VWR International S.A.S) and

then diluted in culture medium to a final concentration of 5 μM. Cell culture medium contain-

ing 5x10-4% (vol/vol) ethanol was used as a control.

Bioartificial adrenal cortices were cultivated with triptorelin, bombesin, retinoic acid and

their respective controls for 6 days starting the day after cell encapsulation in alginate. During

this period bioartificial adrenal cortices received freshly prepared compound-containing

medium every day. After withdrawal of the compounds the bioartificial adrenal cortices were

cultivated in standard medium for three months.

Statistical analyses

Quantitative data is represented as mean ± SEM. Statistical significance was determined by a

two-tailed Student’s t-test or one- or two-way Analysis of Variance (ANOVA) with the post

hoc Bonferroni’s multiple comparison test where appropriate by using GraphPad Prism 5 soft-

ware. A value of p�0.05 was considered as significant in all tests.

Results

Characterization of BAC growth during the monolayer expansion phase

Adrenocortical stem/progenitor cells are present in the primary culture of BACs. To

demonstrate the presence of adrenocortical progenitor cell markers and the Shh pathway

components GLI1 and Patched1 we used established PCR and Real Time (RT)-PCR meth-

ods. Additionally, we also detected the expression of DAX1 as well as expression of the neu-

ral and adrenomedullary progenitor marker nestin (S1 Fig) in the monolayer cell culture of

BACs. Western blot confirmed the protein expression of the markers in BAC cell cultures

(S2 Fig).

We performed time-course experiments to select the time point with maximal gene expres-

sion of these markers. The results showed a progressive upregulation of gene expression for

Patched1 (2.3 fold, p = 0.06), GLI1 (90.2 fold, p<0.05) and nestin (3 fold, p<0.01) from day 1
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to 7 after cell isolation. Gene expression was downregulated from day 7 to 10 (Fig 1). DAX1 fol-

lowed a different course showing maximal expression at day 1.

Stimulation with ACTH increases gene expression of steroid hydroxylases and pro-

motes differentiation of progenitor cells. Having established cultures with a relatively high

level of progenitor biomarker expression, we next used pharmacological treatments to fine-

tune the balance between progenitor markers and activity of mature BACs.

ACTH helps to maintain the function of mature BACs. Specifically, ACTH stimulates the

expression of cytochrome P450 (CYP) genes [19, 20], opposing the progressive reduction and

eventual loss of steroid hydroxylases in BACs [21]. Therefore, we stimulated the BAC cultures

with ACTH for 24 h. ACTH increased the expression of SF1 (a proliferation marker of both

progenitors and mature cells) and CYP17A1 (a marker of mature cells) (Figs 2A and 2B). Spe-

cifically, the expression of SF1 increased 4.8 fold for day 1 and 1.9 fold for day 7, and the

expression of CYP17A1 increased 10.5 fold for day 1 and 90.5 fold for day 7 compared to unsti-

mulated cells. The influence of ACTH stimulation and cultivation length were analyzed by

two-way ANOVA, and a significant effect of ACTH stimulation on both gene expressions was

found (F = 6.86, p = 0.0124 for SF1 and F = 15.77, p = 0.0003 for CYP17A1). The effect of culti-

vation length was also significant in both groups (F = 6.54, p = 0.001 for SF1 and F = 7.3,

p = 0.0005 for CYP17A1 respectively). The stimulation has the same effect at all time points of

cultivation for CYP17A1 (F = 8.32, p = 0.0002). For SF1 this effect was not significant (F = 0.83,

p = 0.486).

ACTH treatment reduced the expression of the progenitor markers Patched1 and nestin. A

similar trend was observed with GLI1 and DAX1 but those data were not significant (Fig 2C).

ACTH affects differentiation and steroidogenesis partly through SF1-induced transcription of

transcription of steroidogenic enzymes [22], but DAX1, on the opposite, represses SF1-me-

diated transcription [23].

