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A computational biology approach of a
genome-wide screen connected miRNAs to
obesity and type 2 diabetes
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ABSTRACT

Objective: Obesity and type 2 diabetes (T2D) arise from the interplay between genetic, epigenetic, and environmental factors. The aim of this
study was to combine bioinformatics and functional studies to identify miRNAs that contribute to obesity and T2D.
Methods: A computational framework (miR-QTL-Scan) was applied by combining QTL, miRNA prediction, and transcriptomics in order to
enhance the power for the discovery of miRNAs as regulative elements. Expression of several miRNAs was analyzed in human adipose tissue and
blood cells and miR-31 was manipulated in a human fat cell line.
Results: In 17 partially overlapping QTL for obesity and T2D 170 miRNAs were identified. Four miRNAs (miR-15b, miR-30b, miR-31, miR-744)
were recognized in gWAT (gonadal white adipose tissue) and six (miR-491, miR-455, miR-423-5p, miR-132-3p, miR-365-3p, miR-30b) in BAT
(brown adipose tissue). To provide direct functional evidence for the achievement of the miR-QTL-Scan, miR-31 located in the obesity QTL Nob6
was experimentally analyzed. Its expression was higher in gWAT of obese and diabetic mice and humans than of lean controls. Accordingly, 10
potential target genes involved in insulin signaling and adipogenesis were suppressed. Manipulation of miR-31 in human SGBS adipocytes
affected the expression of GLUT4, PPARg, IRS1, and ACACA. In human peripheral blood mononuclear cells (PBMC) miR-15b levels were
correlated to baseline blood glucose concentrations and might be an indicator for diabetes.
Conclusion: Thus, miR-QTL-Scan allowed the identification of novel miRNAs relevant for obesity and T2D.

� 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The excessive accumulation of body fat, obesity is a lifestyle driven and
genetically heritable disorder, as well as a major risk factor for sec-
ondary diseases like type 2 diabetes (T2D) [1]. A classical and powerful
tool for the investigation of the genetic architecture of these polygenic
diseases is genome-wide association studies (GWAS) [2]. However, the
challenge of GWAS is the requirement of a large number of participants
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due to the heterogeneity of the human genome and the influence of
environmental factors [3,4]. Another approach for the identification of
disease-related genes is to perform linkage studies with mouse inbred
strains that differ in their susceptibility for the disease leading to the
detection of quantitative trait loci (QTL) harboring genetic variants [5].
The subsequent breeding and characterization of recombinant con-
genic lines is needed for the identification of gene variants by positional
cloning [6].
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Nevertheless, not only variants within genes but also single nucleotide
polymorphisms (SNP), insertions and deletions (indels) in promoter or
enhancer regions could be responsible for a QTL. To identify these
alterations, the concept of expression QTL (eQTL) has been estab-
lished, which links a genetic variant with the expression of a specific
gene [7]. However, different studies have already described the exis-
tence of genes related to polygenic diseases, which are located outside
of QTL and eQTL regions [8]. Those genes must be regulated by trans
elements like transcription factors or non-coding RNAs such as miR-
NAs that are located within a QTL.
miRNAs are small non-coding RNAs with a length of 19e24 nucleo-
tides which are known to bind to the 30UTR region of specific mRNAs
leading to an altered expression or translation of the corresponding
target gene(s) [9]. Most miRNAs have hundreds of targets involved in
different signaling cascades. Thus, they are potent regulators and
suitable candidates in polygenic diseases like obesity or T2D [10,11].
For example, it was demonstrated that miR-107 and miR-103 play
an important role in insulin sensitivity [12] and that miR-375 is
involved in the regulation of alpha- and beta-cell mass in pancreatic
islets [13] and may be a novel pharmacological target for the
treatment of diabetes [14].
For the discovery of genes involved in obesity and T2D, we generated a
backcross population derived from obese diabetes-susceptible New
Zealand Obese (NZO) and lean diabetes-resistant C57BL/6 (B6) mice
and performed a genome-wide linkage study for approximately 20
metabolic traits. Overall, we detected 17 partially overlapping loci on 11
chromosomes and were able to identify genetic variants in Ifi202b [15]
and Lefty1 [16] on chromosome 1 and Zfp69 [17] on chromosome 4.
The aim of the current study was to develop a comprehensive and
quantitative in silico approach (miR-QTL-Scan), which allows the
identification of miRNAs within QTL that mediate the differential
expression of targets in metabolically relevant tissues and to verify their
role in humans. To provide direct functional evidence for the achieve-
ment of the bioinformatics approach one candidate miRNA, miR-31 was
investigated in human and mouse tissues and manipulated in vitro.

2. MATERIALS AND METHODS

2.1. Genome-wide linkage study
In a collaboration within the DZD network, a large linkage study of
diabetes-susceptible NZO and diabetes-resistant B6 mice was per-
formed to identify genes related to metabolic diseases. In the current
study we took advantage of this linkage study (data not published) and
used the identified loci of more than 300 N2 backcross male mice. The
linkage analysis (1-QTL scan) was performed with the R-package R/qtl
version - 1.40e8 using the EM-algorithm, 1,000 permutations (non
parametric), and 141 SNPs leading to a median distance of 17.4 Mbp.
The threshold for a significant logarithm of the odds score (LOD) was
set to�3.0 as described by Lander et al. for N2 backcross populations
[18]. The 2-QTL analysis was performed under the same settings.

