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Abstract 11 

Genetic variants at hundreds of loci associated with cardiovascular phenotypes have been identified 12 
by genome wide association studies. Most of these variants are located in intronic or intergenic 13 
regions rendering the functional and mechanistic follow up difficult. These non-protein-coding 14 
regions harbor regulatory sequences. Thus the study of genetic variants associated with transcription 15 
– so called expression quantitative trait loci – has emerged as a promising approach to identify 16 
regulatory sequence variants. The genes and pathways they control constitute candidate causal 17 
drivers at cardiovascular risk loci. This review provides an overview of the expression quantitative 18 
trait loci resources available for cardiovascular genetics research and the most commonly used 19 
approaches for candidate gene identification. 20 

Background 21 

The ultimate goal of any genetic association analysis is to identify genetic variation linked to 22 
variation of a phenotype and to elucidate the molecular mechanisms, which are altered by the 23 
sequence variation. Genome wide association studies have been tremendously successful in 24 
identifying thousands of disease-associated loci as documented by the steady growth of the 25 
continuously updated GWAS catalog (MacArthur et al. 2017). This progress has also highlighted 26 
hundreds of loci associated with cardiovascular phenotypes: the current GWAS catalog (Burdett et al. 27 
2018) lists 249 distinct chromosomal regions associated with coronary artery disease with candidate 28 
genes and pathways at many loci summarized in (Klarin et al. 2017), 138 / 115 with diastolic / 29 
systolic blood pressure, 109 with QT interval, to name just the top three cardiovascular phenotypes. 30 
Follow up analysis of these loci aim to establish the causal mechanisms underlying the statistical 31 
associations. In classical family based linkage studies typically identifying rare variants with very 32 
large effect sizes, the causal variants are typically located in the protein sequence and have a strong 33 
impact on protein function (Timpson et al. 2018), for instance truncating mutations in the sarcomeric 34 
protein TTN cause dilated cardiomyopathy (Siu et al. 1999; Gerull et al. 2002; Herman et al. 2012; 35 
Roberts et al. 2015). In GWAS however, the identification of causal variants proved to be very 36 
challenging, since the vast majority of these disease-associated variants is located either in introns of 37 
genes or in intergenic regions (Burdett et al. 2018). Therefore the classical approach of identifying 38 
the variant with strongest impact on protein function, such as gained stop codons is not sufficient. 39 
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Recent large-scale efforts have annotated a plethora of functional regulatory elements such as 40 
enhancers residing in the non-protein-coding part of the genome (ENCODE Project Consortium 41 
2012; Roadmap Epigenomics Consortium et al. 2015). Therefore an alternative mechanism might be 42 
that disease-associated regulatory variants alter the sequence and function of such regulatory 43 
elements. Indeed a systematic analysis of the location of disease-associated variants showed that they 44 
preferentially reside in regulatory elements (Maurano et al. 2012; Farh et al. 2015). Since regulatory 45 
elements are highly tissue specific, this information can even be used to identify the disease-relevant 46 
tissues (Maurano et al. 2012; Farh et al. 2015). These results from localization analysis are highly 47 
suggestive that disease-associated variants alter regulatory elements. It now remains to be shown that 48 
they indeed are altered and to identify the respective target gene whose transcription is controlled by 49 
the regulatory element. 50 

Integrated analysis of the genetics of gene expression provides an elegant way of directly assessing 51 
the consequences of putative regulatory sequence variants on transcription. In this study design 52 
(Jansen and Nap 2001), a population cohort is characterized for their genome wide patterns of genetic 53 
variation and also for genome wide gene expression. Gene expression levels are treated as 54 
quantitative traits and systematically tested for associations between sequence variants and gene 55 
expression. Significant associations are called expression quantitative trait loci (eQTL). These eQTL 56 
not only identify putative regulatory variants, but also their target genes as the gene whose expression 57 
is associated with the variant (Civelek and Lusis 2014; Albert and Kruglyak 2015). Biological 58 
information processing and regulation is not limited to transcription, so this approach has also been 59 
generalized towards other intermediate molecular traits such as DNA methylation (Banovich	et	al.	60 
2014;	Lemire	et	al.	2015), open chromatin (Degner et al. 2012), histone modifications (Waszak	et	61 
al.	2015;	Grubert	et	al.	2015) (Del Rosario et al. 2015), gene, exon and transcript expression levels 62 
(Montgomery et al. 2010; Pickrell et al. 2010; Lappalainen et al. 2013; GTEx Consortium et al. 2015; 63 
Battle et al. 2017) translation and protein levels (Li	et	al.	2016) as well as metabolites (Suhre	et	al.	64 
2011;	Shin	et	al.	2014). In particular the information from the epigenome can be used to identify 65 
regulatory variants, and to characterize their role in disease (Maurano et al. 2012; Del Rosario et al. 66 
2015; Degner et al. 2012; Li et al. 2016).  67 

