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Abstract	
Firefly	Luciferase	is	an	enzyme	that	has	found	ubiquitous	use	in	biological	assays	in	high-
throughput	 screening	 (HTS)	 campaigns.	The	 inhibition	of	 luciferase	 in	 such	assays	 could	
lead	 to	a	 false	positive	 result.	This	 issue	has	been	known	 for	a	 long	 time	and	 there	have	
been	 significant	 efforts	 to	 identify	 luciferase	 inhibitors,	 to	 enhance	 recognition	 of	 false	
positives	 in	 screening	 assays.	 However,	 although	 a	 large	 amount	 of	 publicly	 accessible	
luciferase	counterscreen	data	is	available,	so	far	little	effort	has	been	devoted	to	building	a	
chemoinformatic	model	that	can	identify	such	molecules	in	a	given	dataset.		
In	this	study	we	developed	models	to	identify	these	molecules	using	various	methods,	such	
as	molecular	docking,	SMARTS	screening,	pharmacophores,	and	machine	learning	methods.	
Amongst	 the	 structure-based	 methods,	 the	 pharmacophore-based	 method	 showed	
promising	 results,	 with	 a	 balanced	 accuracy	 of	 74.2%.	 However,	 machine-learning	
approaches	 using	 associative	 neural	 networks	 outperformed	 all	 the	 other	 methods	
explored,	producing	a	final	model	with	a	balanced	accuracy	of	89.7%.	The	high	predictive	
accuracy	of	this	model	is	expected	to	be	useful	for	advising	which	compounds	are	potential	
luciferase	inhibitors	present	in	luciferase	HTS	assays.	The	models	developed	in	this	work	
are	freely	available	at	the	OCHEM	platform	at	http://ochem.eu.	
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Introduction	
	
With	 advances	 in	 molecular	 biology	 and	 other	 areas	 such	 as	 engineering	 and	
computation,	high-throughput	assay	formats	have	become	routine	and	are	widely	
used	 in	 early	 stage	 drug	 discovery	 today1.	 For	 hit	 detection	 a	 large	 fraction	
(~20%)2	 of	 these	 assays	 rely	 on	 bioluminescence;	 a	 technique	 that	 reduces	
background	 noise	 and	 benefits	 from	 an	 excellent	 signal/noise	 ratio.	 Such	 assays	
primarily	 rely	 on	 the	 luciferase	 enzyme,	 which	 is	 naturally	 found	 in	 various	
organisms	across	 the	animal	kingdom,	such	as	 the	 firefly	 (Photinus	 sp.),	 larvae	of	
certain	beetles	known	as	glow	worms,	and	various	marine	organisms.	Among	these,	
the	 firefly	 luciferase	 (FLuc)	 obtained	 from	 fireflies	 (Photinus	pyralis)	 is	 the	most	
common	and	widely	used	variant.	The	natural	substrate	for	Luciferase	is	luciferin.	
The	 enzyme	 catalyzes	 the	 production	 of	 oxyluciferin	 and	 light	 via	 a	 Luciferyl-
adenylate	intermediate,	which	is	detected	and	measured	in	the	assay.		
	
It	has	been	known	for	a	long	time	that	ligand	molecules	tested	in	luciferase-based	
assays	can	inhibit	the	luciferase	protein,	and	thus	affect	the	assay	outcome3-5.	For	
this	 reason,	 there	 has	 been	 significant	 interest	 towards	 understanding	 and	
evaluating	 luciferase	 inhibition,	 especially	 in	 the	 context	 of	 a	 high-throughput	
assay1.	 	 In	2008,	Auld	et	al6	published	 the	 first	 comprehensive	 study,	where	 they	
tested	~72000	compounds	for	luciferase	inhibition.	They	also	identified	important	
scaffolds	for	FLuc	inhibition6.	In	2012,	the	same	group	published	a	follow-up	study	
where	they	tested	a	much	larger	set	of	compounds,	and	identified	a	few	additional	
scaffolds2.	They	also	published	a	crystal	structure	of	benzothiol,	an	inhibitor,	bound	
to	FLuc,	establishing	the	binding	mode	and	identifying	key	interactions2.		
	
However,	 despite	 significant	 interest	 and	 large	 datasets	 being	 publicly	 available,	
there	has	been	little	to	no	reported	effort	towards	building	a	computational	model	
for	luciferase	inhibitors.	Such	models	could	potentially	be	used	to	identify	and	filter	
out	 these	 aberrant	 and	 false	 positive	 results	 from	 a	 high-throughput	 assay	 with	
good	accuracy	and	relative	ease.	The	goal	of	our	study	 is	 to	develop	a	model	 that	
can	advise	against	possible	 luciferase	 inhibitors	present	 in	a	HTS	dataset.	 	 In	 this	
study,	we	analyzed	the	publicly	available	data	to	build	such	a	model	using	machine-
learning	 methods	 that	 can	 identify	 luciferase	 inhibitors.	 We	 also	 analyzed	 the	
influence	of	molecular	shape	and	geometry	in	luciferase	inhibition.		
	
Data	
All	 data	 used	 in	 this	 study	 are	 publicly	 available	 in	 PubChem,	 as	 summarized	 in	
Table	1.	The	activity	data	were	downloaded	in	spreadsheet	format	and	structures	
in	SMILES	 format	 from	PubChem	following	 the	Substance	 ID.	The	data	were	 then	
uploaded	to	the	OCHEM	platform,	which	has	established	workflows	for	normalizing	
and	managing	the	data.	The	data	gathered	were	processed	to	look	for	overlap	in	the	
compounds	 tested,	 which	 should	 give	 an	 idea	 about	 the	 coverage	 and	
reproducibility	of	 the	results.	We	found	significant	overlaps	between	the	datasets	
(Figure	1).	
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Table	1:	Summery	of	the	data	used	in	this	study	including	PubChem	Assay	ID.	
set	 Concentrat

ion	 used	
for	testing	

Number	 of	
compounds	
tested	

Number	 of	
compounds	 after	
excluding	
inconclusive	

%	 of	
Actives	

PubChem	
AID†	

Year	

1	 50	μM	 72359	 70658	 2.17	 	
411	

	
2008	1	 11.5	μM	 70231	 70231	 0.72	

2	 10	μM	 195634	 195634	 1.52	 1006	 2010	

3	 50	μM	 364105	 326367	 6.91	 	
588342	

	
2012	3	 11.5	μM	 323224	 323224	 3.25	

	
†	AID	stands	for	Assay	ID	
	
Set2	 is	 a	 complete	 subset	 of	 Set3,	 and	 Set1	 has	 some	 unique	 compounds	 with	
respect	to	Set3.	The	union	of	all	sets	has	a	size	of	375001	compounds.	This	size	of	
data	is	good	for	building	models	and	performing	analysis.	
In	Set1	and	3	there	were	a	 few	molecules	with	 inconclusive	properties.	For	these	
molecules,	 it	 was	 not	 possible	 to	 obtain	 a	 concentration-response	 curve,	 and	
therefore	 the	 activity	 was	 uncertain.	 We	 excluded	 these	 molecules	 from	 our	
analysis,	and	because	of	this,	Set2	was	no	longer	a	complete	subset	of	Set3.	
	