2.2. Array-based transcriptomics of parental mice
Total RNA was isolated from murine tissue using TRIzol� reagent
(Invitrogen, Germany). From parental NZO and B6 mice (6 weeks of
age), samples of gonadal white adipose tissue (gWAT), brown adipose
tissue (BAT), and skeletal muscle were aliquoted for RNA extraction.
The procedure was carried out according to manufacturer’s in-
structions. RNA quality was determined using an Agilent 2100 Bio-
analyzer (Agilent Technologies, Germany), and the manufacturer’s
instructions were followed to measure RNA integrity (RIN). Samples
with RIN values >8 were subsequently selected for microarray
146 MOLECULAR METABOLISM 11 (2018) 145e159 � 2018 The Authors. Published by Elsevier GmbH.
analysis. Microarray analysis of NZO and B6 (n ¼ 4/strain) was per-
formed by OakLabs GmbH (Germany) using a SurePrint G3 Mouse GE
8 � 60 k chip (Agilent Technologies). Before analyzing the fold change
and calculating p-values, the samples were quantile normalized using
the “preprocessCore” R-package, version 1.36. P-values of tran-
scriptomics were calculated using a two-tailed Students t-test with a
threshold of p � 0.05 with the “stats” R-package version 3.1.1. The
threshold for a significant expression difference between groups was a
log2 fold change of j0.7j. The results of the array analysis are available
via accession ID: GSE111142 on GEO.

2.3. Identification of putative regulatory elements of miRNAs
Putative regulatory elements located 50 kbe4 kb upstream of miRNA
loci were mapped by using the histone modification publicly available
in ENCODE. Enhancers were characterized by genomic regions highly
enriched with H3K27ac and H3K4me1, promoters retained H3K27ac
and include H3K4me3.

2.4. Use of the online tool https://146.107.176.32/miR-QTL-Scan/
The tool can be used by several web browsers (e.g. Firefox, Chrome,
InternetExplorer). Please press “continue loading this website” and
follow the description provided online and in Fig. S1.

2.5. miRNA isolation and quantitative PCR (qPCR) in mice
Small RNA was isolated from 30 mg gWAT and 5 mg liver using the
PureLink miRNA Kit (Invitrogen) according to the manufacturer’s pro-
tocol. miR-31 (000185, Thermo Fisher Scientific, Germany), miR-31*
(002495, Thermo Fisher Scientific), and snoRNA202 (001232,
Thermo Fisher Scientific) were reverse transcribed individually using
30 ng for gWAT and 150 ng miRNA for liver with the TaqMan miRNA
Reverse Transcription Kit according to vendor’s instructions (Thermo
Fisher Scientific). All qPCRs were performed with the Roche Light-
Cycler� 480/384 (Roche, Switzerland). Relative expression of miRNA
levels was evaluated using snoRNA202 as endogenous control.

2.6. SGBS cell culture
All cell culture experiments were performed in at least three indepen-
dent experiments. Simpson-Golabi-Behmel syndrome (SGBS) cells
were cultured as described [19]. To induce adipogenic differentiation,
cells were washed once with PBS and serum-free DMEM-F12 sup-
plemented with 10 mg/ml transferrin, 20 nM insulin, 100 nM cortisol,
200 pM T3, 25 nM dexamethasone, 250 mM IBMX, and 2 mM rosigli-
tazone was added [20]. After 4 days, medium was changed and serum-
free DMEM-F12 supplemented with 10mg/ml transferrin, 20 nM insulin,
100 nM cortisol, and 200 pM T3was added. The differentiation rate was
determined by counting the number of lipid-laden, differentiated adi-
pocytes (defined by five clearly visible lipid droplets) and undifferenti-
ated cells. Three microscopic fields were counted per well using a net
micrometer. The triglyceride content was measured using Triglyceride
Reagent, Free Glycerol Reagent, and a Glycerol Standard (Sigmae
Aldrich, Germany) according to the manufacturer’s instructions.

2.7. miRNA mimic transfection in SGBS cells
Transfection was performed as previously described [21]. In brief, SGBS
cells were transfected with 20 nMmiR-31-5p mimic (Syn-hsa-miR-31-
5p, Qiagen, Germany; 50AGGCAAGAUGCUGGCAUAGCU) or non-target
control (AllStars Negative Control siRNA, Qiagen) and 0.66 ml/cm2

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s pro-
tocol. Lipofectamine/RNA complexes were added drop wise to the cells
without a change of media one day after seeding the cells. Adipogenic
differentiation was induced two days later as described above.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1: Workflow of the miR-QTL-Scan for the identification of miRNAs and the
putative targets genes in obesity- and diabetes-related QTL. Numbers refer to working
steps. Step III is optional and used to identify tissue-specific miRNAs. gWAT: gonadal
white adipose tissue.
2.8. RNA isolation in SGBS cells
Total RNA and miRNA isolation was performed with the Direct-zol RNA
mini Prep Kit (Zymo Research, Germany) on day 0 and day 14 of
adipogenic differentiation according to manufacturer’s instructions.

