1	Supporting information of
2	Volatile organic compounds from logwood combustion: Emissions and
3	transformation under dark and photochemical aging conditions in a smog
4	chamber
5	Anni Hartikainen*, Pasi Yli-Pirilä, Petri Tiitta, Ari Leskinen, Miika Kortelainen, Jürgen Orasche,
6	Jürgen Schnelle-Kreis, Kari E. J. Lehtinen, Ralf Zimmermann, Jorma Jokiniemi, and Olli Sippula
7	* Corresponding author: <u>anni.hartikainen@uef.fi</u>
8	
9	Supporting information contains:
10	Number of pages: 22
11	Number of tables: 8

12 Number of figures: 10

Table of contents

Section S1. Experimental setup	3
Section S2. PTR-MS measurements	5
Section S3. Estimating SOA yields	7
Section S4. FTIR measurements	9
Section S5. Conditions in the chamber during experiments	11
Section S6. Calculating the emission factors	13
Section S7. Compound identification and changes during experiments	14
References	21

13 Section S1. Experimental setup

14

22

23

24

15 **Figure S1.** Experimental setup, with instruments measuring VOCs highlighted and the dilution

16 ratio (DR) in the sampling line and chamber shown. The modern masonry heater is portrayed from

both front and above: 1) door, 2) double glazed window; 3) air intakes; 4) adjusting of air; 5)

18 firebox, primary air from the bottom (rift grate); 6) secondary air panels (ceramic elements); 7) flue

19 gas ducts; 8) exhaust gas out; 9) insulated space.

20 The combustion cycle was divided into three parts based on the concentrations of O_2 , and CO_2

21 (Figure S2), which were measured with FTIR from the raw exhaust in the stack.

- 1) ignition; from firing until the amount of oxygen is at its lower limit
 - 2) 'stable' phase; From end of ignition until $CO_2 < 4\%$
 - 3) burnout; from the end of stable phase to the end of combustion (35 min).

Figure S2. Progression of the combustion cycle and levels of oxygen and carbon dioxide, measured with FTIR from the flue gas in the stack. Burnout phase starts when CO₂ is below the 4% level.

Figure S3. Modified combustion efficiency (MCE, CO₂ / (CO₂+CO), measured from the flue gas
with FTIR) during combustion cycle.

31 Section S2. PTR-MS measurements

32 S2.1. Calibration

33 Transmission calibration of the PTR-MS was done using a mixture of eight VOCs (benzene,

34 toluene, styrene, o-xylene, chlorobenzene, 1,3,5-trimethyl benzene, p-dichlorobenzene, 1,2,4-

35 trichlorobenzene). The variety of the VOCs measured from combustion prevents calibration

36 towards all of the measured VOCs, but the transmission curve enabled precise definition of the

37 relative transmission efficiencies of H_3O^+ and MH^+ -ions through the drift tube and the mass

38 spectrometer.

- 39 The measurement error was examined based on the transmission gas and the benzene, toluene,
- 40 styrene and xylenes in the exhaust: the transmission calibration provided ratios for the normalized
- 41 counts per second (ncps) per ppb. Comparison to the transmission calibrated ncps ppb⁻¹ values

42 revealed a 20-40% uncertainty in the measured concentrations. Reaction rates of compounds with

43 H_3O^+ were based on the rates by Cappellin et al.¹ at E/N 120, while in our experiment the E/N was

44 slightly higher (132 Td). The reaction rates may be slightly lower at higher E/N, which may

45 correspondingly have led to underestimation of concentrations in our experiments.

- 46 Mass calibration was done using H_3O^+ (m/z 21.0226) and NO⁺ (m/z 29.998). We compared the
- 47 measured m/z to the calculated m/z of monoterpenes (m/z 137.129 to m/z 137.133) and nitrophenols
- 48 (m/z 149.031 to m/z 140.035). The shift in m/z (\sim 0.004) is minor, which ensures that the mass
- 49 calibration was sufficient also for larger compounds.

50 S2.2. Fragmentation

51 PTR is a soft ionization technique, and for most compounds (M) the protonation forms MH⁺ ions. 52 However, for some compounds fragmentation remains a possibility. H₂O-scission, i.e., dehydration, 53 and dissociation during proton transfer reactions are sensitive to the E/N ratio, which in our 54 experiments was high enough (132 Td) to enhance fragmentation. However, sufficiently high E/N 55 was needed to prevent formation of water clusters in the PTR-MS drift tube, as the amount of water 56 vapor was also high.¹

57 Fragmentation complicates assessment of e.g. alkene concentrations, as many common fragment ions 58 for long chain alkanes as well as dehydration products of alcohols and aldehydes are at m/z 41 ($C_3H_5^+$, 59 otherwise allocated to propadiene), m/z 43 ($C_3H_7^+$, propene), and m/z 57 ($C_4H_{11}^+$, butane).^{2, 3} 60 Moreover, concentrations of benzene and toluene may be overestimated due to dissociative 61 fragmentation of alkylbenzenes and monoaromatics: Jobson et al.⁴ estimate that benzene may be overestimated by 16%, mainly due to ethylbenzene fragmentation. This overestimation would,
 correspondingly, underestimate the total concentration of aromatic compounds.

Assessing fragmentation in the highly complicated mixture from combustion is problematic, especially as fragmentation patterns depend on instrument conditions. However, the effect of fragmentation is estimated to be minor, and accounting for unknown fragmentation patterns of the numerous ions is not within the scope of this work. Thus, corrections were applied only to monoterpenes, which fragment notably in a terpene-dependent pattern, primarily into m/z 81.⁵ For this study, we used a correction factor of 2.1 for the monoterpene parent ion, m/z 137.12, based on previously assessed fragmentation of α -pinene in the instrument in use.

71 S2.3. PTR-MS spectra

The PTR-MS measured the concentrations in the chamber throughout the experiments. To account for the background levels in the chamber, the PTR measurement was initiated before input of any exhaust or additional gases. Spectra (Fig. S3) and the presented emission factors and concentrations are background corrected, and the full list of observed ions is available in Table S4.

Figure S4. Background-corrected PTR-MS spectra from SI-D-PcA a) for fresh emission after
 stabilization, b) during 4th hour of dark aging, and c) during 3rd hour of photochemical aging.

79 Section S3. Estimating SOA yields

80 The two-product model, presented by Odum et al.⁶, estimates the formation of SOA based on the

81 initial concentration of seed particles (M_0) and partitioning of the products (produced in portions α_1

82 and α_2) between gaseous and particulate phases (eq. S1).

83
$$Y = \frac{\Delta M_0}{\Delta VOCs} = M_0 * \left(\frac{\alpha_1 K_1}{1 + K_1 M_0} + \frac{\alpha_2 K_2}{1 + K_2 M_0}\right)$$
(S1)

84 The two-product parameters used for achieving SOA yields in the experimental conditions in the

- 85 chamber are presented in Table S1. The yield estimate for monoterpenes is based on the distribution
- 86 of isotopes in spruce combustion.⁷ The yields in Table S2 were utilized for seven isotopes; for the

87 remaining ~26% of monoterpenes a yield of 20% was used in dark conditions, based on the lower

- 88 limit by Ng et al.⁸ In photochemical aging conditions the yield used for other monoterpenes was
- 37%, the average of the yields in Lee et al.⁹

90 **Table S1.** Two-product parameters used for SOA yield estimations.

Precursor	α_1	\mathbf{K}_1	α_2	\mathbf{K}_2	Reference
Benzene	0.072	3.315	0.888	0.009	Ng et al. ¹⁰
Naphthalene	0.144	2.9	30	0.226	Barsanti et al.11
Biomass POA	0.228	1.6	69	0.473	Barsanti et al.11

91 **Table S2.** The SOA yields applied for monoterpenes under dark conditions (NO₃ yield) and

92 photochemical conditions (OH yield).

		NO ₃ yield		Ref.	OH yield ⁹
Compound	Portion [*]	FI-D-HONO	SI-D-PcA		
α-Pinene	10%	7%	7%	Hallquist et al. ¹²	32%
Camphene	27%	20%	20%	Ng et al. ⁸	37%
Sabinene	1%	35%	35%	Fry et al.13	37%
β-Pinene	5%	53%	53%	Nah et al. ¹⁴	37%
β-Myrcene	8%	20%	20%	Ng et al. ⁸	43%
3-Carene	8%	63%	63%	Fry et al. ¹³	38%
Limonene	14%	51%	51%	Hallquist et al. ¹²	58%

93

*Isotopes portion of the monoterpenes emitted from spruce combustion.⁷

94 Section S4. FTIR measurements

- 95
- 96 The Fourier Transform Infrared Spectrometer (FTIR, Gasmet Technologies Inc.) measured the
- 97 compounds specified in Table S3 directly from the fresh exhaust gas. The time series of the
- 98 emission of non-methane organic gases, i.e., compounds 14-40 of Table S3, are shown in Figure S5
- 99 and their emission factors in Figure S6.
- 100

101 **Table S3.** Gaseous compounds measured with FTIR.