	
Figure	1:	Venn	diagram	representation	of	the	datasets	used.	The	sizes	of	the	circles	reflect	the	relative	sizes	of	
the	datasets.	A.	All	molecules	B.	Active	molecules	

We	 also	 performed	 a	 similar	 analysis	 on	 the	 active	 compounds	 from	 the	 three	
assays.	 Here	 we	 noticed	 that	 Set3	 has	 a	 much	 larger	 active	 compound	 pool	 as	
compared	 to	 the	 others	 (Figure	 1B).	 This	 is	 explained	 by	 the	 fact	 that	 there	 is	 a	
significant	difference	between	 the	highest	concentrations	 tested	 in	 the	respective	
assays:	Set2	was	measured	at	a	maximum	concentration	of	10	μM,	whereas	both	

A B
>. 
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Set1	and	Set3	were	tested	at	a	maximum	concentration	of	50	μM.		Due	to	the	higher	
concentration,	 Set1	 and	 Set3	 contained	 larger	 percentages	 of	 active	 molecules	
compared	 to	 Set2.	 To	 compare	 data	 at	 the	 same	 concentration	 for	 all	 sets,	 we	
extracted	 and	 used	 the	 inhibition	 data	 at	 11.5	 μM	 for	 Set1	 and	 Set3.	 For	 a	 few	
molecules,	 there	were	 no	 data	 points	 available	 at	 11.5	μM,	 hence	 they	were	 not	
considered.	
We	 found	 that	 the	 more	 recent	 assays	 had	 a	 significantly	 larger	 percentage	 of	
active	molecules	when	compared	at	 the	same	concentration	(Table	1).	This	could	
be	either	due	to	difference	in	the	chemical	spaces,	or	that	more	recently	performed	
assays	 are	more	 sensitive	due	 to	 improvements	 in	 assay	 technology.	To	 assess	 if	
chemical	space	plays	a	role,	we	analyzed	the	common	molecules	in	all	three	assays	
(N	=	61224).	We	found	the	same	increasing	trend	(0.7%,	1.0%	and	2.4%	for	Set1,	2	
and	 3	 respectively).	 Because	 the	 chemical	 space	 is	 fixed,	 this	 result	 points	 to	 an	
increase	 in	 assay	 sensitivity.	 Indeed,	 to	 identify	 potential	 luciferase	 inhibition	
through	 counterscreening,	 calibration	 of	 the	 counterscreen	 assay	 with	 known	
inhibitors	is	recommended	to	determine	assay	sensitivity2.	Because	of	this	problem	
the	different	assays	cannot	be	directly	compared.	
	
Methods	
Docking	studies	
	
For	molecular	docking,	Autodock	Vina	was	used7.		SMILES	of	the	molecules	were	
downloaded	from	PubChem,	and,	using	CORINA8,	their	optimized	3D	structures	
were	obtained.	The	molecules	were	prepared	for	docking	using	AutoDockTools9,	
and	were	then	docked	onto	the	luciferase	enzyme	with	an	optimal	bounding	box	
enclosing	the	binding	pocket.	The	binding	box	was	chosen	to	be	large	enough	to	
cover	the	intended	docking	site,	but	not	too	large,	in	order	to	minimize	calculation	
time.	Default	settings	were	used	for	the	preparation	and	docking	processes.	
The	resulting	docking	poses	were	analyzed	using	PYMOL10.	A	plane	was	defined,	by	
choosing	three	points	just	outside	the	binding	pocket.	This	plane	denoted	the	
beginning	of	the	binding	pocket	and	for	each	atom	of	a	ligand,	a	position	vector	was	
calculated	with	respect	to	this	plane.	From	this,	we	calculated	which	atoms	were	
inside	and	outside	the	binding	pocket.	This	information	was	then	averaged	over	all	
the	docking	poses,	resulting	in	the	final	score	that	determined	how	much	of	a	
ligand	was	inside	the	binding	pocket.	
	
Pharmacophore	Analysis	
Because	 crystal	 structure	 of	 luciferase	 bound	 to	 an	 inhibitor	 was	 available,	 we	
investigated	 a	 3D-structure-based	 pharmacophore	 approach	 to	 distinguish	
between	the	active	molecules	and	the	inactives.	The	pharmacophore	development	
and	 screening	 were	 performed	 using	 LigandScout11.	 The	 detailed	 procedure	 for	
developing	the	pharmacophores	has	been	described	in	the	results	section.	
	
Machine	learning	methods.	Using	the	freely	accessible	platform	On-line	Chemical	
and	 Modeling	 Environment	 (OCHEM)12,	 we	 built	 more	 than	 150	 models	 for	 all	
three	 datasets.	We	 used	 primarily	 Associative	 Neural	 Networks	 (ASNN)13,	14	 and	
Support	Vector	Machine	(LibSVM)15	algorithms	for	training	the	models.	Associative	
neural	network	(ASNN)	is	an	ensemble-based	method	inspired	by	the	function	and	
structure	 of	 neural	 network	 correlations	 in	 brain.	 The	 method	 operates	 by	
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simulating	 the	 short-	 and	 long-term	 memory	 of	 neural	 networks	 and	 thalmo-
cortical	 organization	 of	 brain.16	 These	methods	 on	 average	 provided	 the	 highest	
predictive	accuracy	in	comparison	to	other	methods	available	on	the	OCHEM	web	
site.	The	methods	were	used	with	default	parameters	as	specified	on	 the	OCHEM	
web	site.		
	