2.9. Reverse transcription and quantitative PCR (qPCR) in SGBS
cells
For miRNA quantification, miRNA was reverse transcribed using the
miScript II RT Kit (Qiagen) and analyzed by qPCR using the miScript
SYBR Green PCR Kit and the miScript primer assay for hsa-miR-31*_1
(Qiagen). Results were normalized to SNORD68_11 (sno68) (Qiagen).
To investigate mRNA expression, total RNA was reverse transcribed
using SuperScript II Reverse Transcriptase (Invitrogen). qPCRs were
performed with the SsoAdvanced Universal SYBR Green Supermix (Bio-
Rad, Germany). Results were normalized to HPRT. All qPCR experi-
ments were performed with a Bio-Rad CFX Connect System (Bio-Rad).
Primer sequences are available upon request.

2.10. Human participants and whole blood collection
A random sample of 89 German individuals was recruited as study
population from the ongoing Tübingen Family Study (TÜF) [22]. The
TÜF study currently comprises >3000 non-related individuals at
increased risk for T2D, i.e. non-diabetic subjects with family history of
T2D, BMI � 27 kg/m2, impaired fasting glycaemia (IGT), and/or
previous gestational diabetes. All TÜF participants undergo
assessment of medical history, smoking status and alcohol
consumption habits, physical examination, routine blood tests, and
oral glucose tolerance tests (oGTTs). The study population assessed
here consisted of individuals with complete oGTT and documented
absence of medication known to influence glucose tolerance, insulin
sensitivity or insulin secretion. The study adhered to the Declaration
of Helsinki, and each participant signed a written informed consent.
The Ethical Committee of the Medical Faculty of the University of
Tübingen approved the study protocol. Subjects were grouped into
normal glucose tolerant subjects with BMI < 27 (NGT.BMI < 27,
n ¼ 25) or BMI>30 (NGT.BMI>30, n ¼ 16) and subjects with
impaired glucose tolerance with BMI < 27 (IGT.BMI < 27, n ¼ 20)
or BMI > 30 (IGT.BMI > 30, n ¼ 28). A standardized 75-g oGTT
was performed following a 10-h overnight fast. For the determination
of plasma glucose, venous blood samples were drawn at baseline and
at time-points 30, 60, 90, and 120 min of the oGTT.

2.11. miRNA in human adipose tissue and in human PBMC
miRNAs were isolated from visceral and subcutaneous adipose tissue
with the miRNeasy Mini Kit (Qiagen). For miRNA analysis in human
PBMC, whole blood was collected in PAXgene Blood RNA Tubes
(PreanalytiX) after overnight fasting. Total RNA was isolated using the
Paxgene miRNA kit (PreanalytiX) according to manufacturer’s specifi-
cations. cDNA synthesis was performed by using the miScript II RT Kit
(Qiagen). qPCRs were performed with the miScript SYBR Green PCR Kit
(Qiagen) and measured with the 7500 Fast Real-Time PCR System
(Thermo Fisher Scientific) or a LightCycler 450 (Roche). QPCR mea-
surements were conducted in duplicates. For relative expression levels
of all miRNAs, hsa-miR-92a-3p was used as control.

2.12. Statistics
Plotting of all data was performed by using GraphPad Prism, version
7.0 (USA), if not mentioned otherwise. p-values were calculated by
two-tailed Student’s t-test or by one-way ANOVA in the case of
comparing more than two groups. qPCR expression data were
evaluated by the 2�DCT method [23]. Circos plots were created with
MOLECULAR METABOLISM 11 (2018) 145e159 � 2018 The Authors. Published by Elsevier GmbH. This is an open a
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R-package RCircos version 1.2.0 [24]. The two-dimensional genome
scan was generated with the R-package R/qtl version - 1.40e8.
Statistics for target prediction was performed by a 4-field-chi-square-
test. The data were divided into four groups: Putative targets/non-
putative target genes and differentially expressed/not differentially
expressed genes. The maximum number of genes within the mouse
genome was set to 30,000. Statistical analyses of array results are
described in 2.2.

2.13. Gene enrichment in pathway analysis
The pathway enrichment analysis of the predicted miRNA target
genes was done for KEGG pathways and GO-Terms using DAVID,
version 6.7 [25]. The cutoff enrichment score was set above 3 and
p-value below 0.1.

3. RESULTS

3.1. miR-QTL-scan, a framework for the discovery of miRNA within
quantitative trait loci
In order to identify miRNAs within QTL that negatively regulate the
expression of considerable genes and their participation in obesity and/
or T2D, miR-QTL-Scan, an extensive framework was developed that
uses different information layers (Figure 1).
The linkage study of the NZO and B6 cross identified 17 partially
overlapping QTL on 11 chromosomes. Ten partially overlapping loci on
chromosomes 1, 3, 4, 11, 13, 14, 15, and 17 were linked to traits of
obesity (body weight week 6 and week 14, fat mass, adipose tissue
weight, triglycerides, and free fatty acids) and seven on chromosomes
1, 4, 9, 11, 13, 18, and 19 to parameters related to T2D (blood
glucose, plasma and total pancreatic insulin, and liver triglycerides).
For the identification of miRNAs that are located in the peak regions of
these QTL, we used MiRBase [27] and found 138 miRNAs to be located
in the obesity-related QTL and 111 in the diabetes-related QTL; 79
were detected in both.