Fig 1. Dynamics of the relative gene expression of progenitor markers in primary cultures of bovine

adrenocortical cells. RT-PCR analysis of the expression of Patched1 (A), GLI1 (B), nestin (C) and DAX1 (D) in in BAC

cultures for a period of 10 days after cell isolation. All data presented as mean ± SEM, n�3 for each sample. Reference

gene RPS9.

https://doi.org/10.1371/journal.pone.0194643.g001
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The dynamics of pro-inflammatory cytokines in BAC cultures. A bioartificial adrenal

cortex should optimally not produce pro-inflammatory cytokines. We therefore investigated

the expression of such cytokines in our BAC cultures. ELISA analysis of the supernatant did

not detect the presence of IL-1β and TNFα (S1 Methods). RT-PCR analysis revealed that 24 h

after cell isolation the expression of IL-1β was upregulated 12.9 fold and IL-6 in 44.3 fold com-

pared to freshly isolated cells. After 7 days in culture, the expression of these cytokines was

reduced. The relative expression of IL-1β was 0.014 (p<0.01) and IL-6 0.78 (p>0.05 –not sig-

nificant) on day 7 compared to day 1 after cell isolation (Fig 2D).

Optimal time point for the onset of the 3D bioartificial adrenal culture. Given the dif-

ferences in the BAC cultures between day 1 and 7 after cell isolation, we compared bioartificial

adrenal cortices created at these two time points. Within the first two weeks after alginate encap-

sulation the average cortisol level was 103 ± 8 ng/ml for basal and 217±22 ng/ml for ACTH-

stimulated day 1 bioartificial organs and 105±4 ng/ml and 258±10 ng/ml for day 7 bioartificial

adrenal cortices, respectively. After 1–2 months of cultivation, both groups of bioartificial adre-

nal cortices produced similar amounts of cortisol (20.4±1.5 ng/ml for basal and 87.3±7.8 ng/ml

for ACTH-stimulated day 1 and 18.7±2.4 ng/ml for basal and 89±7.7 ng/ml for ACTH-stimu-

lated day 7 bioartificial adrenal cortices). After three months of cultivation, we detected a signifi-

cantly higher ACTH-stimulated cortisol level in day 7 bioartificial adrenal cortices compared to

day 1 (34.7±5.7 ng/ml vs. 8.1±0.4 ng/ml, respectively) (Fig 3A). Interestingly, we found no dif-

ference between basal cortisol productions in the two groups (Fig 3B). The stimulation index

for day 7 bioartificial adrenal cortices was 5.9 and for day 1 it was 1.7. Basal aldosterone release

of bioartificial adrenal cortices was determined two weeks after BAC encapsulation. Here, we

found no difference in aldosterone production between the two groups (416±40 pg/ml for day 1

cortices and 391±37 pg/ml for day 7 cortices (p>0.1), respectively). The dynamics of aldoste-

rone production was not evaluated. Moreover, microscopy of the bioartificial adrenal cortices

revealed an increased cell cluster formation in day 7 bioartificial organs (Fig 3C and S4 Fig).

The cell yield was assessed by the amount of cells. Cell counting at the end point of the experi-

ment showed 3 times higher amount of cells (299±17.2% of day 1 bioartificial adrenal cortex,

Fig 2. Dynamics of the relative mRNA gene expression of SF1, CYP17A1 and interleukins 6 and 1β during

cultivation of BAC. A+B–Dynamics of SF1 (A) and CYP17A1 (B) expression with and without ACTH-stimulation for

a period of 10 days after cell isolation. C–Downregulation of progenitor markers after ACTH-stimulation on day 7

after cell isolation. D–Dynamics of the gene expression of IL-6 and IL-1β 10 days after cell isolation. All data presented

as mean ± SEM, n�6 for each sample, �p�0.05, ���p�0.001. Reference gene RPS9.

https://doi.org/10.1371/journal.pone.0194643.g002
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p<0.001) in bioartificial adrenal cortices that were created from 7 days old cell culture.

CYP11B1 staining showed that cell clusters were formed from steroid producing cells (Fig 3D

and S4 Fig), suggesting that the source for these cell clusters might be adrenocortical progenitor

cells as well as transiently expressing cells.

Interestingly, we found that adrenocortical progenitor cells maintained their presence in

alginate matrix. Seven day cell cultures expressed GLI1 and bioartificial adrenals created from

those cells also expressed GLI1 at the end point of the experiment. On the contrary, 1 day old

cell cultures (which did not express GLI1 before encapsulation in alginate) failed to show GLI1
at the end of the experiment (114 days in alginate). The viability of encapsulated cells in bioar-

tificial adrenal cortices was 77±3% for day 1 and 87±1.3% for day 7, respectively (p<0.01).