Molecular	 descriptors.	 A	 variety	 of	 descriptors	 available	 within	 the	 OCHEM	
environment	were	used	to	train	the	models.		
Adriana.Code17	 comprises	 a	 unique	 combination	 of	 topological	 (2D),	 spatial	 (3D)	
and	 global	 molecular	 descriptors	 calculated	 on	 a	 sound	 geometric	 and	
physicochemical	basis.	Adriana	offers	simple	molecular	property	descriptors	such	
as	 molecular	 weight	 and	 molecular	 dipole	 moment	 as	 well	 as	 increasingly	
sophisticated	geometric	descriptors	such	as	Molecular	Radius	of	Gyration.	
ALogPS	 calculates	 two	 descriptors	 provided	 by	 the	 ALOGPS18	 program,	 which	
determine	 the	 water/octanol	 partition	 coefficient	 (logPcalc),	 and	 water	 solubility	
coefficient	(logScalc)19.	
CDK	(3D)	or	 the	Chemistry	Development	Kit	 is	 an	open	 source	 chemoinformatics	
project20.	 There	 are	 several	 types	 of	 descriptors	 available	 from	 the	package,	 that	
are	 integrated	 into	 the	 OCHEM	 environment.	 Descriptors	 calculated	 with	 the	
recently	released	2.0	version	of	CDK	were	used	in	this	study21.	
ChemAxon	Descriptors	(3D)	are	a	set	of	descriptors	developed	and	implemented	by	
the	 ChemAxon	 company22.	 The	 available	 descriptors	 are	 subdivided	 into	 seven	
categories,	namely	Elemental	Analysis,	Charge,	Geometry,	Partitioning,	Protonation,	
Isomers,	 and	Others.	 Descriptors	 that	 return	 a	 Boolean	 or	Numerical	 value	were	
implemented	into	OCHEM.	
Dragon23	(3D)	 is	 a	well-known	software	package,	 for	 the	 calculation	of	molecular	
descriptors,	developed	by	the	Milano	Chemometrics	and	QSAR	Research	Group	of	
Prof.	 R.	 Todeschini.	 It	 comprises	 perhaps	 one	 of	 the	 largest	 and	 most	
comprehensive	 molecular	 descriptor	 libraries	 available,	 with	 a	 total	 of	 5,270	
descriptors	available.	The	descriptors	are	divided	 into	30	discrete	blocks,	such	as	
Topological,	Constitutional,	Drug-like	indices,	etc.	Dragon	is	built	into	OCHEM,	and	
for	this	study,	Dragon	version	6	was	used.	
GSFRAG24	belongs	 to	 the	 category	 of	 2D	 fragment	 descriptors.	 	 It	 calculates	 the	
occurrence	 numbers	 of	 certain	 special	 fragments	 from	 k=2	 to	 10	 vertices	 in	 a	
molecular	 graph	 G,	 that	 can	 be	 used	 as	 molecular	 descriptors	 in	 quantitative	
structure-property/activity	studies.	
ISIDA	 descriptors	 are	 part	 of	 the	 ISIDA	project,	which	 stands	 for	 In-SIlico	 Design	
and	 data	 Analysis25.	 These	 fragment-like	 2D	 descriptors	 are	 calculated	 from	
molecular	 graphs	 using	 three	 different	 methods,	 namely	 paths,	 trees,	 and	
neighbors.	 The	 descriptors	 are	 generated	 from	 the	 fragments	 by	 using	 different	
atom	and	bond	labeling	methods26.	
Mera	 and	 Mersy27	 (3D)	 are	 two	 related	 groups	 of	 descriptors.	 Mera	 provides	 a	
group	 of	 descriptors	 that	 deal	 with	 molecular	 area	 and	 surface.	 Mersy	 is	
abbreviated	 as	 Mera	 Symmetry,	 and	 the	 descriptors	 are	 calculated	 using	 3D	
representations	of	molecules	in	the	framework	of	the	MERA	algorithm.	
Spectrophores	are	1D	descriptors	that	encode	the	property	fields	surrounding	the	
molecules.	This	provides	a	chemical-class-independent	descriptor	that	can	be	used	
to	build	models.		
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QNPR	 or	 Quantitative	 Name	 Property	 Relationship	 are	 1D	 descriptors	 that	 are	
directly	based	on	the	IUPAC	names	or	SMILES	representation	of	the	molecules.	The	
descriptors	 are	 calculated	 by	 splitting	 the	 respective	 string	 into	 all	 possible	
continuous	substrings28.	
ToxAlert’s29	Extended	Functional	Group	(EFG)30	category	is	a	descriptor	based	on	
classification	 initially	 provided	 by	 the	 CheckMol	 software31.	 The	 coverage	 was	
extended	to	include	new	groups,	particularly	heterocycles30.	ToxAlert	covers	total	
of	583	functional	groups.	
	
Statistical	coefficients.	For	internal	validation	of	the	generated	models,	we	used	5-
fold	 stratified	cross	validation.	Accuracy	 is	defined	as	 the	percentage	of	 correctly	
classified	samples,	given	by	the	formula		

ACC	=	(TP	+	TN)	/	(TP	+	FP	+	TN	+	FN)	 	 	 (1)	
where	TP	and	TN	stand	for	True	Positive	and	True	Negative,	and	FP	and	FN	stand	
for	False	Positive	and	False	Negative	respectively.	Due	to	the	large	size	difference	
between	the	active	and	the	 inactive	populations,	Balanced	Accuracy	was	used	 for	
determining	the	quality	of	the	models.	It	is	defined	as:	

BA	=	0.5*(TP/P	+TN/N)		 	 	 	 (2)	
where	the	P=TP	+	FN	and	N	=	TN+FP	are	number	of	positive	and	negative	samples,	
respectively.	
	