3.2. Development of a target prediction tool
In order to predict reliable targets for the miRNAs that are located in the
QTL (Figure 1 IV and V), five prediction tools, DIANA-microT [28],
miRDB [29], TarPmiR [30], TargetScan7.1 [31], and RNA22 [32] were
applied on the first level. An optimal selection of miRNA-specific tar-
gets was given when at least three tools showed overlapping results.
As shown in Figure 2A and B, each QTL contains 3 to 34 miRNAs which
theoretically target between 1,825 and 18,209 transcripts.
The second level of target prediction (Figure 1 IV.) was based on three
databases (DIANA-TarBase, miRecords, and miRTarBase [33e35]),
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 147
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which list experimentally validated miRNA-mRNA interactions (detec-
ted by HITS-CLIP [36], luciferase reporter or in vitro assays), to esti-
mate the quality of the first level and to add already known
interactions. The scan for interactions within these databases
demonstrated that the 3 to 34 QTL-specific miRNAs target between
747 and 6,325 transcripts, covering 15e20% of the putative targets
as shown in the circos plots in Figure 2A and B.
On the third level of target prediction, we performed expression
profiling of metabolically active tissues (gWAT, BAT, and skeletal
muscle) from the parental B6 and NZO mice that were crossed for the
QTL analysis in order to further specify putative target genes (Figure 1
V.). Our array-based transcriptomics data (GEO accession ID:
GSE111142) revealed a total number of 4,566 differentially expressed
Figure 2: Overview of miRNAs located in QTL for obesity and T2D and differently expre
predicted targets, targets in experimental databases, and putative differentially expressed t
BAT, WAT, and skeletal muscle of B6 and NZO mice. gWAT: gonadal white adipose tissue;
expressed genes.
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genes in gWAT, 2,378 in BAT, and 1,711 in skeletal muscle
(Figure 2C). These differentially expressed genes were compared with
the list of putative miRNA target genes resulting in a marked reduction
of the number of interactions per miRNA to a median of 117 in gWAT,
53 in BAT, and 39 in skeletal muscle. The entire target gene sets of all
170 QTL-specific miRNAs for different tissues (gWAT, BAT, and
skeletal muscle) are available as part of the online tool: https://146.
107.176.32/miR-QTL-Scan/.

3.3. Selection of miRNAs expressed in metabolically relevant
tissues
In order to focus on miRNAs that are expressed in the above listed
tissues, we took advantage of the study described by Güller et al.
ssed target genes. Circos plot of miRNAs located in QTL for obesity (A) and T2D (B),
argets in gWAT, BAT, and muscle. (C) Number of differentially expressed genes (DEG) in
scWAT: subcutaneous white adipose tissue; BAT: brown adipose tissue; DEG: differently

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 2: Continued.
providing data of miRNAs expressed in gWAT, BAT, and skeletal
muscle from B6 mice which were one of the breeding partners used for
our linkage analysis [26] (Figure 1 III.). As the traits involving fat mass
and weight of fat depots can be linked to elevated body weight, we
MOLECULAR METABOLISM 11 (2018) 145e159 � 2018 The Authors. Published by Elsevier GmbH. This is an open a
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focused on miRNAs that are expressed in gWAT and BAT. For gWAT,
four miRNAs (miR-15b, miR-31, miR-744, and miR-30b) with 1,525
putative interactions [37e40] and for BAT six miRNAs (miR-491, miR-
455, miR-423-5p, miR-132-3p, miR-365-3p, and miR-30b) with
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 149
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Table 1 e List of miRNAs specific for gWAT and BAT in QTL, selected putative target genes and genetic variants in regulative elements identified by
histone marks. Chromosomes, target genes, and traits linked to obesity and T2D are shown. Targets with experimental evidence by HITS-CLIP (*), in vitro assay
(**), or luciferase assay (***). gWAT: gonadal white adipose tissue; scWAT: subcutaneous white adipose tissue; BAT: brown adipose tissue; NAFLD: Non-
alcoholic fatty liver disease; BW: body weight; NASH: non-alcoholic steatohepatitis; DEG: differently expressed gene.

miRNA Chr. Putative
targets

Traits Related Target genes Genetic variants Genomic
organisation

Host gene
DEGPromoter Enhancer

gWAT-specific miRNAs
miR-15b 3 402 gWAT weight NAFLD [37] Prkag2 e 2 host gene (Smc4) No
miR-31 4 416 BW & gWAT

weight
diabetes [38] Foxo1*, Slc2a4***, Prkaa1* e 2 host gene

(LOC106557447)
No

miR-744 11 528 lean mass NASH [39] Lep, Il13, Il17b e 4 host gene (Map2k4) No
miR-30b 15 179 scWAT weight beige fat & browning [40] Socs3*, Tnf*, Pik3cd*, Ucp1*** e 10 miRNA cluster e