eQTL resources for cardiovascular genetics 68 

Regulatory elements and also the effects of variants on those elements can be highly tissue specific, 69 
therefore it is key to investigate the tissue relevant for the disease (Maurano et al. 2012; Grundberg et 70 
al. 2012; Farh et al. 2015; GTEx Consortium et al. 2015). Because biopsies of tissues relevant for 71 
cardiovascular diseases, in particular of the heart are very difficult to obtain from humans, it is not 72 
surprising, that early applications of eQTL analysis to identify candidate genes for cardiovascular 73 
phenotypes were reported in animal models (Monti et al. 2008). To understand the regulatory impact 74 
of sequence variants in humans, samples of disease relevant tissues are often obtained during surgery, 75 
from organ donors or from post-mortem sections. As a consequence of these practical considerations, 76 
the transcriptome data might be confounded by differences in tissue composition (Heinig et al. 2017) 77 
or ischemic time of post-mortem samples (GTEx Consortium et al. 2015). Therefore additional care 78 
has to be taken in data analysis accounting for observed and hidden confounders (Stegle et al. 2010). 79 
Current reviews provide an overview of recent human eQTL studies (Albert and Kruglyak 2015; 80 
Vandiedonck 2018).The most comprehensive study to date is the Genotype tissue expression (GTEx) 81 
project, which aims to characterize regulatory sequence variants across 44 distinct tissues from post-82 
mortem sections (Battle et al. 2017). This includes cardiac tissues: left ventricle, atrial appendage; 83 
vascular tissues: aorta, tibial artery, coronary artery; as well as metabolic tissues: liver, subcutaneous 84 
and viscelar adipose tissue (Table 1). In terms of sample size and coverage of tissues of interest, the 85 
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eQTL data generated in the STARNET consortium is currently the most comprehensive resource 86 
(Franzén et al. 2016). It focuses on vascular and metabolic tissues in patients with coronary artery 87 
disease. It has been shown that eQTL are sometimes dependent on the disease context (Heinig et al. 88 
2017). This observation is also supported by the finding that more eQTLs associated with disease 89 
SNP can be found in diseased populations (Franzén et al. 2016). Formation of atherosclerotic plaques 90 
is an inflammatory process, therefore also immune cells such as monocytes or macrophages are 91 
considered disease relevant tissues and have been extensively profiled (Zeller et al. 2010). Since the 92 
disease relevant tissues are not always known a priori efforts are currently underway to establish 93 
cohorts of induced pluripotent stem cell that can potentially be differentiated into any cell type for 94 
genetic mapping (Kilpinen et al. 2017). These eQTL projects are complemented by large scale 95 
projects aimed at creating a reference map of regulatory elements across an exhaustive set of 111 96 
human cell types and tissues (Roadmap Epigenomics Consortium et al. 2015) by annotation with 97 
epigenetic markers of regulatory elements and recent developments of sequencing based methods 98 
(e.g. Hi-C) to study chromosomal architecture(Davies et al. 2017) in a wide variety of human tissues 99 
(Schmitt et al. 2016) including heart, liver and aorta. These techniques can identify promoter – 100 
enhancer interactions and have already been used successfully to identify IRX3 as the causal gene 101 
underlying an obesity GWAS hit located in the intron of the FTO gene (Smemo et al. 2016). 102 