	
Results	and	Discussion	
	
Molecular	Docking	
In	an	effort	 to	directly	visualize	 the	 interaction	of	 the	 ligands	with	Luciferase,	we	
performed	high	throughput	molecular	docking	using	Autodock	Vina.	Interestingly,	
through	visual	inspection,	we	found	that	there	was	a	positional	difference	between	
the	docked	population	of	 the	 inhibitory	 and	non-inhibitory	molecules	 (Figure	2).	
However,	the	docking	score	reported	by	Vina	did	not	show	significant	differences	
between	both	sets.	The	optimal	score	to	separate	active	and	inactive	compounds	(-
7.1)	 using	 Vina	 provided	 a	 BA	 of	 65.8%.	 In	 order	 to	 quantify	 the	 difference	 in	
binding,	 we	 calculated	 the	 percentage	 of	 the	 ligand	 that	 was	 inside	 the	 binding	
pocket	 on	 an	 atom-by-atom	 basis,	 and	 then	 averaged	 over	 all	 the	 ligand	 poses	
(Figure	 2).	 Doing	 this	 allowed	 us	 to	 quantify	 the	 positional	 difference
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Figure	 2:	 Graphical	 representation	 of	 molecules	 docked	 onto	 Luciferase	 (top),	 and	 histogram	 of	 fraction	 of	
ligand	 present	 inside	 the	 active	 site	 and	 Vina	 docking	 score	 A.	 Luciferase	 Inhibitors	 B.	 Luciferase	 non-
inhibitors.	C.	Density	plot	of	 ligands	vs.	 fraction	of	 ligand	 inside	 the	active	site.	D.	Density	plot	of	 ligands	vs.	
docking	score	reported	by	Vina.	Note	that	the	Vina	score	is	not	able	to	distinguish	between	the	inhibitors	and	
the	non-inhibitors	as	effectively.	
	
that	can	be	seen	in	Figure	2C,	together	with	a	measure	of	compatibility	between	the	
binding	 pocket	 and	 the	 ligand.	 From	 the	 distribution,	 one	 can	 see	 that	 the	
inhibitory	ligands	are	docked	inside	the	active	site	significantly	more	than	the	non-
inhibitory	molecules.	We	applied	a	threshold	of	0.4,	and	were	able	to	obtain	67.2%	
balanced	accuracy	in	classifying	the	two	groups.	Therefore,	calculating	the	fraction	
of	the	ligand	inside	the	active	site,	one	can	differentiate	between	the	inhibitors	and	
non-inhibitors	with	an	even	better	accuracy	than	using	the	Vina	docking	score.		
	
Scaffold	Analysis	
We	were	 also	 interested	 in	 the	 chemical	 nature	 of	 the	 active	 compounds,	 so	we	
performed	 a	 scaffold	 tree	 analysis	 using	 Scaffold	 Hunter32,	33.	 This	 allowed	 us	 to	
directly	 visualize	 the	 structural	 hierarchy	 of	 the	 active	 compounds.	 It	 was	
immediately	 clear	 that	 there	 is	 a	 great	 deal	 of	 variability	 in	 the	 chemical	motifs	
involved;	they	are	not	specific	to	a	chemical	subtype	(Figure	3).		
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Figure	3:	Scaffold	tree	of	Set3	in	two	different	concentrations.	The	larger	size	and	
much	higher	variability	in	the	chemical	space	can	be	clearly	seen.	
We	compared	the	scaffold	structures	of	Set3	at	50	and	11.5	μM	and	found	that	at	
the	lower	concentration,	the	scaffold	hierarchy	gets	simplified	considerably	due	to	
the	reduced	number	of	active	molecules	(reduction	of	about	50%,	see	Table	1).	We	
also	noticed	some	prominent	scaffolds	emerge.	
	
Upon	closer	examination,	it	became	apparent	that	a	clear	majority	of	the	scaffolds	
involved,	 although	 they	 belong	 to	 different	 chemical	 families,	 have	 a	 very	 flat	
structure	with	multiple	aromatic	 rings.	Using	 the	SetCompare	utility	of	OCHEM34,	
we	quantified	this	observation,	and	found	that	such	scaffolds	are	enriched	several	
times	in	the	inhibitor	population	than	in	the	non-inhibitors	(Table	2)	:	This	implies	
that	the	presence	of	particular	functional	groups	is	less	important	than	the	overall	
3D	shape	and	structure	of	the	molecule,	when	considered	from	the	perspective	of	
luciferase	inhibition.	This	was	also	corroborated	by	reported	literature2,	where	the	
addition	 of	 a	 non-planar	 element,	 such	 as	 cyclohexane	 or	 a	 branched	motif,	 to	 a	
pre-established	motif	drastically	reduced	inhibition.	It	should	also	be	noted	that	all	
the	scaffolds	have	a	very	limited	coverage,	therefore	indicating	a	high	variability	in	
the	chemical	space.		
	
Table	2:	Scaffold	analysis	using	OCHEM	
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In	 order	 to	 take	 the	 idea	 of	 prominent	 scaffolds	 one	 step	 further,	we	 decided	 to	
build	a	filter	using	SMARTS	to	screen	active	molecules	from	inactive	ones	based	on	
the	scaffold	structure.	All	the	SMARTS	were	uploaded	to	ToxAlerts29	on	the	OCHEM	
platform,	and	can	be	accessed	there	online.	As	can	be	seen	from	Table	3,	even	with	
a	 general	 scaffold	 such	 as	 Benzo-imidazole,	 only	 ca.	 21%	 of	 the	 actives	 were	
captured,	along	with	13%	of	the	inactive	molecules.	The	addition	of	further	groups	
increases	 selectivity,	 but	 reduces	 coverage	 significantly.	Due	 to	 this,	 the	 SMARTS	
query	 suffers	 from	 exclusivity	 between	 selectivity	 or	 specificity,	 and	 creating	 an	
effective	 filter	with	 this	 approach	proved	 very	difficult	 due	 to	 the	 large	 chemical	
space	and	variability	of	 the	set.	 	Although	the	scope	of	such	a	 filter	 is	 limited,	we	
gained	an	understanding	of	the	governing	scaffold	structure	behind	the	inhibition	
process:	This	was	useful	 in	designing	and	refining	the	pharmacophore	during	our	
pharmacophore	analysis.	
Table	3:	Filtering	active	compounds	employing	SMARTS.		
	