BAT-specific miRNAs
miR-491 4 132 BW & lean mass e e e 1 host gene (Focad) No
miR-455 4 291 BW & lean mass enhanced adipogenesis [41] Irs3, mTor e 11 host gene (Col27a1) Yes
miR-423-5p 11 401 BAT weight hepatic gluconeogenesis [72] Hk3, Il17rb, Il18r1 e e host gene (Nsrp1) No
miR-132-3p 11 72 BAT weight down regulated in obesity [43] Map3k12, Sos1 7 37 miRNA cluster e

miR-365-3p 11 113 BAT weight brown adipocyte
differentiation [44]

e e e intergenic e

miR-30b 15 179 scWAT weight beige fat & browning [40] Socs3*, Tnf*, Pik3cd*, Ucp1*** e 12 miRNA cluster e

Original Article
1,188 targets [41e45] appear to play a role for the pathogenesis of
obesity (Table 1).
Further enrichment analysis of target genes from gWAT (Figure 1 VI.)
was performed with KEGG [46] and GO-Terms [47] and revealed an
involvement of miR-31 in insulin signaling miscellaneous metabolic
pathways. Pathway analysis of all QTL-specific miRNAs with their
corresponding targets in different tissues (gWAT, BAT, and skeletal
muscle) is available in our online tool which is connected to the DAVID
website [25].

3.4. Polymorphic regulatory elements of miRNAs located in QTL
In order to clarify if cis-regulatory elements of the identified miRNAs
carry genetic variants, the public available histone modification marks
from Encode [48,49] were used. For eight of the ten candidates several
genetic variants were detected in putative enhancer regions (Table 1).
Interestingly, six miRNAs were intragenic and located within a host
gene but no genetic variants overlapping with histone modifications
were detected for these candidates. However, Col27a1 the host gene
of miR-455 was lower abundant in BAT of NZO mice in comparison to
B6 mice (p ¼ 0.026).

3.5. Evaluation of miR-31 as a relevant regulator in adipose tissue
The aim of the second part of our study was to prove that the strategy
of the computational framework (miR-QTL-Scan) introduced above
leads to the determination of metabolic relevant miRNAs and is indeed
sensitive and specific for the identification of significant miRNAe
mRNA relationships. As shown in Table 1, some of the detected
miRNAs showed an involvement in metabolic diseases. We selected
miR-31 as a candidate for further analysis as (1) it is located in a very
prominent obesity QTL (Nob6; LOD-score for body weight in week 6
4.0; LOD-score for body weight in week 14 5.3; LOD score for gWAT
weight 3.9; Figure 3A), (2) little is known about miR-31 in respect to
body weight and insulin sensitivity, and (3) the pathway enrichment
analysis of the predicted targets indicated that several genes were
relevant for insulin signaling. Interestingly, miR-31 was described to be
elevated in serum of T2D patients [38]. However, it has not been
investigated in respect to metabolic dysfunction before.
miRNAs are known to be important regulators of adipose tissue
functions [50]. Experimental evidence emphasizes that the adipose
tissue is a major depot for miRNAs that are released from adipocytes
150 MOLECULAR METABOLISM 11 (2018) 145e159 � 2018 The Authors. Published by Elsevier GmbH.
into the blood via exosomes [51]. Therefore, we focused on the
expression data and predicted targets of gWAT. As shown in the Venn
diagram of Figure 3B, 260 differentially expressed genes were pre-
dicted by at least three tools as miR-31 targets. Among these genes,
52 were experimentally validated according to the databases, 208
were only predicted (Figure 3B). However, 156 differentially expressed
genes with experimental evidence were not on the list of predicted
genes but were included in further analysis.
Taking into consideration the predicted and experimentally validated
genes, miR-31 targets 416 genes in adipose tissue (Figure 3B)
(Pearson’s chi-square test p¼ 7.6e-14), which were used for pathway
enrichment analysis [46,47]. Ten genes showed a highly significant
enrichment in the insulin signaling pathway (Acaca, Prkaa1, Rps6kb1,
Glut4, Irs1, Pde3b, Hk2, Foxo1, Ogt, and Socs6) (p ¼ 0.003; Figure 3C
and Table S1) and were therefore evaluated further. Results of the
transcriptome analysis revealed that nine of these genes exhibit a lower
expression in gWAT of NZO in comparison to B6 mice (Figure 4A and B).
Only Socs6 showed the opposite effect with an elevated expression in
NZO gWAT (Figure 4A). This together with the results of qRT-PCR
analysis demonstrating that miR-31-3p and miR-31-5p were signifi-
cantly higher expressed in gWAT of NZO than in B6 mice supports the
hypothesis that these genes are targets of miR-31 (Figure 4C). The
action of miR-31 seemed to be specific for the adipose tissue as miR-
31-3p and miR-31-5p were not differentially expressed in the liver of
the two mouse strains (Figure 4D). Figure 4E and F shows the putative
seed regions of the indicated target genes. Acaca, Prkaa1, Pde3b,
Glut4, Irs1 and Hk2, Foxo1, Rps6kb1, and Ogt appear to be direct
targets of miR-31-5p and miR-31-3p, respectively. The alignment also
demonstrates that the seed regions of the targets except of Pde3b and
Rps6kb1 are conserved between mouse and human.
Using the two-dimensional genome scan with a two-QTL model, we
investigated all interactions possible between miR-31 and the corre-
sponding predicted genes listed in insulin signaling pathway. The
upper left triangle of the two-dimensional genome scan depicts the
weak interactions between loci with LOD-score <2. However, the
lower right part of the heat map illustrates additive LOD-scores >6
between miR-31 and Foxo1, Glut4, Irs1, and Acaca (Figure 3D and
Fig. S2). Taken together, our data suggest that downregulation of these
genes is caused by elevated level of miR-31 in diabetes-susceptible
strains.
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Figure 3: Position of miR-31 in the obesity QTL Nob6 on chromosome 4, the predicted and validated targets and differentially expressed genes in gWAT of B6 and NZO mice. (A)
Peak regions of the QTL for body weight (BW) in week 6/14 and weight of gWAT. Peak of LOD-score is added to the bottom axis. (B) Comparison of differently expressed genes in
gWAT with predicted targets and experimentally validated targets of miR-31. (C) Pathway enrichment analysis for the 416 target genes of miR-31 in gWAT, filtered for a fold
enrichment >3 and p < 0.1. (D) Heat map for a two-dimensional genome scan with a two-QTL model for the NZOxB6 cross. The maximum LOD score for the interaction model
(locus to locus interaction) in the upper left triangle. The maximum LOD score for the full model (two QTLs plus additive effect) is indicated in the lower right triangle. Black squares
show an interaction between miR-31 and predicted genes (Foxo1, Hk2, Irs1, Glut4, Acaca), LOD-score >6 (dark red). gWAT: gonadal white adipose tissue.
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3.6. miR-31 expression in adipose tissue of obese human subjects
To test whether miR-31 is also affected in human obesity, we first
investigated the sequence similarity between mmu-miR-31 and hsa-
miR-31, which are located on chromosomes 4 and 9, respectively
(Fig. S3, Figure 5A), using MiRBase 21 [27]. The mature sequences are
identical suggesting that they equally target at least these genes in
mice and human which are highly conserved. As shown in Figure 5B,
expression of miR-31-5p and miR-31-3p was significantly higher in
visceral adipose tissues of obese (p ¼ 0.069) and T2D patients
(p ¼ 2.10-4) than in healthy subjects. In subcutaneous white adipose
tissue (scWAT), only a higher expression of miR-31-5p was found in
T2D patients (Figure 5C) (p ¼ 0.017).