Altering the properties of the bioartificial adrenal cortex

We tested a range of pharmacological agents for their ability to influence the properties of the

bioartificial adrenal cortex (S3 Fig). Many of these, including agonists of growth-hormone-

releasing hormone (GHRH) (MR409, MR403, JI36 etc.) had no effect (S3 Fig). However, two

compounds, triptorelin (LHRH agonist that in addition to stimulation of the secretion of

luteinizing hormone and follicle-stimulating hormone, regulates the release of cortisol from

adrenocortical cells [3, 24]), and bombesin (neuropeptide and growth factor that activates

GLI1 and regulates proliferation in many progenitor cell types [25]) were shown to increase

cell functionality and proliferative potential when applied on BACs encapsulated in alginate.

Retinoic acid (metabolite of vitamin A that decreases basal cortisol in BACs [3] and promotes

differentiation of progenitor cells [26]) in this improved bioartificial system also reduced the

basal level of cortisol.

More specifically, during the first two weeks of treatment with triptorelin, a significant

increase in basal and ACTH-stimulated cortisol production was observed. In the triptorelin-

Fig 3. Comparative analysis of bioartificial adrenal cortices, created from BAC cultures, cultivated for 1 or 7 days

after isolation before encapsulation in alginate. A–Dynamics of ACTH-stimulated cortisol production of bioartificial

adrenal cortices during a cultivation period of 114 days (All data presented as mean ± SEM; n�5 for each time point;
���p�0.001). B—Dynamics of the basal cortisol release of bioartificial adrenal cortices during a cultivation period of

114 days (n�5 for each time point). C–Cell cluster formation in bioartificial adrenal cortices formed from BACs 1 or 7

days after cell isolation (FDA/PI staining plus light microscopy). Scale bars = 100 μm. Uncropped images are seen in S4

Fig. D–Positive CYP11B1 staining (green) of cell clusters (Immunofluorescence plus light microscopy). Scale

bar = 20 μm.

https://doi.org/10.1371/journal.pone.0194643.g003
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treated group the basal cortisol reached 136.7±8.1% compared to control, and for ACTH-stim-

ulated BACs it was 134.5±9.2%. Treatment with bombesin showed a tendency towards cortisol

increase, which, however, did not reach significance. Retinoic acid reduced cortisol production

(58.2±12.1% for basal, p<0.05, and 72.2±12.9% p>0.1 for ACTH-stimulated BACs) (Fig 4A).

We also tested for long-term effects in an experimental paradigm where the bioartificial

adrenal cortices were treated for 6 days and then maintained untreated for more than three

months. In this system the most pronounced effects were induced by bombesin. Here, bombe-

sin increased basal (127.2±6.3% of control) and ACTH-stimulated (138.7±9% of control) corti-

sol levels. In contrast, retinoic acid showed a reduction of both basal and ACTH-stimulated

cortisol to 79.4±18.4% of control, (p�0.05) and to 71.2±11.3% of control, (p�0.05), respec-

tively). Cortisol production in the triptorelin-treated group showed a tendency to increase, but

did not reach significance (Fig 4B). Moreover, bioartificial adrenal cortices treated with this

compound, showed a different morphology of cell cluster formation (Fig 4C and S4 Fig).

The amount of cells was 113±22% of control (p>0.1) for the triptorelin-treated group, 162

±36% (p<0.05) of control for bombesin and 64±16% (p<0.01) of control for bioartificial adre-

nal cortices treated with retinoic acid (Fig 4D). RT-PCR performed at the end point of the

experiment showed no effects of the compounds on the expression of SF1,CYP17A1 and the

progenitor markers Patched1, GLI1, DAX1 and nestin compared to their controls.