Candidate identification strategies 103 

cis eQTL candidate genes 104 

Overlapping eQTL and GWAS SNPs is the most straightforward approach to identify candidate 105 
genes for GWAS hits. If a GWAS SNP is also an eQTL for a close by gene or in tight LD with an 106 
eQTL, it is conceivable that the SNP indeed affects a regulatory element controlling the expression 107 
the respective gene. These genes are typically called cis-eQTL when the distance between gene and 108 
variant is not further than 500kb – 1Mb, as opposed to trans-eQTL, where the distances are greater or 109 
the variant and gene are located on different chromosomes. Cardiovascular candidate genes such as 110 
SORT1 (Musunuru et al. 2010) and LIPA (Wild et al. 2011) have been identified as cis-eQTL. It has 111 
been demonstrated that these candidate genes frequently are not the genes located closest to the 112 
GWAS SNP for heart related traits (Heinig et al. 2017) and also more generally for any GWAS trait 113 
(GTEx Consortium et al. 2015; Battle et al. 2017). Nowadays, this candidate annotation approach is 114 
becoming a standard analysis included in many GWAS papers and can be performed conveniently 115 
using the online software FUMA (Watanabe et al. 2017). For instance a recent GWAS on CAD (van 116 
der Harst and Verweij 2018) identified eQTL for 196 genes at 97 of the 161 CAD loci found in the 117 
analysis from GTEx and other eQTL data bases. This result already demonstrates one caveat of the 118 
approach: several candidate genes might emerge for a locus and might be inconsistent between 119 
tissues or GWAS variants might also associate with eQTL by chance (Battle et al. 2017). In this 120 
particular example 36 loci have unique candidate genes and additional 24 loci have candidate genes 121 
detected consistently across tissues, so 60 loci can be annotated confidently. Overall a highly 122 
significant enrichment of trait associated SNPs can be observed among eQTLs as demonstrated for 123 
heart related traits (Heinig et al. 2017). Less frequently also trans-eQTL are considered for the 124 
annotation of GWAS SNPs, as they do not readily provide a clear mechanistic explanation. 125 
Nevertheless, it has been shown in a systematic analysis of GWAS variants, that they frequently also 126 
associate with expression levels of genes distant to the GWAS locus (Westra et al. 2013). 127 

An important limitation of the overlap-based strategy is that it cannot be used to establish causality. 128 
Strictly speaking the experimental design does only allow inferring causality in a statistical sense. In 129 
genetic associations the direction of causality is always fixed (Figure 1 (A)). To establish a causal 130 
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chain between genetic variation, gene expression and the disease phenotype in the strict sense, an 131 
interventional experiment would be required, where all other confounding factors that could 132 
determine the phenotype are fixed and only the gene expression level would be manipulated to to test 133 
an effect on the phenotype. If gene expression is indeed causal for the phenotype, any change of the 134 
gene expression necessarily would cause a change in the phenotype. In the concept of Mendelian 135 
randomization (MR) one is considering a genetic variant as instrumental variable controlling the 136 
levels of gene expression and observes its effect on the phenotypic outcome (Davey Smith and 137 
Hemani 2014). In analogy to randomized control trials, individuals get assigned to a group based on 138 
their genotype. Because the direction of causality between genetic variant and gene expression is 139 
fixed and the genetic variant is robustly associated with expression levels, one group will receive a 140 
higher dose of gene expression. Assuming that the genotype is independent of confounding factors 141 
(Figure 1 (A)) changes in phenotypic outcome can be attributed to the changes in gene expression. 142 