3.7. Identification of miR-31 target genes in human SGBS cells
To gain further insights into the role of miR-31 in adipocytes, the
human SGBS cell line was used as a model system. SGBS cells
differentiate into mature adipocytes upon incubation in an adipogenic
Figure 4: Expression of miR-31 target genes in gWAT and tissue-specific expression patte
31-3p target genes involved in insulin signaling pathway in gWAT detected by array analysis
6 weeks old B6 (n ¼ 5) and NZO (n ¼ 6) mice. (*p < 0.05, **p < 0.001, ***p < 0.0001). D
of the putative targets (human in magenta, mouse in black, miRNA in blue) of miR-31-5

152 MOLECULAR METABOLISM 11 (2018) 145e159 � 2018 The Authors. Published by Elsevier GmbH.
cocktail as seen by incorporation of lipids stained by Oil Red O and an
upregulation of the adipogenic differentiation rate as well as the tri-
glyceride content (Figure 6A and B). miR-31-5p and miR-31-3p
expression was detected in the pre-adipocyte state (day 0), slightly
increased two days after the induction of differentiation and decreased
by approximately 70% on day 14 of differentiation (Figure 6C). As miR-
31-5p showed a higher expression in human visceral fat depots
(Figure 5A), we tested whether its manipulation affects the expression
of predicted target genes and subsequently the differentiation of adi-
pocytes. SGBS cells were transfected with a miR-31-5p mimic two
days before applying the differentiation cocktail. The miR-31-5p mimic
transfection significantly elevated the miR-31-5p levels in SGBS cells
both in preadipocytes (day 0) as well as in differentiated cells (day 14).
miR-31 mimic-transfected cells showed a tendency towards a
reduction of the number of differentiated cells in comparison to control
cells (Figure 6D). Elevated miR-31-5p levels significantly suppressed
the expression of PPP2r5a, PPARy, IRS1, and GLUT4 at both time
rn of miR-31 in B6 and NZO mice. Differential expression of (A) miR-31-5p and (B) miR-
. (n ¼ 4/group). (C) Expression of miR-31-5p and miR-31-3p in gWAT and (D) in liver of
ata are presented as � SEM. gWAT: gonadal white adipose tissue. (E) Partial sequences
p and (F) of miR-31-3p. The seed regions of the targets are indicated as red dashes.
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Figure 4: Continued.
points (Figure 6E). PRKAA1 showed a tendency towards reduced
expression on day 0 of differentiation in response to miR-31-5p mimic
transfection. ACACA expression was only reduced in fully differentiated
cells (Figure 6E). These data support our hypothesis that miR-31-5p
targets genes involved in adipogenesis and insulin signaling.