Scaffolds	encoded	in	SMARTS	†	 Actives	 Inactives	 Enrichment	

Factor	
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Benzo-imidazole	scaffold	 21.66	 12.93	 1.7	

Benzyl	imidazole	scaffold	 4.46	 1.06	 4.2	

Biphenyl	system	with	non-aromatic	linker	 8.85	 6.21	 1.4	

2-(2-(1H-pyrrol-2-yl)ethyl)-1H-
benzoimidazole	scaffold	
	

0.71	 0.07	 10.1	

6-Phenyl	napthyl	scaffold	
	 2.87	 0.92	 3.1	

Biphenyl	system	with	non-ring	linker	
	 6.83	 4.11	 1.7	

2-Phenyl	benzo-imidazole	scaffold	
	 5.97	 0.78	 7.7	

2-(2-(naphthalen-2-yl)ethyl)-1H-pyrrole	
scaffold	
	

0.25	 0.13	 1.9	

	
†For	 representation	purposes,	 scaffolds	 that	 the	 SMARTS	query	 represents	have	been	used.	All	 the	 SMARTS	
queries	can	be	found	in	the	TOXALERTS	section	of	the	OCHEM	platform	
	
Pharmacophore	analysis	
From	the	scaffold	analysis,	we	saw	that	the	inhibitors	are	not	scaffold	specific,	but	
depend	on	 the	overall	3D	structure	of	 the	molecule.	Therefore,	we	 investigated	a	
3D-structure-based	 pharmacophore	 approach	 to	 distinguish	 between	 the	 active	
molecules	and	the	inactives.	We	started	with	a	crystal	structure	of	luciferase	bound	
to	a	benzothiol	inhibitor	(PDB	ID:	4e5d),	and	using	Ligandscout11	identified	the	key	
interactions	between	the	ligand	and	the	enzyme	(Figure	4).	This	provided	the	basis	
of	our	pharmacophore,	which	lacks	selectivity,	but	is	moderately	specific	(Table	4).	
The	 initial	 pharmacophore	 is	 defined	 as	 a	 combination	 of	 three	 hydrophobic	
groups	 and	 two	hydrogen	bond	 acceptors,	 as	 can	be	 seen	 in	Table	 4.	 	We	 added	
aromatic	rings	to	the	pharmacophore	to	increase	the	selectivity,	and	further	made	
optional	both	the	hydrogen	bond	donor	to	water	interactions,	and	the	hydrophobic	
interactions	of	the	pharmacophore.	This	significantly	increased	coverage,	but	had	a	
negative	 impact	 on	 specificity	 (Table	 4).	 We	 then	 looked	 at	 various	 scaffolds	
identified	 in	 our	 earlier	 analysis	 (Table	 2),	 and	 found	 that	 there	 are	 several	
members	of	active	compounds	where	two	aromatic	systems	are	bound	to	a	linker	
group.		
	
To	cover	this	possibility	during	searching,	we	allowed	for	one	feature	to	be	omitted.	
This	 made	 the	 pharmacophore	 much	 more	 flexible,	 as	 it	 can	 accommodate	 a	
biphenyl,	 benzyl	 or	 benzo-imidazole,	 and	 many	 other	 scaffolds,	 as	 long	 as	 the	
aromatic	 groups	 satisfy	 the	 geometry	 criteria.	 This	 is	 the	 crucial	 difference	
between	 the	pharmacophore	 and	 the	 SMARTS	query.	 For	 example,	 in	 the	 case	of	
the	 SMARTS	 filter	 that	 was	 designed	 to	 capture	 biphenyl	 systems	 with	 a	 non-
aromatic	linker,	the	shape	information	is	irrelevant.	If,	due	to	the	nature	of	linker,	
the	structure	of	the	ligand	becomes	non-planar,	the	SMARTS	would	still	pick	it	up.	
On	 the	 other	 hand,	 in	 a	 pharmacophore	 query,	 we	 are	 not	 specifying	 the	motifs	
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involved;	 as	 long	 as	 there	 are	 two	 aromatic	 groups	 present	 at	 the	 specified	 3D	
position	and	orientation,	 it	will	be	picked	up.	Due	to	this	reason,	we	were	able	to	
get	74.2%	balanced	accuracy	with	our	designed	pharmacophore	with	our	current	
dataset.	 This	 resulting	 accuracy	 is	 higher	 than	 any	 approach	 based	 on	 SMARTS	
analysis	and	molecular	docking	we	have	explored	thus	far.		
	

Figure	4:	3D	and	2D	representation	of	the	interactions	of	luciferase	and	benzothiol,	
its	inhibitor	(PDB	ID	4e5d).	The	yellow	spheres	represent	hydrophobic	interactions,	
and	red	arrows	show	hydrogen	bond	donor	interactions.	
Table	4:	Filtering	luciferase	inhibitors	using	pharmacophores.	

	
†Hydrophobic	interactions	have	been	shown	in	yellow,	aromatic	groups	in	purple	and	hydrogen	bonds	in	red.	
An	outlined	shape	indicates	that	the	feature	was	marked	as	optional.	
	
	
	
Machine	Learning	Models	
We	 built	 models	 with	 various	 different	 descriptors	 that	 were	 discussed	 in	 the	
methods	section.	Across	all	three	datasets,	we	found	that	Dragon	descriptors,	along	
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with	 CDK	 and	 Adriana	 provided	 the	 highest	 performance.	 Dragon6	 comprises	 a	
total	 of	 5270	 descriptors.	 Many	 of	 them	 capture	 the	 shape	 attributes	 of	 the	
molecules	well.	The	same	is	true	for	Chemaxon,	CDK	and	Adriana	sets,	which	also	
have	 similar	 types	 of	 descriptors	 in	 the	 package.	 Thus	 3D-based	 descriptors	
provided	 the	 highest	 accuracy	 for	 prediction	 of	 inhibitors	 of	 luciferase,	 which	
indicates	 the	 importance	 of	 including	 3D	 structural	 information	when	modelling	
luciferase	inhibition.	
On	 the	 other	 hand,	 descriptors	 based	 on	 functional	 groups,	 such	 as	 Structural	
Alerts29,	 performed	poorly	 throughout.	The	best	 results	were	 calculated	with	 the	
ISIDA	descriptors,	which	provide	a	comprehensive	coverage	of	different	molecular	
types	with	automatically	generated	descriptors.		The	2D	E-state	indices	resulted	in	
the	second-best	models,	which	had	performance	that	was	not	statistically	different	
from	the	performance	of	models	based	on	ISIDA	descriptors.			
	