Classically, MR and similar approaches to statistically establish causality (Schadt et al. 2005) 143 
(Millstein et al. 2009) require to measure all variables in the same population Figure 1 (B). This is 144 
often not feasible, as gene expression profiling in each and every disease cohort is prohibitively 145 
expensive. In practice GWAS SNPs and eQTLs are identified in separate populations. Because of 146 
data privacy regulations, often a researcher only has access to the full individual level data of one 147 
population and the summary statistics of the other population. Depending on which full data set is 148 
available there exist several methods allowing to directly integrate the measured data with summary 149 
statistics (Pickrell et al. 2016; Hormozdiari et al. 2016; Gusev et al. 2016; Zhu et al. 2016). A 150 
Bayesian co-localization approach based on summary statistics (Giambartolomei et al. 2014) is 151 
testing whether the co-localization of two association signals is compatible with a common 152 
underlying causal variant and has been successfully applied to blood lipid traits and liver eQTL. An 153 
alternative approach is to impute gene expression levels (Manor and Segal 2013) into a GWAS 154 
population (Gamazon et al. 2015; Gusev et al. 2016) using eQTL summary statistics from an eQTL 155 
reference population. Subsequently the imputed gene expression can be correlated to the disease 156 
phenotype to identify candidate genes (Gamazon et al. 2015; Gusev et al. 2016). Alternatively the 157 
transcriptome wide association study (TWAS) method (Gusev et al. 2016) and other methods 158 
(Barbeira et al. 2017) can also work completely without individual level data by indirectly 159 
associating expression and phenotype using eQTL and GWAS summary statistics and the LD 160 
structure between SNPs. The TWAS approach showed superior power compared to colocalization 161 
analysis and simple overlap based analysis in cases where the causal variants are not directly 162 
observed, or when multiple causal variants affecting expression and phenotype exist. Consistent with 163 
other candidate identification strategies, analysis of obesity related traits with TWAS showed that 164 
66% of identified trait associated genes were not the closest gene (Gusev et al. 2016). Summary data-165 
based Mendelian Randomization (SMR) is a method that can be used if only summary statistics are 166 
available from both eQTL and GWAS results. The method makes use of standard two-sample MR 167 
(Pierce and Burgess 2013) to identify causal or pleiotropic effects of sequence variants on gene 168 
expression and phenotypes and distinguishes this situation from overlapping independent causal 169 
variants in LD using a test on multiple SNPs (Zhu et al. 2016). Similar to results from TWAS 170 
analyses, the application of this method to five common diseases  showed that only 60% of the 171 
identified candidate genes are the closest gene to the GWAS SNP.  172 

Network based analysis 173 

Genes are not acting in isolation, but rather form functionally related pathways and networks. 174 
Pathways are usually defined based on curated prior knowledge about well-studied processes such as 175 
biochemical reactions and signaling pathways (KEGG, Reactome, GO). Pathways can be represented 176 
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as sets of genes of the same process or as networks preserving the topological information which 177 
genes are connected to one another, for instance by catalyzing adjacent steps in a metabolic pathway. 178 
Alternatively, networks can be derived from high-throughput experiments such as transcriptome 179 
profiling (co-expression network) or protein-protein interaction (PPI) screening (PPI network). 180 
Pathways and networks defined either from prior knowledge or from data can subsequently be used 181 
for the interpretation of disease associations derived from GWAS. Representing pathways as sets of 182 
genes, one can ask, whether a set of genes shows higher evidence of association to disease than 183 
random gene sets of the same size. Because GWAS test individual SNPs and not genes, a mapping 184 
between SNPs and genes is required, for instance based on genomic positions. Methods such as SNP 185 
set enrichment analysis (Zhong, Beaulaurier, et al. 2010; Zhong, Yang, et al. 2010) can then be used 186 
to test the statistical significance of the association between gene sets and the GWAS results by 187 
comparing the distribution of GWAS P-values of SNPs within the pathway to a background 188 
distribution. These methods have been applied to show the association between CAD and pathways 189 
for lipid metabolism, coagulation, immunity (Mäkinen et al. 2014). 190 

Since eQTL experiments require transcriptome profiling in large cohorts, it is natural to use this data 191 
to define data driven gene co-expression networks and gene sets,  so called co-expression modules. 192 
These gene sets are then annotated according to their gene function or cell type specificity and then 193 
related to disease via GWAS results using SNP set enrichment analysis. The link between genes and 194 
SNPs can naturally be established via cis-eQTLs of the genes of a co-expression module. This 195 
approach was also used in the CAD study mentioned above (Mäkinen et al. 2014). It is important to 196 
note that co-expression modules are not necessarily fully overlapping with biochemical pathways 197 
although they might represent the same disease process. For instance the modules might contain 198 
transcriptional regulators and parts of a biochemical process that they control. 199 