	APP-153 Calibrations	1/1/200	5				
	Gas	Formula	CAS	Range 1	Unit	Range 2	Unit
1	Water vapour	H2O	7732-18-5	30	%	-	
2	Carbon dioxide	CO2	124-38-9	25	%		
3	Carbon monoxide	CO	630-08-0	5000	ppm	2	2 %
4	Nitrous oxide	N20	10024-97-2	200	ppm		
5	Nitrogen monoxide	NO	10102-43-9	1000	ppm		
6	Nitrogen dioxide	NO2	10102-44-0	200	ppm		
7	Sulphur dioxide	SO2	7446-09-5	1000	ppm		
8	Carbonyl sulfide	COS	463-58-1	100	ppm		
9	Ammonia	NH3	7664-41-7	500	ppm		
10	Hydrogen chloride	HCI	7647-01-0	200	ppm		
11	Hydrogen cyanide	HCN	74-90-8	100	ppm		
12	Hydrogen fluoride	HF	7664-39-3	100	ppm		
13	Methane	CH4	74-82-8	1000	ppm		
14	Ethane	C2H6	74-84-0	200	ppm		
15	Propane	C3H8	74-98-6	200	ppm		
16	Butane	C4H10	106-97-8	200	ppm		
17	Pentane	C5H12	109-66-0	200	ppm		
18	Hexane	C6H14	110-54-3	200	ppm		
19	Heptane	C7H16	142-82-5	200	ppm		
20	Octane	C8H18	111-65-9	200	ppm		
21	Acetylene	C2H2	74-86-2	200	ppm		
22	Ethylene	C2H4	74-85-1	200	ppm		
23	Propene	C3H6	115-07-1	200	ppm		
24	1,3-Butadiene	C4H6	106-99-0	200	ppm		
25	Benzene	C6H6	71-43-2	200	ppm		
26	Toluene	C7H8	108-88-3	200	ppm		
27	m-Xylene	C8H10	108-38-3	200	ppm		
28	o-Xylene	C8H10	95-47-6	200	ppm		
29	p-Xylene	C8H10	106-42-3	200	ppm		
30	1,2,3-Trimethylbenzene	C9H12	526-73-8	200	ppm		
31	1,2,4-Trimethylbenzene	C9H12	95-63-6	200	ppm		
32	1,3,5-Trimethylbenzene (Mesitylene)	C9H12	108-67-8	200	ppm		
33	Formic acid	CH2O	64-18-6	200	ppm		
34	Acetic acid	C2H4O2	64-19-7	200	ppm		
35	Formaldehyde	CH2O	50-00-0	200	ppm		
36	Acetaldehyde	C2H4O	75-07-0	200	ppm		
37	Methanol	CH3OH	67-56-1	500	ppm		
38	Ethanol	C2H5OH	64-17-5	500	ppm		
39	Propanol	C3H7OH	71-23-8	500	ppm		
40	Methyl tertiary butyl ether (MTBE,tert-Butyl methyl ether)	C5H12O	1634-04-4	200	ppm		

Figure S5. Emissions of volatile organic compounds measured with FTIR from the stack during
 combustion of a spruce batch, from cold start to burnout. Slow ignition experiments are marked with
 continuous lines, fast ignition experiments with dotted lines.

107 **Figure S6.** Average non-methane VOC emission factors of a full batch, as measured with FTIR

108 from the stack during the 35-minute combustion period.

Figure S7. Levels of NO_x and O₃ in the chamber during experiments.

Figure S8. Condensation sink in the chamber during experiments.

115 Figure S9. Concentrations of POA and SOA formed during dark (D) and photochemical (PcA)

aging in the chamber (based on average concentrations of the last hour of exposure), and the
oxidation states (OS) of OA at the end of each aging period. The results are based on AMS data,
which have been previously published and discussed in depth by Tiitta et al.¹⁵

120 **Figure S10.** Correlation between the decaying concentrations of A) phenolic and B) furanoic

121 compounds and the SOA assessed to be formed via NO₃ radical driven reactions during dark aging
 122 by Tiitta et al.¹⁵

123

Section S6. Calculating the emission factors

The emission factors, i.e., the amount of emissions produced by a kilogram of fuel, were calculated 124 by the procedure fully explained in e.g. Reda et al.¹⁶ In short, the emission factors depend on 125 126 127 the concentration of species in the flue gases (c_n) • the air-to-fuel ratio (λ , eq. (S2)) during the combustion process 128 $\lambda = \frac{20.9}{20.9 - \Omega_2}$ 129 (S2) 130 the fuel moisture factor (k), attained by eq. (S3), where the net heating value of dry fuel (H_u; 18.64 MJ kg⁻¹ for the dry spruce logs in use) is compared to the amount of energy consumed 131 in evaporation of moisture of the fuel (H_w). 132 $k = \frac{H_u}{H_u - H_w}$ (S3) 133 H_w depends on the mass ratio of water and dry matter in the fuel (w_w) and the evaporation 134 135 heat of water ($l_w = 2.50 \text{ MJ kg}^{-1}$). 136 $H_w = w_w * l_w$ (S4)

• the dry volume of the flue gas produced in combustion of dry fuel (Q_s). For solid fuels, $Q_s = 0.25 \text{ m}^3 \text{MJ}^{-1}$

139 The total emission conversion factor used in converting the emissions from $\mu g m^{-3}$ to mg kg⁻¹ is

140
$$ECF = \lambda * k * Q_s(\frac{m^3}{MJ}) * H_u(\frac{MJ}{kg})$$
(S5)

141 The emission factors are achieved with equation (S6).

142
$$EF(kg \, dry \, fuel^{-1}) = c_n(m^{-3}) * ECF(m^3 \, kg^{-1})$$
 (S6)

143

145 Section S7. Compound identification and changes during experiments

146 **Table S4.** Emission factors of the VOCs observed with PTR-MS during experiments, and the

147 reaction rate (k-rate, in 10⁻⁹ cm s⁻¹) applied for each ion. Emission factors (mg kg⁻¹, see Section S6

- 148 for calculation procedure) are based on the background corrected initial concentrations measured
- 149 from the chamber.

				Emission factors [mg kg ⁻¹]				
1	T C 1			FI-D-		SI-D-		
m/z	Ion formula	Compound	k-rate	HONO	FI-PcA	PcA	SI-PcA	
Aromati	c hydrocarboi	ns						
79.05	C6H6-H+	Benzene	1.93	14.3	10.5	22.3	14.6	
93.07	C7H8-H+	Toluene	2.00	2.7	2.0	5.0	3.5	
105.07	C8H8-H+	Styrene	2.27	0.9	0.7	1.7	1.3	
107.08	C8H10-H+	Xylene or ethylbenzene	2.26	0.6	0.5	1.3	1.0	
129.07	C10H8-H+	Naphthalene	2.45	3.2	2.4	5.5	4.3	
131.06	C10H10-H+	Naphthalene dihydro-, 2-methylindene	2.00	0.9	0.7	1.5	1.6	
167.09	C13H10-H+	Fluorene	2.00	< 0.5	< 0.4	< 0.5	0.5	
Furanoi	c compounds							
69.03	C4H4O-H+	Furan	1.70	2.0	1.4	4.9	5.1	
83.05	C5H6O-H+	Methylfurans	2.00	2.6	1.8	6.1	6.1	
97.03	C5H4O2-H+	Furfural	4.02	3.9	3.2	8.5	10.3	
97.06	C6H8O-H+	Dimethyl- & ethyl furan	2.00	1.1	0.9	2.5	2.9	
99.04	C5H6O2-H+	Furfuryl alcohol	2.00	2.1	1.8	4.1	5.3	
125.02	C6H4O3-H+	2,5-Furandicarboxaldehyde	2.00	0.5	0.4	1.0	1.2	
127.04	C6H6O3-H+	5-Hydroxymethylfurfural	2.00	< 0.5	< 0.4	0.7	0.9	
119.05	C8H6O-H+	Benzofuran	2.00	1.1	0.7	1.8	1.2	
Phenoli	c compounds							
95.05	C6H6O-H+	Phenol	2.18	5.2	3.7	9.3	6.4	
109.06	C7H8O-H+	Cresols	1.99	1.8	1.2	3.8	2.9	
111.04	C6H6O2-H+	Benzenediols	2.00	2.5	2.1	5.5	5.6	
123.08	C8H10O-H+	Dimethylphenol	2.00	0.6	0.4	1.4	1.3	
125.06	C7H8O2-H+	Guaiacol	2.00	0.9	0.8	2.5	2.9	
139.07	C8H10O2-H+	Creosol, tyrosol	2.00	< 0.4	< 0.3	0.9	1.3	
153.05	C8H8O3-H+	e.g. Methoxy-benzoic acid	2.00	0.4	0.4	0.9	0.9	
Other of	xygen contain	ing aromatic compounds						
107.05	C7H6O-H+	Benzaldehyde	3.82	1.1	0.9	2.0	1.3	
109.03	C6H4O2-H+	Benzoquinone	2.30	1.1	1.0	1.9	1.5	
121.06	C8H8O-H+	Acetophenone	3.48	0.6	0.5	1.1	0.9	
123.04	C7H6O2-H+	Benzoic acid	2.75	1.1	1.0	1.7	1.7	
135.04	C8H6O2-H+	e.g. Isophthalaldehyde, phenylglyoxal	2.00	0.5	0.5	0.9	0.8	
137.06	C8H8O2-H+	e.g. Benzeneacetic acid, methyl-benzoic acid	2.00	0.6	0.6	1.3	1.2	
Carbony	vls-A							
45.03	C2H4O-H+	Acetaldehvde	3.12	8.1	<28.4	17.3	18.6	
57.03	C3H4O-H+	Acrolein	3.55	4.5	3.6	9.4	8.6	
71.02	C3H2O2-H+	Propiolic acid	2.00	< 0.3	0.2	0.5	0.6	
71.05	C4H6O-H+	Methyl vinyl ketone, methacrolein	3.60	2.2	1.9	4.6	4.5	
73.03	C3H4O2-H+	2-Propenoic acid	2.67	2.9	2.0	7.4	6.9	
75.04	C3H6O2-H+	Hydroxy-2-propanone	2.41	4.1	<7.4	11.5	15.4	
83.01	C4H2O2-H+	3-Cyclobutene-1,2-dione	2.00	< 0.3	< 0.2	0.4	0.4	
85.06	C5H8O-H+	e.g. Pentenal	2.00	1.3	1.0	2.4	3.2	
87.04	C4H6O2-H+	e.g. 2,3- butadione	1.70	6.1	5.1	13.5	18.9	
101.06	C5H8O2-H+	e.g. 2,3-pentanedione	2.00	<1.0	< 0.8	<1.6	3.2	
103.04	C4H6O3-H+	Acetic anhydride	2.00	1.1	0.9	2.6	3.1	
103.07	C5H10O2-H+	e.g. Methyl-butanoic acid or pentanoic acid	2.00	< 0.4	< 0.4	< 0.4	0.3	
117.05	C5H8O3-H+	e.g. Acetyloxypropanone	2.00	0.9	0.7	2.2	2.3	