3.8. Identification of diabetes or obesity markers in PBMC
Since miRNAs can exhibit a similar pattern of expression in different
tissues, the candidates miR-15b-5p/3p, miR-744, miR-30b, and miR-
31-3p/5p were investigated in peripheral blood mononuclear cells
(PBMC) of 89 participants, 25 healthy, 16 obese normoglycemic, and
48 diabetic subjects. A significant correlation of miR-15b-5p with
fasted blood glucose levels was detected (Figure 7A, p ¼ 0.003).
However, no significant expression differences were detected between
the groups (Figure 7B). All the other candidates did not show an altered
expression or a correlation with specific parameters.

4. DISCUSSION

In the last decade, results from GWAS, QTL, transcriptomics, non-
coding RNAs, and prediction of miRNA targets have been collected
in order to clarify the genetic cause of complex polygenic diseases.
miRNAs play a key role in the regulation of cellular functions such as
MOLECULAR METABOLISM 11 (2018) 145e159 � 2018 The Authors. Published by Elsevier GmbH. This is an open a
www.molecularmetabolism.com
proliferation, differentiation, and apoptosis, and they are involved in
several biological processes like glucose homeostasis, inflammation,
as well as in the pathophysiology of metabolic diseases [52]. Many
cells and organs, including b-cells, liver, skeletal, and adipose tissue,
have all been described to be affected by miRNAs [53]: miR-33a and
miR-33b play crucial roles in cholesterol and lipid metabolism, miR-
103 and miR-107 regulate hepatic insulin sensitivity. In b-cells,
several miRNAs maintain the balance between differentiation and
proliferation (miR-200 and miR-29 families) and insulin exocytosis in
the differentiated state (miR-7, miR-375, and miR-335). Some miRNAs
control white to brown adipocyte conversion or differentiation (miR-
365, miR-133, miR-455). So far, most miRNAs were identified by
experimental approaches, e.g. by miRNA profiling via microarrays,
quantitative real time, and deep sequencing technologies [54e56]. For
instance, Xie et al. reported 35 of the 576 detectable miRNAs to be
differentially expressed in fat cells of lean and obese mice [57].
Microarray screening of human WAT tissues identified a number of
miRNAs to be dysregulated in obese patients [58,59].
Only a few studies have described computational tools for the identi-
fication of miRNAs and their impact on post-transcriptional gene
regulation. Zhang et al. [60] screened for differentially expressed
genes and miRNAs, and combined the results with a miRNA-
transcription factor gene-regulatory network and identified 23 active
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 153
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Figure 5: Expression of miR-31-5p and miR-31-3p in human adipose tissue. (A) miR-31 sequence similarity between humans and mice. (B) miR-31-5p and miR-31-3p expression
levels in visceral and (C) subcutaneous adipose tissue of healthy (n ¼ 15e17), obese (n ¼ 34e37), and diabetic (T2D, n ¼ 33e35) subjects analyzed by qRT-PCR. Obese subjects
had a BMI >30. (*p < 0.05, ***p < 0.0001). Data are presented as � SEM.
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Figure 6: Impact of miR-31 mimic during differentiation in human adipocytes. (A) Oil red O staining of adipocytes in the culture dish of SGBS cells at the indicated days after
induction of differentiation. (B) Percentage of differentiated adipocytes and glycerol levels during differentiation. (C) Expression levels of miR-31-5p and miR-31-3p in SGBS cells at
indicated days after induction of differentiation (n ¼ 3). (D) Expression of miR-31-5p at the indicated time points of differentiation after transfection with a miR-31-5p-specific
mimic 2 days before treating SGBS cells with the differentiation cocktail. (E) mRNA expression of putative miR-31-5p targets at the indicated time points after differentiation.
(*p < 0.05, **p < 0.01) Data are presented as � SEM.
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Figure 7: Analysis of miRNAs in human PBMCs. (A) Correlation of miR-15b-5p expression with fasted blood glucose levels (n ¼ 89). (B) Expression of miR-15b, miR-31, miR-744
and miR-30b in PBMCs of healthy (NGT; BMI < 30; n ¼ 25), obese (NGT; BMI > 30; n ¼ 16), diabetic (IGT; BMI < 30; n ¼ 20) and diabetic and obese (IGT; BMI > 30; n ¼ 28)
patients. Data are presented as � SEM.

Original Article
regulatory pathways that were significantly linked to obesity-related
inflammation.
miR-QTL-Scan, the computational framework described here applied
different datasets including QTL, miRNA, histone marks, a combination
of several prediction tools and expression profiles. To our knowledge, it
is the first example of an online tool enabling users to screen for miRNAs
located in murine QTL for obesity and diabetes, to trace their respective
differentially expressed target genes in gWAT, BAT, and skeletal muscle,
and to combine the results with pathway/GO-Term enrichment analyses
providing an impression of a possible function of a selected miRNA. The
procedure allows a first selection of miRNAswhichmight play a role for a
specific disease such as obesity and T2D. That said, it is necessary to
test the expression of candidate miRNAs, to manipulate their expression
156 MOLECULAR METABOLISM 11 (2018) 145e159 � 2018 The Authors. Published by Elsevier GmbH.
in an appropriate cell line, and to test its influence on putative target
genes experimentally, as we did for miR-31. The limitation of miR-QTL-
Scan is the large number of putative targets that result from the target
prediction tools, even when at least three parallel tools are used. miR-
QTL-Scan would benefit from data sets listing experimentally validated
miRNA-RNA interactions. In theory, the approach is also useful for the
translation of findings frommouse to human. However, it is important to
align the miRNA sequences and to compare the seed regions of the
targets as demonstrated in Figure 4E and F.
Similar to our approach, Shi et al. [61] created a complex heteroge-
neous network by integrating proteineprotein interaction data, gene
ontology data, miRNAetarget relationships, disease phenotype data,
and known miRNA-disease associations. Based on this network, a
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