Network topology of co-expression networks is often used to prioritize candidate genes based on the 200 
assumption, that genes with many network connections (so called hubs) are more important  (Wang 201 
et al. 2012; Shu et al. 2017; Mäkinen et al. 2014; Talukdar et al. 2016; Franzén et al. 2016). A study 202 
investigating shared molecular networks and their drivers between cardiovascular diseases and type 2 203 
Diabetes applied this strategy (Shu et al. 2017). Knockout mice for selected key driver genes show 204 
indeed metabolic phenotypes and gene expression changes in the network neighborhood of the key 205 
drivers. Similarly several studies on CAD identified key driver genes and provided evidence for their 206 
functional implication in mouse (Talukdar et al. 2016) and in vitro studies (Talukdar et al. 2016; 207 
Mäkinen et al. 2014).  208 

Conclusions 209 

eQTL data provides first leads towards uncovering the mechanisms underlying the statistical 210 
associations observed between genetic loci and common cardiovascular diseases. Major challenges 211 
for a broad applicability of this approach need to be overcome. First, regulatory elements and 212 
therefore also the regulatory impact of sequence variation is highly cell type specific. The GTEx 213 
project is addressing this challenge by providing a large scale cross tissue eQTL data base. However, 214 
not all conceivable tissues and cell types can be systematically analyzed. In particular transient 215 
developmental stages might leave a lasting phenotypic footprint. Induced pluripotent stem cells from 216 
cohorts offer an elegant solution(Kilpinen et al. 2017) as they can potentially be differentiated into 217 
any cell type or developmental stage (Nguyen et al. 2018) and studied for eQTLs. A second 218 
challenge is posed by variability of the genetic effects on expression between different cells making 219 
up a tissue and even between cells of the same cell type. eQTL mapping based on single cell 220 
transcriptomic data is becoming feasible (Kang et al. 2018) and can be used to quantify and map the 221 
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genetic determinants of cell to cell variability of gene expression. Lastly the grand challenge is to 222 
move from correlation or co-localization towards causation. Clearly this is the most difficult task and 223 
requires on top of rigorous statistical approaches such as MR also experimental validation. 224 
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 461 
5 Tables 462 
 463 
Table 1. Recent cardiovascular eQTL resources. 464 
 465 
Ref Tissue Sample size Population 
(Sigurdsson et al. 2017) Left Atrial wall 62 European 
(Heinig et al. 2017) Left Ventricle 205 European 
(Christophersen et al. 2017) Left Atria 329 European / African American 
(Koopmann et al. 2014) Left Ventricle 129 European 
(Battle et al. 2017) Atrial Appendage 264 European / African American 
(Battle et al. 2017) Left Ventricle 272 European / African American 
(Battle et al. 2017) Aorta 267 European / African American 
(Battle et al. 2017) Tibial artery 388 European / African American 
(Battle et al. 2017) Coronary artery 152 European / African American 
(Battle et al. 2017) Adipose - Subcutaneous 385 European / African American 
(Battle et al. 2017) Adipose - Visceral 313 European / African American 
(Battle et al. 2017) Liver 153 European / African American 
(Franzen et al. 2016) Mammary artery  600 European 
(Franzen et al. 2016) Atherosclerotic aortic root  600 European 
(Franzen et al. 2016) Visceral abdominal fat  600 European 
(Franzen et al. 2016) Skeletal muscle  600 European 
(Franzen et al. 2016) Liver 600 European 

 466 
Figure legends 467 
 468 
Figure 1: Using eQTL data to identify causal candidate gene at GWAS loci. Integration of eQTL and 469 
GWAS data allows for the identification of candidate causal genes, where the effect of the genetic 470 
variant (SNP) on the complex trait is mediated by expression levels of an RNA encoded at the locus 471 
(A). Overlapping associations of gene expression and clinical trait at the same locus are however not 472 
sufficient to infer causality, as they might also be explained as independent pleiotropic effects (A). 473 
Depending on the availability of overlapping individual level data sets of genotypes, gene expression 474 
and clinical traits there exist several statistical methods to perform causal inference from the data (B). 475 