Table S4	4 - continued			Emission factors [mg kg ⁻¹]					
m/z	Ion formula	Compound	k-rate	FI-D-		SI-D-			
111/ 2	Ton Tormula	Compound	K Tuto	HONO	FI-PcA	PcA	SI-PcA		
Carbony	vls-B								
59.05	C3H6O-H+	Acetone	3.21	3.5	<6.3	6.9	8.2		
61.03	C2H4O2-H+	Acetic acid, glycolaldehyde	2.32	19.6	21.4	41.5	47.6		
73.06	C4H8O-H+	2-butanone and 2-methylpropanal	3.23	<0.7	< 0.5	< 0.8	1.4		
77.02	C2H4O3-H+	Acetic acid, hydroxy-	2.00	<0.2	< 0.2	< 0.3	< 0.1		
89.06	C4H8O2-H+	Acetoin	4.30	<0.3	< 0.3	0.4	0.9		
91.04	C3H6O3-H+	e.g. lactic acid	2.00	<0.1	< 0.3	0.2	0.2		
99.01	C4H2O3-H+	Maleic anhydride	2.00	2.4	3.1	4.3	4.1		
101.02	C4H4O3-H+	Succinic anhydride	2.00	<1.4	<1.0	<2.3	<0.7		
105.03	C4H8O3-H+	e.g. Acetic acid, methoxy-	2.00	<0.3	<0.3	<0.5	0.2		
CHN									
42.03	C2H3N-H+	Acetonitrile	2.00	0.6	0.6	0.8	0.6		
54.03	C3H3N-H+	Propenenitrile	2.00	0.3	0.3	0.4	0.3		
104.04	C7H5N-H+	Benzonitrile	2.00	0.5	0.5	0.7	0.7		
133.06	C8H8N2-H+	n.i.	2.00	0.8	0.5	1.3	1.0		
CHNO, i	m/z < 100								
44.01	HCNO-H+	Isocyanic acid	2.00	0.7	0.8	0.6	0.8		
58.04	C2H3NO-H+	Methyl isocyanate	2.00	0.3	0.3	0.7	0.7		
60.05	C2H5NO-H+	e.g. Acetamide	2.00	<0.6	< 0.8	< 0.6	0.4		
62.02	CH3NO2-H+	e.g. Methyl nitrite	2.00	7.7	9.3	11.9	10.6		
72.05	C3H5NO-H+	Methoxyacetonitrile or acrylamide	2.00	< 0.2	< 0.2	0.4	0.4		
76.05	C2H5NO2-H+	e.g. Nitroethane	2.00	0.2	< 0.5	0.5	0.7		
88.04	C2H5N3O-H+	or C3H5NO2-H+	2.00	<0.3	< 0.3	0.6	0.8		
96.05	C5H5NO-H+	Pyridine-N-oxide	2.00	0.4	0.3	0.7	0.6		
98.03	C3H3N3O-H+	1H-Pyrazole, 4-nitro-1	2.00	0.5	0.5	1.1	1.4		
CHNO, i	m/z > 100								
100.01	C3HNO3-H+	n.i.	2.00	< 0.2	< 0.2	< 0.3	0.2		
100.07	C5H9NO-H+	n.i.	2.00	<0.9	< 0.7	< 0.4	< 0.4		
114.05	C5H7NO2-H+	n.i.	2.00	<1.6	<1.2	< 0.9	< 0.6		
122.02	C6H3NO2-H+	e.g. Oxo-furan-2-acetonitrile	2.00	0.3	0.4	0.4	0.3		
136.04	C7H5NO2-H+	e.g. 2-Furoylacetonitrile	2.00	0.5	0.5	0.7	0.6		
140.03	C6H5NO3-H+	Nitrophenols, Oxiniacic acid	2.00	0.7	0.5	0.5	0.4		
150.02	C7H3NO3-H+	e.g. 2,3-Pyridinedicarboxylic anhydride	2.00	< 0.5	< 0.4	< 0.6	0.3		
154.05	C7H7NO3-H+	e.g. Aminosalicylic Acid or 5-Nitro-o-cresol	2.00	0.6	0.6	0.7	0.8		
СНО									
33.03	CH3OH-H+	Methanol	2.22	15.1	12.4	31.1	46.9		
49.03	CH4O2-H+	Methyl peroxide or methanediol	2.00	< 0.2	< 0.2	0.2	0.2		
63.04	C2H6O2-H+	n.i.	2.00	< 0.2	< 0.3	0.3	0.3		
77.05	C3H8O2-H+	e.g. Ethanol 2-methoxy-	2.00	< 0.1	< 0.2	< 0.3	0.1		
81.03	C5H4O-H+	2,4-Cyclopentadiene-1-one	2.00	1.6	1.1	3.7	3.5		
85.03	C4H4O2-H+	Furanone	2.00	2.9	3.0	6.7	6.3		
111.08	C7H10O-H+	e.g. Heptenedial or trimethylfuran	2.00	< 0.4	< 0.4	0.7	1.3		
113.02	C5H4O3-H+	e.g. 2-furoic acid	2.00	0.9	1.1	2.1	1.8		
113.06	C6H8O2-H+	eg. Methylcyclohexanone	2.00	0.7	0.6	1.2	2.2		
115.04	C5H6O3-H+	e.g. Hydroxymethylfuranone	2.00	<0.9	< 0.7	<1.1	0.7		
149.02	C8H4O3-H+	Phthalic anhydride	2.00	<1.9	<1.3	<2.8	< 0.3		
Aliphati	c hydrocarboi	ns							
53.04	C4H4-H+	Butenyne	2.00	0.4	0.3	0.9	0.7		
67.05	C5H6-H+	1,3-cyclopentadiene	2.00	0.7	0.6	1.6	1.3		
69.07	C5H8-H+	Isoprene	1.96	< 0.5	< 0.3	<0.6	1.0		
81.07	C6H8-H+	e.g. Cyclohexa-1,3-diene; fragments	2.00	0.4	0.3	1.1	1.6		
137.13	C10H16-H+	Monoterpenes	2.42	0.7	0.6	2.0	3.4		