Discussion

Here, we present an improved in vitro system that acts as a bioartificial adrenal cortex, based

on cultures of BACs in an alginate matrix. Previously, we have shown that the application of

alginate extracellular matrix on primary BAC cultures mimics several properties of the adrenal

Fig 4. Short- and long-term effects of triptorelin, bombesin and retinoic acid on bioartificial adrenal cortices. A–

Short-term effect of the compounds on both basal and ACTH-stimulated cortisol release within the first two weeks of

treatment (all data presented as mean ± SEM, n�18 for each group, �p�0.05, ��p�0.01). B–Long-term effect of the

compounds on basal and ACTH-stimulated cortisol levels at the end point of the experiment (112–114 days of

cultivation). All data presented as mean ± SEM, n = 5 for each group, �p�0.05. C–Cell cluster formation in different

groups of bioartificial adrenal cortices after cultivation for three months (FDA/PI staining). Scale bars = 100 μm.

Uncropped images are seen in S4 Fig. D—Amount of cells, counted in bioartificial adrenal cortices after cultivation for

114 days (n = 6 for each group).

https://doi.org/10.1371/journal.pone.0194643.g004
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cortex [3]. Here, to generate an improved model, we optimized the conditions to maintain a

progenitor cell population in the bioartificial adrenal cortex. This may lead to eventual applica-

tion of this model in xenogeneic transplantation for the restoration of adrenal function in

patients suffering from adrenal insufficiency or adrenal hyperplasia due to 21-hydroxylase

deficiency and Addison’s disease.

Adrenocortical progenitor cells in cell culture might derive from the subcapsular region

[27] during cell isolation. Our approach in modeling the composition of the adrenal cortex

that contains both mature and progenitor cells was to isolate BACs, expand them in culture

until the point (7 days), where the cultures contain the highest levels of progenitor markers,

and then to use pharmacological treatments during the alginate culture phase to balance the

content of progenitor biomarkers with the function of mature cells.

While working with primary cultures of adrenocortical cells, we have to take into consider-

ation a progressive loss of steroid hydroxylases [21]. Stimulation with ACTH can significantly

postpone this process [19, 20]. However, ACTH stimulation seems to downregulate the

expression of adrenocortical progenitor markers, promoting differentiation of progenitor cells

[28], which our data corroborate. Therefore, on one hand to prevent the loss of steroidogenic

enzymes, adrenocortical cells need to be stimulated with ACTH. However, on the other hand,

ACTH stimulation reduces the expression of adrenocortical stem/progenitor biomarkers in

the culture, which in the long run might shorten the functional life-span of the created bioarti-

ficial organ. Precise refinements of this balance using pharmacological treatments may further

improve this aspect of the method.

Production of pro-inflammatory cytokines by the graft is a limiting factor in transplanta-

tion approaches. Activation of cytokine signaling networks with a high production of proin-

flammatory interleukins is a universal response to any tissue damage occurring during

primary cell isolation. Transplanted organs releasing cytokines would definitely cause a local

host immune response. Cytokines could be produced not only by fibroblastic and macrophage

elements, but also by the BACs themselves [29, 30]. However, as it has been already shown,

proliferation and steroidogenesis of adrenocortical cells were closely linked to the level of IL-

1β in BAC culture. Blocking the production of IL-1β significantly reduced or even abolished

the elevation of proliferative activity and cortisol production by adrenocortical cells [31]. Simi-

lar effects were obtained in other studies. [32]. IL-6 also has a pronounced ability to stimulate

proliferation and steroidogenesis [32–34]. Previous studies have demonstrated that inflamma-

tory cytokines promote retrodifferentiation of mature cells to progenitor cells [35]. Overall,

cytokines do not only play a pathogenic role, but also have an important physiological function

in the activation of proliferative processes and steroidogenesis in adrenocortical cell cultures.

In this study we show that, especially when cells that have been cultured for 7 days are selected

to establish the bioartificial adrenal cortex, the levels of inflammatory cytokines are low.

Beyond differences in inflammatory cytokine production, the present study shows that

BACs on day 1 and day 7 exhibit different biomarker expression profiles. The expression of

CYP17A1 and DAX1 was highest on day 1 after cell isolation, whereas the expression of GLI1,

Patched1, nestin and SF1 reached their maximum on day 7. The next step was to compare

bioartificial adrenal cortices generated from BACs on day 1 and 7 after the isolation procedure.