Table	5:	Associative	Neural	Network	analysis	
	
Descriptor	 Balanced	Accuracy	†	(%)	

Set1	 Set2	 Set3	
Dragon6	(3D)	 83.7	±	0.8*	 83.6	±	0.3*	 88.1	±	0.1*	
CDK	(3D)	 83.5	±	0.9*	 84.3	±	0.3*	 88.0	±	0.1*	
ISIDA	fragments	 81.3	±	0.8	 82.7	±	0.4*	 87.7	±	0.1*	
Adriana	(3D)	 85.1	±	0.8*	 83.4	±	0.3*	 86.7	±	0.2*	
ALogPS,	OEstate	 81.3	±	0.9	 81.5	±	0.3	 86.6	±	0.2	
GSFrag	 79.5	±	0.9	 80.7	±	0.4	 85.8	±	0.2	
QNPR	 79.3	±	0.9	 80.2	±	0.4	 85.4	±	0.2	
Chemaxon	Descriptors	(3D)	 81.2	±	0.8	 81.8	±	0.3	 85.3	±	0.2	
SIRMS		 78.1	±	0.9	 81.1	±	0.4	 85.3	±	0.2	
Mera,	Mersy	(3D)	 82.1	±	0.8	 81.8	±	0.4	 84.3	±	0.2	
Inductive	Descriptors	(3D)	 78.1	±	0.9	 78.8	±	0.4	 80.7	±	0.2	
Structural	Alerts	 73.0	±	1.0	 72.7	±	0.4	 79.1	±	0.2	
Spectrophores	(3D)	 78.1	±	0.9	 77.4	±	0.4	 78.4	±	0.2	
	
Consensus	Model	

	
86.2	±	0.7	

	
86.4	±	0.3	

	
89.3	±	0.1	

	

†Balanced	accuracy	for	all	three	datasets	obtained	using	various	descriptors	and	Associative	Neural	Network	
algorithm	sorted	by	accuracy	of	models	for	set	3.		
*Models	that	are	marked	with	an	asterisk	were	used	to	create	the	consensus	model.	

	
Consensus	Models	
Consensus	models	were	built	 for	 each	dataset.	 This	was	performed	by	 averaging	
the	results	of	the	four	best-performing	models,	selected	according	to	the	balanced	
accuracy.	 As	 shown	 in	 table	 5,	 the	 consensus	 models	 had	 an	 accuracy	 ca.	 1-3%	
better	than	the	individual	models:	All	 further	analysis	was	performed	using	these	
consensus	models.	
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Analysis	across	datasets:	
To	observe	 the	effects	of	 the	 increasing	volume	of	data	 in	 the	 training	sets	of	 the	
models,	 as	 well	 as	 to	 determine	 the	 performance	 of	 the	 models	 against	 new	
compounds,	we	used	the	other	two	sets	as	test	sets	against	each	trained	model:		
Since	 Set1	 is	 the	 smallest,	 and	 also	 had	 the	 least	 sensitivity	 amongst	 the	 three	
datasets,	models	 from	 this	 set	would	not	be	 able	 to	 effectively	predict	molecules	
from	Set2	and	Set3.	As	one	can	see	from	Table	6,	Set1	models	show	lower	accuracy	
against	Set2	or	Set3,	in	comparison	to	itself.		In	case	of	Set2,	the	sensitivity	is	higher	
and	 training	 set	 size	 is	 larger	 than	 that	 of	 Set1,	 and	 therefore	 the	 model	 can	
effectively	 predict	 molecules	 from	 Set1.	 However,	 against	 Set3	 the	 same	 model	
does	not	perform	well,	and	this	can	be	explained	by	the	same	argument	as	in	case	
of	Set1.	The	model	built	from	Set3	provided	the	best	results,	as	the	training	set	is	
the	largest	and	also	the	sensitivity	 is	the	highest,	providing	the	largest	number	of	
active	molecules	in	the	training	set.	This	makes	Set3	the	main	dataset	from	which	
to	build	our	final	model.		
	
	
	
Table	6:	Cross	correlation	of	models	between	the	datasets	used	in	the	study.		
	

	 Test	Set	†	

	

	 Set1	 Set2	 Set3	
Set1	 86.2	±	0.7	

(70,231)	
81.2%	±	0.3	
(195,546) 

81.0%	±	0.2	
(323,224)	

Set2	 89.8%	±	0.7	
(70,231)	

86.4	±	0.3	
(195,546)	

85.5%	±	0.2	
(323,224)	

Set3	 90.8	±	0.5	
(70,231)	

87.7	±	0.2	
(195,546)	

89.3	±	0.1	
(323,224)	

	

†Number	inside	the	parenthesis	denotes	the	number	of	tested	molecules	in	the	respective	set.		

Tr
ai
ni
ng
	S
et
	



	 14	

Analysis	of	incorrect	predictions

	
In	 order	 to	 gain	 a	 better	 understanding	 of	 the	 inaccuracy	 of	 the	 models,	 we	
analyzed	 the	 compounds	 that	 were	 predicted	 incorrectly.	 First,	 we	 selected	
molecules	that	were	predicted	incorrectly	in	at	least	two	consensus	models.	For	the	
FN	(actives	that	are	predicted	as	inactives),	we	found	130	molecules,	and	for	the	FP	
(inactives	 that	 are	 predicted	 as	 actives),	 there	 were	 13594	 molecules.	 We	
attempted	to	understand	the	nature	of	the	false	positives,	by	docking	them	against	
Luciferase,	 and	 performing	 the	 analysis	 described	 in	 the	 docking	 section.	 This	
revealed	 that	 FP	molecules	 have	 the	 propensity	 to	 dock	 inside	 the	 active	 site	 of	
luciferase	 more	 than	 regular	 inactives	 (Figure	 5),	 but	 less	 than	 that	 of	 regular	
actives.	 This	means	 that	 these	molecules	 have	 some	 structural	 features	 that	 are	
capable	 of	 fitting	 inside	 the	 active	 site	 of	 luciferase,	 but	 the	 interactions	 are	 not	
favorable.	This	is	well	corroborated	by	the	docking	score	reported	by	Vina,	where	
the	false	positives	have	more	favorable	binding	energy	compared	to	the	inactives,	
but	 less	 favorable	 compared	 to	 the	 actives.	 	 The	 structural	 features	 are	 being	
recognized	by	the	machine	learning	algorithms,	and	because	the	machine	learning	
methods	 do	 not	 consider	 the	 interactions,	 the	 molecules	 are	 being	 marked	 as	
inhibitors,	 when	 in	 fact	 due	 to	 unfavorable	 interactions	 they	 do	 not	 inhibit	
luciferase.	
	