Table S4	- continued			[g ⁻¹]			
	T	Comment	1	FI-D-		SI-D-	
m/z	Ion formula	Compound	k-rate	HONO	FI-PcA	PcA	SI-PcA
Other co	ompounds						
31.02	CH2O-H+	Formaldehyde (unquantifiable)	2.00	5.1	5.7	9.1	9.2
41.04	C3H4-H+	Propadiene, fragments	2.00	3.0	<1.9	6.2	5.4
42.01	C2H2O+?	n.i.	2.00	0.3	0.3	0.6	0.5
42.05	C3H6+	Fragments	2.00	< 0.1	< 0.1	0.2	0.2
43.02	C2H2O-H+	Hexyl acetate; propanol fragment	2.00	9.4	9.9	19.1	21.9
43.06	C3H6-H+	Propene; fragments	2.00	2.1	<2.2	3.6	3.3
44.02	HN3+?		2.00	< 0.2	< 0.2	0.4	0.5
48.01		n.i.	2.00	< 0.2	0.5	0.4	0.5
49.06		n.i.; product of photochemical aging	2.00	< 0.1	< 0.1	< 0.1	< 0.1
51.04	CO2H7+	n.i.; proposed fragment	2.00	0.7	0.6	1.4	2.2
57.07	C4H8-H+	Butene; fragments	2.00	<1.4	<1.3	<1.5	1.6
62.10		n.i.; product of photochemical aging	2.00	< 0.1	< 0.1	< 0.1	< 0.1
65.09	C2H10NO-H+	n.i.; product of photochemical aging	2.00	< 0.1	< 0.1	< 0.1	< 0.1
69.00	СЗО2-Н+	Carbon suboxide	2.00	< 0.3	< 0.2	< 0.3	0.5
78.04	C6H6+	n.i.; proposed fragment	2.00	0.6	0.4	0.8	0.5
80.06	C6H8+	n.i.; proposed fragment	2.00	0.6	0.5	1.0	0.7
83.08	C6H10-H+	Fragment and e.g. fragmented hexenol (C6H12O-H2O)	2.00	< 0.3	< 0.2	< 0.3	0.8
120.05		n.i.	2.00	0.1	0.1	0.2	0.1

153 **Table S5.** Concentrations [ng m⁻³] of nitrophenols in particulate phase in the chamber, measured

154 from offline filter samples collected from fresh emission and at the end of dark (D) and

155 photochemical aging (PcA). They were analyzed with in situ derivatization thermal desorption gas

156 chromatography and time-of-flight mass spectrometry, with 4-nitrophenol d4 as the internal

157 standard. RSD = relative standard deviation for each procedure.

			FI-D-PcA			s	I-D-PcA		FI	D-HONO	FI-PcA		
	Compound	RSD	Fresh	D	PcA	Fresh	D	PcA	Fresh	D	PcA	Fresh	PcA
	4-Nitrophenol	9 %	< 71.6	10040	3650	822	5140	6190	2430	18090	3230	984	736
	4-Nitrocresol	10 %	< 217	< 127	< 81	< 139	< 127	< 130	< 217	< 253	< 127	< 217	< 127
	2-Methoxy-4-nitrophenol	9 %	15390	13150	< 26.7	1330	8920	31150	629	3170	411	1590	244
	4-Nitrocatechol	12 %	< 227	< 133	1970	< 146	< 133	< 136	< 227	< 265	< 133	< 227	< 133
158	2,6-Dimethoxy-4-nitrophenol	9 %	< 71.6	< 41.8	< 26.7	< 45.8	< 41.8	< 42.8	< 71.6	< 83.5	< 41.8	< 71.6	< 41.8

- 159 **Table S6.** Background concentrations in the chamber prior to the experiments, and the background
- 160 corrected mass concentrations [µg m⁻³] of compounds measured from PTR-MS in initial emissions,
- 161 at the last hour of dark aging (D), and the last hour of photochemical aging (PcA)