computational model was developed to identify miRNA associations to
different types of cancer, myocardial infarction, and type 1 diabetes.
The successful application of our computational method was
demonstrated in the second part of the study in which we focused on
miRNAs in gWAT and PBMCs and investigated their impact on obesity.
In gWAT, four candidate miRNAs (miR-15b, miR-744, miR-30b, and
miR-31) and in BAT, six miRNAs (miR-423, miR-491, miR-132, miR-
365, miR-455, and miR-30b) were identified that target metaboli-
cally relevant genes (Table 1). Further, for eight of ten miRNAs, putative
variants in cis-regulatory elements were identified (Table 1). miR-15b-
5p which was already described to be upregulated in WAT of NAFLD
patients [37] was correlated with fasted blood glucose levels in human
PBMCs (Figure 7A), highlighting its potential as a biomarker for dia-
betes. Additional focus was put on miR-31, which is located in a major
obesity QTL on chromosome 4, the Nob6. miR-31 was selected for
further analysis, since little was known about this miRNA. Furthermore,
several of its putative targets were linked to insulin signaling such as
Acaca (acetyl-CoA carboxylase alpha), Prkaa1 (protein kinase AMP-
activated catalytic subunit alpha 1), Rps6kb1 (ribosomal protein S6
kinase B1), Glut4 (glucose transporter 4), Irs1 (insulin receptor sub-
strate 1), Pde3b (phosphodiesterase 3B), Hk2 (hexokinase 2), Foxo1
(forkhead box O1), Socs6 (suppressor of cytokine signaling 6), and Ogt
(O-linked N-acetylglucosamine (GlcNAc) transferase). Impaired insulin
signaling is well known to negatively influence glucose and lipid
metabolism [62]. In adipose tissue, insulin stimulates glucose uptake
by inducing translocation of GLUT4 to the cell surface, it increases
glycolysis rate by stimulating hexokinases (Hk2) and suppresses
lipolysis (Acaca and Prkaa1) [63].
miR-31 exhibited a higher expression in gWAT of obese and diabetes-
susceptible mice (NZO) as compared to lean and diabetes-resistant B6
mice (Figure 4C and D). As expected, its predicted target genes were
found with lower abundance in gWAT of NZO than of gWAT of B6 mice
(Figure 4A and B). The alignment of miR-31 on the mRNA sequences
together with our in vitro data of the targets support its inhibitory
potential (Figure 4E and F). However, it cannot be ruled out that the
expression pattern of the predictive target genes is - at least in part -
the consequence of another regulatory control, such as actions
of transcription factors, histone modifications, or DNA methylation
[64e66]. In order to demonstrate direct effects of miR-31 on targets
like GLUT4 and ACACA, reporter assays would be required in which
their 30 UTR cloned in a luciferase vector would have to be co-
transfected with a miR-31 expression plasmid and luciferase activ-
ity be measured.
miR-31 sequences in humans and mice are very well conserved
(Figure 4C), and, as in mice, miR-31 levels were higher in visceral ad-
ipose depot of obese and diabetic patients compared to healthy subjects
(Figure 5B). However, the question whether elevated miR-31 expression
is the cause or the consequence of obesity or T2D needs to be answered
and the mechanisms of its regulation also have to be clarified.
Several of the predicted miR-31 target genes have already been
related to adipose tissue development, obesity, and diabetes [67e69].
Our in vitro study in human SGBS adipocytes showed direct effects
of miR-31 manipulation on GLUT4, IRS1, ACACA, PRKAA1, and
PPARg expression. miR-31 seems to be implicated in two biological
processes in adipose tissue; on the one hand, it affects genes of the
insulin signalling (GLUT4 and IRS1) and on the other hand, genes
which regulate adipocyte differentiation and lipogenesis (PPARg
[70], PRKAA1 [71], and ACACA [72]), which is in accordance to the
location of miR-31 on QTL for gWAT weight and body weight
(Figure 3A).
MOLECULAR METABOLISM 11 (2018) 145e159 � 2018 The Authors. Published by Elsevier GmbH. This is an open a
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4.1. Conclusion
In summary, the introduced computational framework miR-QTL-Scan
integrated miRNAs located in QTL, target-prediction tools and data-
bases of experimentally validated targets, transcriptome profiles, and
pathway enrichment analysis to identify miRNAs that can be related to
obesity and T2D. Direct functional evidence for the achievement of this
bioinformatics approach was provided by the detailed investigation of
miR-31 and the correlation of miR-15b in PBMCs with fasted blood
glucose levels. miR-31 exhibits a higher expression in adipose tissue
of obese and diabetic mice and humans and the target genes are
involved in adipogenesis and insulin signaling. Thus, a similar
approach could also be applicable to discern the role of miRNA in other
polygenic diseases.
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