Since	aggregation	is	known	to	play	a	role	in	inhibition35,	we	decided	to	investigate	
whether	the	activity	of	some	compounds	could	be	due	to	aggregation.	As	a	property,	
aggregation	 is	 dependent	 on	many	 variables,	 and	 therefore	 it	 is	 very	 difficult	 to	
predict:	 There	 has	 been	 significant	 effort	 in	 developing	 this	 area,	 and	 an	
aggregation	advisor	 (http://advisor.bkslab.org)36	has	been	established	 to	address	
this	 problem.	 This	 on-line	 server	 checks	 new	 molecules	 against	 a	 database	 of	
known	aggregators;	the	database	contains	compounds	that	are	known	to	aggregate	
at	concentrations	of	10	μM	or	lower.	Because	at	elevated	concentration	aggregation	
is	promoted	further,	this	test	will	identify	such	molecules	in	our	datasets	that	were	
screened	at	10	and	50	μM.		
	

Figure	5:	A.	Density	plot	of	fraction	of	ligand	present	inside	the	active	site,	for	
the	false	positive	predictions.	Note	that	the	majority	of	the	population	lies	in	
between	the	regular	active	and	inactive	molecules.	B.	Density	plot	of	docking	
score	reported	by	Vina	

A B
>. 
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We	found	that	3.2%	of	the	active	compounds	are	known	to	aggregate,	as	compared	
to	2.1%	among	the	inactive	molecules.	It	is	also	worth	mentioning	that	in	Set1	and	
Set3	 assays,	 0.01%	 Tween-20	 was	 used	 as	 a	 detergent,	 presumably	 to	 prevent	
aggregation.	 In	 the	 case	 of	 Set2,	 compounds	were	 dissolved	 in	DMSO.	 Therefore,	
one	might	expect	that	in	Set2,	more	aggregators	would	be	present	in	the	active	pool.	
However,	 due	 to	 small	 number	 of	 aggregator	 molecules,	 we	 observed	 no	
appreciable	 difference	 in	 percentages	 of	 aggregation	 for	 active/inactive	 in	 Set1,	
Set3	 vs.	 Set2.	 The	use	 of	 detergent	 could	decrease	 the	percentage	of	 aggregators	
amid	 active	molecules.	 Still,	 the	 fraction	 of	 aggregators	 amid	 active	molecules	 is	
50%	large	than	amid	non-active	ones.	Thus,	aggregation	plays	a	significant	role	in	
making	the	molecules	change	class	across	experiments,	and	may	have	played	some	
role	in	inhibiting	luciferase.	
	
Effect	of	concentration	
	
Table	7:	Effect	of	concentration	reporting	balanced	accuracy	in	consensus	
models	for	Set1	and	Set3	

Set 50	μM	 11.5	μM	
Set1 85.3	±	0.4	 86.2	±	0.8	
Set3 87.2	±	0.1	 89.3	±	0.1	

	
	
As	mentioned	previously,	there	is	a	concentration	difference	in	the	datasets	taken	
for	 this	 study,	and	 the	models	built	 are	dependent	on	 this	 concentration	because	
the	activity	of	molecules	change	based	on	concentration.	We	noted	 that	at	higher	
concentrations,	models	became	less	accurate	(Table	7).	To	better	understand	this,	
we	counted	the	number	of	molecules	(N=2666)	that	were	incorrectly	predicted	as	
inactives	by	 the	model	developed	using	50	μM	data.	We	 found	 that	81%	of	 these	
molecules	 became	 inactive	 upon	 lowering	 concentration.	 Contrary	 to	 that	 only	
54%	(N=22303)	of	correctly	predicted	active	molecules	(corresponding	to	average	
50%	decrease	of	actives	when	lowering	concentration	from	50	to	11.5µM)	became	
inactive.	 Therefore,	 at	 higher	 concentration,	 such	molecules	 introduce	 noise	 into	
the	data,	leading	to	inaccuracy.	The	models	reported	here	were	built	using	activity	
data	at	10	μM	or	11.5	μM:	This	must	be	taken	into	consideration	when	applying	the	
model.		
	
Merging	datasets	to	create	the	final	model	
To	create	the	final	model,	we	chose	Set3	to	be	our	primary	set,	as	reasoned	above.		
We	then	added	to	 it	only	 the	unique	active	molecules	 from	Set1	and	2,	reasoning	
that	since	these	molecules	are	active	in	an	assay	with	lower	sensitivity,	they	have	a	
higher	probability	to	be	active	and	not	false	positives.	We	decided	not	to	merge	the	
inactives	 from	 three	datasets	 together,	 as	doing	 so	would	 lead	 to	having	 inactive	
molecules	 that	 come	 from	 experiments	 with	 lower	 sensitivity,	 which	 may	 bring	
false	negatives.	This	gives	us	a	merged	dataset	with	N	=	323443,	and	with	3.3%	of	
active	molecules.	Using	the	same	procedure	as	previously	discussed,	we	obtained	
the	consensus	model,	which	has	a	balanced	accuracy	of	89.7%.	It	can	be	accessed	at	
http://ochem.eu/article/104546.		
	
Sensitivity	of	existing	filters	
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As	we	have	explored	the	inhibition	of	luciferase	and	the	nature	of	the	inhibitors	in	
this	 study,	 we	 wondered	 where	 these	 identified	 inhibitors	 lie	 in	 the	 context	 of	
existing	 frequent	 hitter	 and	 Pan	 Assay	 Interference	 Substance	 (PAINS37)	 filters:	
These	filters	are	implemented	on	OCHEM	as	part	of	the	ToxAlerts	platform29,	and	
we	 ran	 them	 against	 our	 dataset	 (Table	 8).	We	 found	 that	 PAINS	 filters	 flagged	
approximately	 twice	 as	 many	 active	 compounds	 as	 inactive	 compounds;	 the	
AlphaScreen	 filters	 to	 detect	 promiscuous	 compounds	 also	 provided	 an	
approximate	 threefold	enrichment	of	 flagged	actives	over	 inactives.	However,	 the	
promiscuity	 filter	 that	was	 designed	 to	 identify	 compounds	 likely	 to	 hit	multiple	
assays38,	 provided	 a	 much	 smaller	 enrichment.	 The	 highest	 enrichment	 was	
calculated	for	the	AlphaScreen	filter,	however,	 this	 filter	had	the	 lowest	coverage.	
The	most	prominent	alert	among	 the	AlphaScreen	 filter	 that	picked	up	 luciferase	
inhibitors	 was	 the	 Aminal	 alert	 (aminal	 on	 a	 pyridine-based	 system,	 Figure	 S1).	
This	 alert	picked	up	 several	 compounds	with	 a	planar	 structure	 (Figure	 S2),	 and	
provided	an	enrichment	 factor	of	6.2.	 It	 should	also	be	noted	 that	 the	number	of	
alerts	involved	in	this	case	is	very	small,	which	gets	reflected	in	the	poor	coverage	
of	this	filter.	The	difference	in	the	number	of	alerts	in	each	filter	contributes	to	the	
specificity/selectivity	trade-off.	
	