							FI-D-HONO		FI-PcA			SI-D-PcA	SI-PcA			
			Backgroun	d concenti	rations [µg	m ⁻³]	Conce	ntration [µ	1g m ⁻³]	Concentration [µg m-3]		Concentration [µg m-3]			Concentration [µg m-3]	
m/z	Ion formula	Compound	FI-D-HONO	FI-PcA	SI-D-PcA	SI-PcA	Initial	D	+HONO	Initial	PcA	Initial	D	PcA	Initial	PcA
Aromatic h	ydrocarbons	D	0.2	0.0	0.2	0.0	0.0	0.0	0.2	6.0	<i>c</i> 2	15.1	14.0	12.4	11.0	0.0
/9.05 93.07	C6H6-H+ C7H8-H+	Toluene	0.3 <0.1	<0.2	<0.3	0.2 <0.1	8.8	8.0	9.3	6.9 1.3	6.2 1.0	3.4	3.1	23	2.6	9.8
105.07	C8H8-H+	Styrene	<0.1	<0.1	<0.1	<0.1	0.5	0.4	0.1	0.5	0.1	1.2	0.8	0.1	0.9	0.1
107.08	C8H10-H+	Xylene or ethylbenzene	< 0.1	< 0.1	< 0.1	< 0.1	0.4	0.3	0.3	0.3	0.2	0.9	0.8	0.4	0.8	0.4
129.07	C10H8-H+	Naphthalene	1.3	1.0	2.5	0.7	2.0	1.3	1.1	1.6	< 0.4	3.7	2.5	<0.6	3.3	1.2
131.06	C10H10-H+	Naphthalene dihydro-, 2-methylindene	0.3	0.4	0.7	0.2	0.6	<0.3	0.4	0.4	< 0.3	1.0	<0.4	<0.4	1.2	0.4
167.09	C13H10-H+	Fluorene	0.4	0.3	0.5	0.3	<0.3	<0.3	1.6	<0.3	<0.3	<0.3	<0.3	<0.3	0.4	<0.2
69.03	C4H4O-H+	Furan	0.2	0.2	0.4	6.8	1.2	0.4	0.5	0.9	0.3	3.3	1.4	0.5	3.8	1.1
83.05	C5H6O-H+	Methylfurans	0.3	0.2	0.6	< 0.1	1.6	0.9	0.6	1.2	0.3	4.1	2.2	0.5	4.6	0.9
97.03	C5H4O2-H+	- Furfural	0.4	0.4	0.4	1.1	2.4	1.9	1.0	2.1	0.9	5.8	5.0	1.8	7.8	2.6
97.06	C6H8O-H+	Dimethyl- & ethyl furan	0.3	< 0.2	0.7	0.5	0.7	0.3	< 0.2	0.6	< 0.2	1.7	0.8	< 0.4	2.2	0.2
99.04	C5H6O2-H+	- Furfuryl alcohol	1.0	0.7	2.4	< 0.3	1.3	1.0	<0.5	1.2	<0.4	2.8	2.2	< 0.7	4.0	1.2
125.02	C6H4O3-H+	- 2,5-Furandicarboxaldehyde	<0.1	0.3	0.5	<0.1	0.3	<0.3	0.3	0.3	<0.3	0.7	<0.4	<0.4	0.9	0.3
127.04	C8H6O-H+	Benzofuran	0.3	<0.5	<0.7	<0.2	<0.5	<0.5	0.4	<0.5	<0.5	1.2	<0.4	<0.4	0.7	0.7
Phenolic co	ompounds	Benzolulan	0.5	<0.1	<0.1	0.2	0.7	0.2	0.2	0.5	0.1	1.2	0.5	0.1	0.7	0.2
95.05	С6Н6О-Н+	Phenol	0.9	< 0.9	0.9	0.5	3.2	< 0.8	< 0.8	0.8	< 0.9	6.3	< 0.8	< 0.8	4.8	0.9
109.06	C7H8O-H+	Cresols	< 0.2	< 0.1	< 0.1	< 0.1	1.1	< 0.2	< 0.2	1.4	0.5	2.6	0.2	< 0.1	2.2	0.1
111.04	C6H6O2-H+	- Benzenediols	0.5	0.4	0.7	0.3	1.5	0.7	0.5	0.3	< 0.2	3.7	1.9	0.7	4.2	1.1
123.08	C8H10O-H+	Dimethylphenol	<0.2	<0.2	< 0.3	<0.1	0.4	<0.2	<0.2	0.5	<0.2	0.9	<0.3	< 0.3	1.0	<0.1
125.06	C/H802-H4		<0.3	<0.2	0.4	<0.2	0.5	<0.3	<0.3	<0.2	<0.2	1./	0.3	<0.5	2.2	0.3
153.07	C8H8O3-H+	- e g Methoxy-henzoic acid	<0.3	<0.2	<0.4	<0.1	<0.5	<0.5	<0.5	2.4	<0.2	0.0	<0.4	<0.4	0.7	<0.1
Other oxyg	en containing	aromatic compounds		<0.2		~0.1	0.5		.u.2	2.1		0.0	-0.5	-015	0.7	
107.05	C7H6O-H+	Benzaldehyde	< 0.1	< 0.1	< 0.1	< 0.1	0.7	0.7	0.7	0.6	0.5	1.3	1.3	0.9	1.0	0.8
109.03	C6H4O2-H+	Benzoquinone	< 0.2	< 0.2	< 0.3	< 0.1	0.7	0.6	1.0	0.7	0.6	1.3	1.1	1.0	1.1	0.8
121.06	C8H8O-H+	Acetophenone	<0.1	< 0.1	< 0.1	< 0.1	0.4	0.3	0.4	0.3	0.2	0.8	0.7	0.4	0.7	0.4
123.04	C7H6O2-H+	- Benzoic acid	0.4	0.3	0.9	0.2	0.7	0.5	1.3	0.7	0.5	1.1	0.8	0.5	1.3	1.1
135.04	C8H8O2-H4	e g Benzeneacetic acid	0.3	<0.5	<0.2	<0.2	0.5	<0.2	<0.2	0.5	<0.5	0.0	0.6	0.4	0.6	0.5
Carbonvls-	A	e.g. Benzeneacene acid	<0.2	<0.2	<0.2	~0.1	0.4	0.5	0.5	0.4	<0.2	0.7	0.7	0.5	0.7	0.4
45.03	C2H4O-H+	Acetaldehyde	5.4	<18.7	10.7	2.3	5.0	4.0	3292.1	<18.7	<18.7	11.7	9.8	6.5	14.0	13.0
57.03	C3H4O-H+	Acrolein	0.6	0.8	1.3	0.3	2.8	2.5	51.5	2.4	1.3	6.3	5.9	2.7	6.5	3.9
71.02	C3H2O2-H+	Propiolic acid	<0.2	0.1	0.4	< 0.1	< 0.2	< 0.2	0.3	0.2	< 0.1	0.3	< 0.2	< 0.2	0.4	0.2
71.05	C4H6O-H+	Methyl vinyl ketone, methacrolein	0.7	0.4	1.6	0.3	1.4	1.1	0.6	1.3	0.5	3.1	2.4	<0.4	3.4	1.3
75.03	C3H4O2-H+	- 2-Propenoic acid	1.8	2.5	3.4	0.9	1.8	1.5	28.6	1.5	<0.7	5.0	4.5	5.4	5.2	4.6
83.01	C4H2O2-H+	- 3-Cvclobutene-1.2-dione	<0.2	<0.4	<0.2	<0.1	<0.2	<0.2	0.4	<0.1	<0.1	0.2	0.3	0.4	0.3	0.3
85.06	C5H8O-H+	e.g. Pentenal	0.8	0.5	2.1	0.4	0.8	< 0.5	< 0.5	0.7	< 0.4	1.6	0.7	< 0.7	2.4	0.7
87.04	C4H6O2-H+	e.g. 2,3- butadione	2.9	1.9	6.2	1.3	3.8	2.8	6.7	3.4	2.4	9.2	7.0	4.6	14.2	10.0
101.06	C5H8O2-H+	e.g. 2,3-pentanedione	1.4	1.1	3.5	0.7	<0.6	<0.6	0.9	<0.5	<0.5	<1.1	<1.1	<1.1	2.4	1.2
103.04	C4H6O3-H+	- Acetic anhydride	0.4	0.5	0.9	0.2	0.7	0.6	2.8	0.6	0.4	1.8	1.4	0.7	2.4	1.5
105.07	C5H8O3-H4	e g Acetyloxypropapone	<0.2	<0.3	0.4	<0.2	<0.2	<0.2	0.5	<0.5	< 0.3	<0.5	<0.5	<0.5	0.2	0.5
Carbonvls-	B	e.g. rectyloxypropatione	<0.5	<0.5	0.5	<0.2	0.0	<0.5	0.7	0.5	<0.5	1.5	0.0	0.4	1.7	1.0
59.05	C3H6O-H+	Acetone	3.6	5.6	7.0	1.7	2.1	<1.6	127.0	<4.1	<4.1	4.6	3.1	3.6	6.2	7.4
61.03	C2H4O2-H+	Acetic acid, glycolaldehyde	10.0	8.9	19.5	6.0	12.1	10.2	195.6	14.1	16.8	28.1	24.5	29.8	35.8	41.2
73.06	C4H8O-H+	2-butanone and 2-methylpropanal	1.2	0.6	2.9	0.3	<0.4	<0.4	<0.4	< 0.3	< 0.3	<0.5	<0.5	<0.5	1.1	1.2
77.02	C2H4O3-H+	Acetic acid, hydroxy-	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	16.6	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	0.2
91.00	C3H6O3-H+	- Action	<0.1	<0.2	<0.0	<0.1	<0.2	<0.2	2.0	<0.1	<0.1	0.2	<0.2	<0.2	0.7	0.7
99.01	C4H2O3-H+	- Maleic anhydride	1.1	0.8	1.5	0.5	1.5	1.6	4.8	2.0	3.7	2.9	3.3	7.5	3.1	8.7
101.02	C4H4O3-H+	- Succinic anhydride	2.8	2.1	6.1	1.4	< 0.9	< 0.9	3.2	< 0.7	< 0.7	<1.5	<1.5	<1.5	< 0.5	1.4
105.03	C4H8O3-H+	e.g. Acetic acid, methoxy-	0.2	0.2	0.6	< 0.1	< 0.2	< 0.2	0.8	< 0.2	< 0.2	< 0.3	< 0.3	< 0.3	0.1	0.2
CHN																
42.03	C2H3N-H+	Acetonitrile	<0.3	<0.3	<0.2	0.1	0.4	0.3	3.8	0.4	0.4	0.5	0.5	0.5	0.5	0.5
54.05 104.04	C7H5N-H+	Benzonitrile	<0.1	<0.1	<0.1	<0.1	0.2	0.1	5.8	0.2	0.2	0.5	0.2	0.2	0.5	0.2
133.06	C8H8N2-H+	n.i.	<0.1	<0.1	<0.1	<0.1	0.5	<0.1	<0.1	0.4	<0.1	0.9	0.4	<0.4	0.8	0.4
CHNO, m/z	< 100															
44.01	HCNO-H+	Isocyanic acid	0.6	0.5	1.0	0.5	0.4	0.4	4.7	0.5	1.1	0.4	< 0.4	0.8	0.6	1.3
58.04	C2H3NO-H-	+ Methyl isocyanate	0.1	0.1	0.3	0.1	0.2	0.2	4.5	0.2	0.2	0.4	0.4	0.2	0.5	0.4
60.05	C2H5NO-H-	+e.g. Acetamide	0.5	0.7	1.0	0.5	<0.4	<0.4	8.0	<0.5	<0.5	<0.4	<0.4	<0.4	0.3	0.5
62.02 72.05	C3H5NO H	+ e.g. nitromethane, methyl nitrite	0.4	0.3	0.6	0.2	4.8	4.4	8.8	6.1 <0.1	5.4	8.0	0.2	<0.2	8.0	0.1
76.05	C2H5NO2-F	He.g. Nitroethane	<0.2	0.3	0.2	<0.1	0.1	<0.1	16.5	<0.1	<0.1	0.5	0.2	0.2	0.5	0.5
88.04	C2H5N3O-H	H+ or C3H5NO2-H+	0.2	0.2	0.4	0.2	<0.2	<0.2	0.4	<0.2	<0.2	0.4	0.3	< 0.3	0.6	0.4
96.05	C5H5NO-H-	+ Pyridine-N-oxide	< 0.1	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	0.2	< 0.1	0.5	< 0.1	< 0.1	0.4	0.1
98.03	C3H3N3O-H	11H-Pyrazole, 4-nitro-1	< 0.2	< 0.1	< 0.2	< 0.1	0.3	0.3	0.2	0.3	0.2	0.8	0.7	0.3	1.0	0.4