During the cultivation period we did not find any significant difference in cortisol production

between the two groups of bioartificial organs, but at later time points, we noticed the forma-

tion of cell clusters in the bioartificial adrenal cortices created from 7 days old cell cultures but

considerably less from the 1 day old cell cultures. By this time we detected significantly higher

ACTH-stimulated cortisol release in this group. The productivity of bioartificial adrenal corti-

ces correlated with the amount of newly formed cell clusters. Cell count at the end point of the

experiment confirmed an increased cell yield in the day 7 bioartificial adrenal cortices.
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Moreover, 7 days bioartificial adrenal cortices showed significantly higher viability at the end

point of the experiment. The elevated amount of viable cells might be responsible for the

higher ACTH stimulated cortisol production in this group, compared to 1 day bioartificial

adrenal cortices.

Another gene that was highly expressed in 7 days old cell culture was SF1. The role of SF1

in the homeostatic proliferation of the adult gland has already been demonstrated [9]. Addi-

tionally, SF1 acts as the obligate activator of most steroidogenic enzymes in the adrenal cortex

and plays an essential part in both proliferation and differentiation (steroidogenesis) of the

adult gland [9]. It is important to note that BACs, cultivated for 7 days before encapsulation in

alginate and showing maximal gene expression of Patched1, GLI1 and nestin, exhibited a better

outcome in ACTH stimulated cortisol production when cultured for more than 90 days.

Even though encapsulation of 7 days old cell cultures in the long run significantly improved

the functionality of bioartifical adrenal cortices, still long-term cultivation unfortunately led to

a major decrease in cortisol levels. One of the reasons for this loss could be that bioartifical

adrenal cortices were mostly generated from mature adrenocortical cells with limited life span.

Finding a way to additionally enrich the source cell culture with adrenocortical stem and pro-

genitor cells could solve this problem.

The bioartificial adrenal cortices are amenable to pharmacological manipulation. Therefore,

we tested a range of pharmacological agents for their ability to influence the properties of the

bioartificial adrenal cortex. These agents were relevant for adrenal function [24, 36–38], and

furthermore, they were known to have the ability to stimulate self-renewal and promote sur-

vival of for example cardiac stem cells [39]. In addition, we have previously shown that some

of the GHRH agonists can stimulate growth, function, and engraftment of pancreatic islets

after transplantation [40, 41]. During the cultivation of bioartificial adrenal cortices in triptore-

lin-containing medium and 8 days after withdrawal of triptorelin, the LHRH agonist treated

group showed an increased basal and ACTH-stimulated cortisol production. These data cor-

roborate previously published results, showing a surge of steroid hormone release after admin-

istration of triptorelin [42]. Other studies demonstrated an effect of bombesin on steroid

production [43], which we were not able to confirm. On the other hand, the bombesin results

support its proliferative potential [25] as assessed by the amount of cells at the end point of the

experiment. Retinoic acid produced both short-term (2 weeks) and long-term (~3–4 months)

effects. Short-term effects were manifested as a significant reduction of cortisol production.

Long-term effects were assessed at the later stages of the experiment, where we detected a

reduced cell yield and ACTH-stimulated cortisol release.

Our work extends our studies and improves our previous efforts to develop bioartificial

adrenal cortices with long-term survival capacity providing the ability to respond to pharma-

cological treatments. Such efforts may form the basis for eventual transplantation strategies for

patients with severe adrenal disorders.

Supporting information

S1 Methods. Supplementary methods for S1–S4 Figs.

(DOCX)

S1 Fig. Reverse transcription PCR analysis of the expression of bovine GLI1, RPS9, DAX1,

nestin and Patched1 in isolated BACs.

(TIF)

S2 Fig. The protein expression profile in cells isolated from 4 different bovine glands cul-

tured for 1, 4 and 7 days was examined by immunoblotting. Glyceraldehyde 3-phosphate
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dehydrogenase (GAPDH) was used as loading control. The samples were loaded from the

left to the right as following: adrenocortical cells from adrenals 1, 2, 3 and 4 cultivated for 1

day after cell isolation, for 4 days and then for 7 days.

(TIF)

S3 Fig. Effect of pharmacological agents on BACs during the monolayer expansion phase.

All data presented as mean ± SEM, n�3 for each sample, �p�0.05, ��p�0.01.

(TIF)

S4 Fig. Uncropped images from Figs 3C, 3D and 4C.

(TIF)
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