We	also	noted	that	most	of	the	compounds	were	flagged	as	being	reactive,	unstable	
or	 toxic.	 This	 is	 expected,	 as	 the	 responsible	 filter	 is	 known	 to	 pick	 up	 drug-like	
molecules:	 It	 is	worth	mentioning	 here	 that	 the	 presence	 of	 such	 alerts	 by	 itself	
does	 not	 make	 a	 molecule	 toxic	 in	 the	 context	 of	 medicinal	 application,	 due	 to	
dosage	and	clearance	from	the	body.	
	
Table	8:	Luciferase	inhibitors	tested	against	a	variety	of	other	filters.	
	
Compound	Filters	†	 Actives	(%)	 Inactives	(%)	 Enrichment	

Pan	Assay	
Interference	

Substance	(PAINS)	
(480)	

9.8	 4.9	 2.0	

Promiscuity	(178)	 4.7	 3.8	 1.2	

AlphaScreen	FH	filters	
(25)	

1.7	 0.6	 2.8	

Reactive,	Unstable,	
Toxic	(340)	

66.9	 62.3	 1.1	

	
†The	numbers	in	parentheses	represent	the	number	of	alerts	in	each	respective	filter.	
	
Discussion	
	
The	developed	chemoinformatic	model	 is	suitable	 for	providing	an	early	warning	
against	potential	inhibitors	of	luciferase	that	may	interfere	with	HTS	experiments.	
Since	the	model	does	not	have	100%	accuracy,	some	compounds	can	be	predicted	
as	luciferase	inhibitors	when	in	reality	they	are	not.	On	the	other	hand,	even	if	the	
molecule	 is	 indeed	 a	 luciferase	 inhibitor,	 that	 does	 not	mean	 that	 it	 cannot	 be	 a	
potential	 lead.	Hence,	we	 strongly	 advise	not	 to	discard	 the	 flagged	molecules	 as	
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false	 leads	 but	 rather	 to	 consider	 them	 further,	 to	 better	 interpret	 experimental	
results.		
Thus,	the	model	described	here	should	be	used	to	identify	potential	interference	in	
luciferase-based	assay	systems.	The	identified	molecules	should	be	re-tested	using	
other	assay	protocols	that	do	not	rely	on	luciferase.	The	merit	of	this	study	is	that	
one	 can	 find	 potential	 interference	 in	 very	 large	 datasets,	 and	 only	 the	 flagged	
molecules	 then	need	be	 tested	by	orthogonal	 assays.	This	 reduces	 cost,	 time	and	
effort	in	the	counterscreening	effort.	
	
Conclusions	
In	 this	 study,	 we	 explored	 various	 methods	 of	 filtering	 and	 detecting	 luciferase	
inhibitors	 in	 a	 luciferase-based	 HTS	 assay.	 We	 designed	 computational	 models	
using	machine-learning	methods	on	publicly	available	data	from	PubChem.	We	also	
used	 molecular	 docking	 to	 understand	 how	 inhibitors	 bind	 to	 luciferase,	 and	
performed	a	scaffold	analysis	to	gain	a	better	understanding	of	the	chemical	nature	
of	 such	 inhibitors.	 The	machine	 learning	models	 outperformed	other	methods	 of	
filtering	luciferase	inhibitors,	such	as	SMARTS	or	pharmacophore-based	filters.	We	
were	able	to	obtain	a	prediction	accuracy	of		89.7%,	which	makes	the	final	model	a	
good	 tool	 for	 filtering	 potential	 luciferase	 inhibitors.	 Still,	 the	 predictions	 of	 the	
model	 should	be	considered	as	advice	and	 flagged	compounds	can	be	retested	 in	
orthogonal	 assays.	 All	 models	 and	 data	 reported	 here	 are	 publicly	 accessible	 at	
http://ochem.eu/article/104546.	
	
Reproducibility	of	OCHEM	models	
All	 OCHEM	 models	 are	 developed	 using	 standardized	 workflows,	 which	 can	 be	
used	at	the	OCHEM	to	produce	another	model	or	reproduce	previous	results.	The	
full	 specification	 of	 details	 of	 the	 workflow	 are	 stored	 in	 xml	 file,	 which	 can	 be	
exported,	 imported	 or	 used	 as	 template	 for	 model	 development.	 This	 feature	
provides	the	reproducibility	of	OCHEM	models.	Moreover,	OCHEM	platform	can	be	
installed	 locally	at	 the	commercial	or	academic	premises	and	be	used	to	apply	or	
reproduce	models	on	local	computers	of	the	users.	Majority	of	models	available	in	
OCHEM	 can	 be	 also	 exported	 and	 used	 as	 standalone	 versions.	 For	 both	 these	
applications	 commercial	or	 academic	 licenses	 for	 some	 tools,	 such	as	descriptors	
calculation,	 3D	 structure	 generation,	 standardization	 of	 chemical	 structures,	 etc.	
can	 be	 also	 required.	 Contrary	 to	 that,	 the	 predictions	 of	 models	 available	 in	
OCHEM	can	be	used	under	the	CC-BY-NC	license	while	the	data	can	be	downloaded	
under	the	CC-BY	license.	These	features	makes	OCHEM	a	powerful	public	portal	for	
development	 and	 sharing	 of	 reliable	 and	 reproducible	 chemical	 information	 and	
models	on	the	web.39	
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