Table 6- continued					FI-D-HONO			FI-PcA		SI-D-PcA			SI-PcA		
		Backgroun	d concent	rations [µs	g m ⁻³]	Conce	ntration []	ug m ⁻³]	Concentration [µg m ⁻³]		Concentration [µg m-3]			Concentration [µg m-3]	
m/z Ion formula	Compound	FI-D-HONO	FI-PcA	SI-D-PcA	SI-PcA	Initial	D	+HONO	Initial	PcA	Initial	D	PcA	Initial	PcA
CHNO, m/z > 100	-														
100.01 C3HNO3-H	I+n.i.	< 0.2	< 0.1	< 0.2	< 0.1	< 0.2	< 0.2	0.3	< 0.1	0.2	< 0.2	0.2	0.4	0.1	0.5
100.07 C5H9N3-H	(+ n.i.	0.7	0.6	< 0.3	< 0.3	< 0.5	0.9	< 0.5	< 0.5	0.5	< 0.3	1.3	0.6	< 0.3	0.9
114.05 C5H7NO2-	Hn.i.	1.2	1.1	1.0	0.8	<1.0	<1.0	4.5	< 0.8	2.4	<0.6	1.2	3.0	< 0.4	3.1
122.02 C6H3NO2-	He.g. Oxo-furan-2-acetonitrile	< 0.1	< 0.2	< 0.2	< 0.1	0.2	0.8	41.8	0.3	0.4	0.3	1.8	1.5	0.2	0.8
136.04 C7H5NO2-	He.g. Furoylacetonitrile	< 0.2	0.1	< 0.1	< 0.1	0.3	0.6	0.7	0.3	0.2	0.4	1.0	0.8	0.5	0.5
140.03 C6H5NO3-	HNitrophenols, Oxiniacic acid	< 0.2	< 0.2	< 0.2	< 0.1	0.4	1.6	1.4	0.4	0.3	0.3	2.5	1.8	0.3	0.6
150.02 C7H3NO3-	He.g. Pyridinedicarboxylic anhydride	0.4	0.3	1.1	0.2	< 0.3	< 0.3	0.7	< 0.2	< 0.2	< 0.4	< 0.4	< 0.4	0.2	0.3
154.05 C7H7NO3-	He.g. Nitrocresol	< 0.2	0.2	< 0.2	< 0.1	0.4	0.6	0.7	0.4	0.2	0.5	1.2	0.8	0.6	0.5
СНО															
33.03 CH3OH-H	+ Methanol	1.3	1.6	1.4	1.0	9.3	13.0*	101.5	8.2	10.9*	21.1	24.2*	23.8	35.3	37.5*
49.03 CH4O2-H4	Methyl peroxide or methanediol	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	14.4	<0.1	<0.1	0.1	<0.1	0.2	0.2	0.2
63.04 C2H6O2-H	+ n.i.	<0.1	<0.2	<0.2	<0.1	<0.1	<0.1	25.9	<0.2	<0.2	0.2	<0.1	<0.2	0.2	0.2
77.05 C3H8O2-H	+ e.g. Ethanol 2-methoxy-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.3	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1
81.03 C5H4O-H4	2,4-Cyclopentadiene-1-one	<0.2	<0.2	<0.2	<0.2	1.0	<0.2	<0.2	0.7	<0.2	2.5	0.2	<0.2	2.7	0.1
85.03 C4H4O2-H	+ Furanone	0.7	0.5	1.2	0.3	1.8	1.7	1.4	2.0	1.2	4.5	4.4	2.2	4.7	3.0
111.08 C/H10O-H	+ e.g. Heptenedial or trimethylfuran	0.2	<0.2	0.5	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	0.5	<0.4	<0.4	1.0	<0.1
113.02 C5H4O3-H	+ e.g. 2-furoic acid	0.8	0.6	1.2	0.3	0.6	0.6	1.9	0.7	1.1	1.4	1.5	2.0	1.4	2.7
113.06 C6H8O2-H	+ eg. Metnylcyclonexanone	0.6	0.5	1.4	0.4	0.4	<0.4	<0.4	0.4	<0.5	0.8	<0.6	<0.6	1./	0.5
115.04 C5H6O5-H	0.8	0.7	1.9	1.9	<0.0	<0.0	0.6	<0.4	<0.4	<0.7	<0.7	<0.7	0.5	0.7	
Alinhatia huduooonhon	3.7	2.4	10.8	1.6	<1.2	<1.2	5.5	<0.9	1.1	<1.9	<1.9	<1.9	<0.5	1.7	
53 04 CAUA U	Butanyna	<0.1	<0.1	<0.1	<0.1	0.2	0.2	0.2	0.2	0.1	0.6	0.6	0.2	0.5	0.2
55.04 C4H4-H+ 67.05 C5H6 H	1.3 cyclopentadiene	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.2	0.2	<0.1	1.1	0.0	<0.1	1.0	<0.1
69.07 C5H8 H	Isoprene	0.7	0.1	1.0	0.3	<0.4	<0.1	<0.3	<0.4	<0.1	<0.4	<0.1	<0.1	0.8	<0.1
81.07 C6H8-H+	e a Cyclobeya-1 3-diene: fragments	0.1	<0.4	0.2	<0.1	0.3	<0.5	<0.5	0.2	<0.13	0.7	<0.4	<0.4	1.2	<0.2
137.13 C10H16-H	+ Monoterpenes	<0.2	<0.1	<0.3	<0.1	0.4	<0.1	<0.1	0.2	<0.15	13	<0.2	<0.2	2.6	<0.1
Other compounds	- Monoterpenes	<0.2	<0.1	<0.5	~0.1	0.4	<0.2	~0.2	0.4	<0.15	1.5	<0.5	<0.5	2.0	<0.1
31.02 CH2O-H+	Formaldehyde (unquantifiable)	1.5	<2.5	3.4	0.7	3.2	3.0	481.6	3.8	4.1	6.1	5.8	7.1	6.9	8.1
41.04 C3H4-H+	Propadiene, fragments	0.9	<1.9	1.1	0.7	1.9	1.6	308.5	<1.9	<1.9	4.2	3.6	1.8	4.1	2.1
42.01 C2H2O+?	n.i.	0.1	0.1	0.1	0.1	0.2	0.2	2.3	0.2	0.1	0.4	0.4	0.3	0.4	0.3
42.05 C3H6+	Fragments	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	19.7	< 0.1	< 0.1	0.2	0.2	0.1	0.1	0.1
43.02 C2H2O-H+	Hexyl acetate; propanol fragment	4.2	4.9	8.8	2.3	5.8	4.8	570.8	6.5	7.4	12.9	10.9	12.9	16.5	18.9
43.06 C3H6-H+	Propene; fragments	0.4	<2.2	0.8	0.2	1.3	1.1	550.1	<2.2	<2.2	2.4	2.0	< 0.3	2.5	0.9
44.02 HN3+?		< 0.2	0.2	0.3	0.5	< 0.2	< 0.2	13.1	< 0.2	< 0.2	0.3	0.2	0.3	0.4	0.4
48.01	n.i.	< 0.2	< 0.3	< 0.2	< 0.2	< 0.2	0.3	2.3	0.4	< 0.3	0.3	0.4	< 0.2	0.4	< 0.2
49.06	n.i.; product of photochemical aging	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.4	< 0.1	< 0.1	0.4	< 0.1	0.4
51.04 CO2H7+	n.i.; proposed fragment	< 0.1	< 0.1	< 0.1	< 0.1	0.4	0.6	4.2	0.4	0.5	0.9	1.0	1.0	1.6	1.6
57.07 C4H8-H+	Butene; fragments	<1.4	<1.3	1.6	< 0.4	<1.4	<1.4	2.5	<1.3	<1.3	<1.5	<1.5	<1.5	1.2	< 0.4
62.10	n.i.; product of photochemical aging	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.7	< 0.1	0.9	< 0.1	0.1	1.0	< 0.1	1.0
65.09 C2H10NO-	Hn.i.; product of photochemical aging	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.6	< 0.1	0.1	0.7	< 0.1	0.7
69.00 C3O2-H+	Carbon suboxide	0.4	0.3	0.6	0.2	< 0.3	< 0.3	< 0.3	< 0.2	< 0.2	< 0.3	< 0.3	< 0.3	0.3	0.2
78.04 C6H6+	n.i.; proposed fragment	< 0.1	$<\!0.1$	< 0.1	< 0.1	0.3	0.4	0.8	0.3	0.2	0.5	0.7	0.6	0.4	0.4
80.06 C6H8+	n.i.; proposed fragment	< 0.1	$<\!0.1$	< 0.1	< 0.1	0.4	0.4	0.4	0.3	0.3	0.7	0.6	0.6	0.5	0.5
83.08 C6H10-H+	83.08 C6H10-H+ Fragment and e.g. fragmented hexend			0.5	< 0.1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.3	< 0.3	< 0.3	0.6	< 0.1
120.05	n.i.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	12.6	0.1	< 0.1	0.1	0.1	< 0.1	0.1	< 0.1

164 *methanol increase during O_3 input; not from aging.

165 **Table S7.** Times where half of the change in ion concetration had taken place (t-50%s) during dark

and photochemical aging. They were calculated for changes exceeding detection limit, and are

167 presented as time in chamber (min), and for photochemical aging the corresponding time in

168 atmospheric age (atm. h), assuming ambient OH concentration of 1E6 molec. cm⁻³.

			Dark aging Photo					hotoche	hemical aging				
			FI-D-HONO	SI-D-PcA	FI-D-HONO SI-I			D-PcA FI-PcA			SI-	PcA	
m/z	Ion formula	Compound	[min]	[min]	[min]	[atm. h]	[min]	[atm. h]	[min]	[atm. h]	[min]	[atm. h]	
Aromati	c hydrocarbons												
79.05	C6H6-H+ C7H8-H+	Benzene	25 37	11	40	3.1	25 24	6.5 6.8	8 14	3.3	16 23	3.8 5.1	
105.07	C8H8-H+	Styrene	67	77	15	1.7	9	2.7	14	3.0	11	2.6	
107.08	C8H10-H+	Xylene or ethylbenzene	_	5	17	2.8	22	6.0	28	6.6	23	5.4	
129.07	C10H8-H+	Naphthalene	33	30	6	1.5	15	4.2	22	5.9	21	4.9	
131.06	C10H10-H+	Naphthalene dihydro-, 2-methylindene	26	29	83	2.9	13	3.3	13	3.5	9	2.6	
Furano	crompounds	Fluorene		_	47	2.1	25	0.4	_	_	27	5.9	
69.03	C4H4O-H+	Furan	69	93	21	2.4	14	3.5	19	4.9	17	3.7	
83.05	C5H6O-H+	Methylfurans	22	29	36	2.6	17	4.5	15	3.7	14	3.6	
97.03	C5H4O2-H+	Furfural	49	26	28	2.0	15	4.1	18	5.2	18	3.4	
97.06	C6H8O-H+	Dimethyl- & ethyl furan	17	19	12	2.3	14	3.8	14	3.6	11	2.5	
99.04 125.02	C5H602-H+	Purluryi aiconol	83 54	35	8 16	1.7	10	4.5	20	5.5 6.0	22	4.5 5.4	
125.02	C6H6O3-H+	5-Hydroxymethylfurfural		72	23	2.1	_	_			151	12.7	
119.05	C8H6O-H+	Benzofuran	73	101	134	2.7	10	3.6	18	5.3	16	4.2	
Phenoli	c compounds												
95.05	C6H6O-H+	Phenol	44	68	_	—	—	_	11	3.0	11	2.6	
109.06	C7H8O-H+	Cresols	29	42		-	19	5.2	14	3.5	14	3.8	
123.08	C8H10O-H+	Dimethylphenol	21	65 30	- 08	3.0 —	14	5.7	12	3.0 4.6	8 16	2.5	
125.06	C7H8O2-H+	Guaiacol	23	28	_	—	31	6.9		_	13	3.3	
139.07	C8H10O2-H+	Creosol, tyrosol	—	24	_	—	—	—	9	3.5	21	5.3	
153.05	C8H8O3-H+	e.g. Methoxy-benzoic acid	34	44	_	—	—	—	16	4.6	16	3.8	
Other o.	xygen containin	g aromatic compounds				2.6					104	11.0	
107.05	C/H6O-H+ С6H4O2-H+	Benzaldehyde Benzoquinone	43		83	2.6	44	3.0		- 46	104	11.2 5.0	
109.05	C8H8O-H+	Acetophenone	18	10	127	3.2	21	5.3	13	3.2	17	3.5	
123.04	C7H6O2-H+	Benzoic acid	25	59	37	2.9	21	5.5	19	5.3	27	6.0	
135.04	C8H6O2-H+	e.g. Isophthalaldehyde, phenylglyoxal	10	10	_	—	99	12.0	74	9.2	78	10.0	
137.06	C8H8O2-H+	e.g. Benzeneacetic acid	9	18	85	3.1	24	7.0	36	6.3	31	6.0	
Carbon	vls-A	A 4 - 1 d - b d -	00	70	28	1.0	24	75			110	11.7	
45.03	C2H4O-H+	Acrolein	88 35	18	28	1.9	54 25	7.5 6.5	28	— 6.6	34	72	
71.02	C3H2O2-H+	Propiolic acid		54	20	2.3			13	3.5	26	5.6	
71.05	C4H6O-H+	Methyl vinyl ketone, methacrolein	65	47	53	2.7	16	4.3	18	5.2	22	4.6	
73.03	C3H4O2-H+	2-Propenoic acid	119	98	34	1.7	64	10.1	85	9.7	152	13.3	
75.04	C3H6O2-H+	Hydroxy-2-propanone	18	17	46	2.3	32	6.7	—	—	42	7.8	
85.06	C5H8O-H+	e.g. Pentenal	44	50	25	<i>2.2</i>	40 12	9.0 3.7	14	3.5	15	4.4	
87.04	C4H6O2-H+	e.g. 2,3- butadione	59	54	43	3.1	30	6.5	40	6.7	59	9.0	
101.06	C5H8O2-H+	e.g. 2,3-pentanedione	—	—	52	3.5	—	—	—	—	19	4.4	
103.04	C4H6O3-H+	Acetic anhydride	46	52	46	2.2	26	6.4	51	7.2	27	6.1	
103.07	C5H10O2-H+ C5H8O3-H+	e.g. Methyl-butanoic acid	34		22	2.3			17	- 4.8	18/	14.4	
Carbon	vls-B	e.g. Acetyloxypropatolic	54	40	47	2.1	50	0.1	17	4.0	15	5.5	
59.05	C3H6O-H+	Acetone	76	61	30	2.5	50	9.5	_	_	16	3.8	
61.03	C2H4O2-H+	Acetic acid, glycolaldehyde	73	50	49	2.9	20	5.4	41	6.9	25	5.9	
73.06	C4H8O-H+	2-butanone and 2-methylpropanal	—	—		—	—	_	—	—	15	4.3	
77.02	C2H4O3-H+	Acetic acid, hydroxy-			57	2.5	—	_	157	- 11.2	36	7.2	
91.04	C3H6O3-H+	e.g. lactic acid			53	2.5		_			106	10.7	
99.01	C4H2O3-H+	Maleic anhydride	20	64	16	2.1	19	5.4	31	6.5	27	5.8	
101.02	C4H4O3-H+	Succinic anhydride	—	—	22	2.3	—	—	—	—	45	7.7	
105.03	C4H8O3-H+	e.g. Acetic acid, methoxy-	—	—	40	3.1	—	_	—	—	84	10.6	
CHN	CO11233 11	A	145										
42.03	C2H3N-H+ C3H3N-H+	Acetomtrile	145		102	3.5	14	37	14	3.5	22		
104.04	C7H5N-H+	Benzonitrile	75	30	34	2.4	15	4.5	14	3.0	15	5.9	
133.06	C8H8N2-H+	n.i.	29	47	_	2.1	12	4.2	12	3.1	12	4.2	
CHNO,	m/z < 100												
44.01	HCNO-H+	Isocyanic acid	105	103	43	3.1	65	3.8	106	_	96	4.3	
58.04	C2H3NO-H+	Methyl isocyanate	73	—	31	3.2	17	10.2	12	10.2	31	11.1	
62.02	CLISINO-H+ CH3NO2-H+	e.g. nitromethane, methyl nitrite	25	10	47	2.4 2.5	85	11.4	73	 9.4	57 75	0.9 9.7	
72.05	C3H5NO-H+	Methoxyacetonitrile or acrylamide		92	_		11	3.9			22	4.5	
76.05	C2H5NO2-H+	e.g. Nitroethane	104	21	45	2.6	—	_	-	_	154	13.2	
88.04	C2H5N3O-H+ or	C3H5NO2-H+		24	35	2.4	39	8.8	-	_	41	8.0	
96.05	C5H5NO-H+	Pyridine-N-oxide	48	60 25	106			 5_4	16 17	4.3	16 15	4.2	
90.03	Сэнэмэ0-п+	111-1 y1a2010, 4-11110-1	00	- 23	100	2.2	19	5.4	1/	4.0	13	4.3	

Table 7 - continued			Dark aging		Photochemical aging							
			FI-D-HONO SI-D-PcA		FI-D-HONO SI-D-PcA			FI-PcA		SI-PcA		
m/z	Ion formula	Compound	[min]	[min]	[min]	[atm. h]	[min]	[atm. h]	[min]	[atm. h]	[min]	[atm. h]
CHNO, m/z > 100												
100.01	C3HNO3-H+	n.i.	_	51	23	2.2	21	5.3	32	6.3	29	6.6
100.07	C5H9NO-H+	n.i.	44	42	65	2.7	56	9.9	13	3.6	11	2.6
114.05	C5H7NO2-H+	n.i.	_	94	55	2.9	28	6.9	38	6.0	33	6.7
122.02	C6H3NO2-H+	e.g. Oxo-furan-2-acetonitrile	46	72	57	2.3	106	12.7	13	3.3	28	6.5
136.04	C7H5NO2-H+	e.g. Furoylacetonitrile	30	47	64	3.0	54	9.8	49	7.0	11	2.6
140.03	C6H5NO3-H+	Nitrophenols, Oxiniacic acid	51	78	104	3.3	75	11.1	150	12.2	20	5.2
150.02	C7H3NO3-H+	e.g. Pyridinedicarboxylic anhydride	—	—	29	2.3	—	—	_	—	121	11.6
154.05	C7H7NO3-H+	e.g. Nitrocresol	38	50	_	—	43	7.8	24	4.8	26	5.6
CHO											Í	
33.03	CH3OH-H+	Methanol	_	_	55	3.2	25	6.5	_	—	—	_
49.03	CH4O2-H+	Methyl peroxide or methanediol	_	89	38	3.1	13	3.3	_	—	21	4.8
63.04	C2H6O2-H+	n.i.	_	178	26	2.0	_	_	_	—	- 1	—
77.05	C3H8O2-H+	e.g. Ethanol 2-methoxy-	_	_	37	2.7	—	_	_	—	—	—
81.03	C5H4O-H+	2,4-Cyclopentadiene-1-one	17	27	_	—	20	5.4	7	2.8	6	1.7
85.03	C4H4O2-H+	Furanone	2	3	45	2.6	24	7.0	37	5.9	45	7.8
111.08	C7H10O-H+	e.g. Heptenedial or trimethylfuran	_	16		—	—	_	_	—	11	2.5
113.02	C5H4O3-H+	e.g. 2-furoic acid	161	167	16	2.1	21	5.4	25	4.8	20	5.4
113.06	C6H8O2-H+	eg. Methylcyclohexanone	40	—	_	—	—	—	12	3.1	17	3.9
115.04	C5H6O3-H+	e.g. Hydroxymethylfuranone	—	—	28	2.2	—	—	_	—	7	2.1
149.02	C8H4O3-H+	Phthalic anhydride	_	_	25	2.1	—	_	62	8.8	65	8.9
Aliphati	c hydrocarbons	1									Í	
53.04	C4H4-H+	Butenyne	7	43	76	2.5	15	4.1	19	5.0	16	3.8
67.05	C5H6-H+	1,3-cyclopentadiene	12	14	50	3.6	10	3.1	5	1.9	4	0.8
69.07	C5H8-H+	Isoprene	77	_	—	—	_	_	_		9	2.7
81.07	C6H8-H+	e.g. Cyclohexa-1,3-diene; fragments	9	11	_	—	6	0.9	3	0.6	4	0.6
137.13	C10H16-H+	Monoterpenes	17	28	_		_		5	1.7	6	1.6

171 **Table S8.** Reaction rates $[cm^3 molec.^{-1} s^{-1}]$ of selected gases with OH, O₃ and NO₃, based on

172 previous research compiled in the NIST Chemical Kinetics Database.¹⁷ Rates are recited at

173 291.15K, if not otherwise specified.

	OH		O ₃		NO ₃	
Aromatic hydrocarbons						
Benzene	1.2E-12		9.4E-23 *		<3.0E-17	298K
Toluene	6.3E-12	298K	2.3E-22 *		6.8E-17	298K
Naphthalene	2.2E-11	298K	<3.0E-19	295K	2.0E-11	298K
Furanoic compounds						
Furan	4.2E-11		2.4E-18	298K	1.4E-12	295K
Furfural	3.5E-11	300K			1.2E-12	298K
Phenolic compounds						
Phenol	2.8E-11	296K			3.6E-12	298K
m-cresol	5.7E-11	300K	1.9E-19		1.2E-11	298K
Guaiacol	7.4E-11	295K	2.2E-19	294K		
Monoterpenes						
Camphene	5.3E-11	296K	9.0E-19	296K	6.6E-13	296K
Limonene	1.7E-10	294K	2.1E-16	296K	1.2E-11	298K
a-pinene	5.3E-11	298K	8.7E-17	296K	6.4E-12	
Carbonyls						
Acetaldehyde	1.7E-11 *		<6.0E-21	296K	2.1E-15	
Acetone	2.3E-13	300K			<8.5E-18	
Acetic acid	8.0E-13	298K				
Other compounds						
NO	3.2E-11		1.6E-14		2.6E-11	
NO ₂	7.6E-11		2.9E-17		1.9E-12	
Propene	3.0E-11		8.6E-18		8.7E-15	
Benzaldehyde	1.3E-11	298K	<2.0E-19	299K	2.0E-15	298K
Methanol	8.5E-13				1.1E-16	

170

175

*= value extrapolated to out of the temperature range of the original experiment.

References

1. Cappellin, L.; Karl, T.; Probst, M.; Ismailova, O.; Winkler, P.M.; Soukoulis, C.; Aprea, E.; Märk, T.D.; Gasperi, F.; Biasioli, F. On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry. *Environ. Sci. Technol.* **2012**, *46* (4), 2283-2290.

2. Buhr, K.; van Ruth, S.; Delahunty, C. Analysis of volatile flavour compounds by Proton Transfer Reaction-Mass Spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds. *International Journal of Mass Spectrometry* **2002**, *221* (1), 1-7.

3. Gueneron, M.; Erickson, M.H.; VanderSchelden, G.S.; Jobson, B.T. PTR-MS fragmentation patterns of gasoline hydrocarbons. *International Journal of Mass Spectrometry* **2015**, *379*, 97-109.

4. Jobson, B.T.; Volkamer, R.A.; Velasco, E.; Allwine, G.; Westberg, H.; Lamb, B.K.; Alexander, M.L.; Berkowitz, C.M.; Molina, L.T. Comparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment. *Atmospheric Chemistry and Physics* **2010**, *10* (4), 1989-2005.

5. Misztal, P.K.; Heal, M.R.; Nemitz, E.; Cape, J.N. Development of PTR-MS selectivity for structural isomers: Monoterpenes as a case study. *International Journal of Mass Spectrometry* **2012**, *310*, 10-19.

6. Odum, J.R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R.C.; Seinfeld, J.H. Gas/particle partitioning and secondary organic aerosol yields. *Environ. Sci. Technol.* **1996**, *30* (8), 2580-2585.

7. Hatch, L.E.; Luo, W.; Pankow, J.F.; Yokelson, R.J.; Stockwell, C.E.; Barsanti, K.C. Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry. *Atmospheric Chemistry and Physics* **2015**, *15* (4), 1865-1899.

8. Ng, N.L.; Brown, S.S.; Archibald, A.T.; Atlas, E.; Cohen, R.C.; Crowley, J.N.; Day, D.A.; Donahue, N.M.; Fry, J.L.; Fuchs, H. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. *Atmospheric Chemistry and Physics* **2017**, *17* (3), 2103-2162.

9. Lee, A.; Goldstein, A.H.; Kroll, J.H.; Ng, N.L.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. *Journal of Geophysical Research: Atmospheres* **2006**, *111* (D17).

10. Ng, N.L.; Kroll, J.H.; Chan, A.; Chhabra, P.S.; Flagan, R.C.; Seinfeld, J.H. Secondary organic aerosol formation from m-xylene, toluene, and benzene. *Atmospheric Chemistry and Physics* **2007**, 7 (14), 3909-3922.

11. Barsanti, K.C.; Carlton, A.G.; Chung, S.H. Analyzing experimental data and model parameters: implications for predictions of SOA using chemical transport models. *Atmospheric Chemistry and Physics* **2013**, *13* (23), 12073-12088.

12. Hallquist, M.; Wngberg, I.; Ljungstrm, E.; Barnes, I.; Becker, K. Aerosol and product yields from NO₃ radical-initiated oxidation of selected monoterpenes. *Environ. Sci. Technol.* **1999**, *33* (4), 553-559.

13. Fry, J.L.; Draper, D.C.; Barsanti, K.C.; Smith, J.N.; Ortega, J.; Winkler, P.M.; Lawler, M.J.; Brown, S.S.; Edwards, P.M.; Cohen, R.C. Secondary organic aerosol formation and organic nitrate yield from NO₃ oxidation of biogenic hydrocarbons. *Environ. Sci. Technol.* **2014**, *48* (20), 11944-11953.

14. Nah, T.; Sanchez, J.; Boyd, C.M.; Ng, N.L. Photochemical aging of α -pinene and β -pinene secondary organic aerosol formed from nitrate radical oxidation. *Environ. Sci. Technol.* **2015**, *50* (1), 222-231.

15. Tiitta, P.; Leskinen, A.; Hao, L.; Yli-Pirilä, P.; Kortelainen, M.; Grigonyte, J.; Tissari, J.; Lamberg, H.; Hartikainen, A.; Kuuspalo, K.; Kortelainen, A.-.; Virtanen, A.; Lehtinen, K.E.J.; Komppula, M.; Pieber, S.; Prévôt, A.S.H.; Onasch, T.B.; Worsnop, D.R.; Czech, H.; Zimmermann, R.; Jokiniemi, J.; Sippula, O. Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging. *Atmos. Chem. Phys.* **2016**, *16* (20), 13251-13269.

16. Reda, A.A.; Czech, H.; Schnelle-Kreis, J.; Sippula, O.; Orasche, J.; Weggler, B.; Abbaszade, G.; Arteaga-Salas, J.; Kortelainen, M.; Tissari, J.; Jokiniemi, J.; Streibel, T.; Zimmermann, R. Analysis of Gas-Phase Carbonyl Compounds in Emissions from Modern Wood Combustion Appliances: Influence of Wood Type and Combustion Appliance. Energy Fuels 2015, 29 (6), 3897-3907; 10.1021/ef502877c

17. J. A. Manion, R. E. Huie, R. D. Levin, D. R. Burgess Jr., V. L. Orkin, W. Tsang, W. S. McGivern, J. W. Hudgens, V. D. Knyazev, D. B. Atkinson, E. Chai, A. M. Tereza, C.-Y. Lin, T. C. Allison, W. G. Mallard, F. Westley, J. T. Herron, R. F. Hampson, and D. H. Frizzell, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.12, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320. Web address: http://kinetics.nist.gov/