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A Deep Learning Algorithm for Prediction of
Age-Related Eye Disease Study Severity
Scale for Age-Related Macular Degeneration
from Color Fundus Photography
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Martina E. Zimmermann, PhD,” Birgit Linkohr, PhD,’ Annette Peters, PhD,’ Iris M. Heid, PhD,’
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Purpose: Age-related macular degeneration (AMD) is a common threat to vision. While classification of
disease stages is critical to understanding disease risk and progression, several systems based on color fundus
photographs are known. Most of these require in-depth and time-consuming analysis of fundus images. Herein,
we present an automated computer-based classification algorithm.

Design: Algorithm development for AMD classification based on a large collection of color fundus images.
Validation is performed on a cross-sectional, population-based study.

Participants: We included 120656 manually graded color fundus images from 3654 Age-Related Eye Disease
Study (AREDS) participants. AREDS participants were >55 years of age, and non-AMD sight-threatening diseases
were excluded at recruitment. In addition, performance of our algorithm was evaluated in 5555 fundus images from
the population-based Kooperative Gesundheitsforschung in der Region Augsburg (KORA; Cooperative Health
Research in the Region of Augsburg) study.

Methods: We defined 13 classes (9 AREDS steps, 3 late AMD stages, and 1 for ungradable images) and
trained several convolution deep learning architectures. An ensemble of network architectures improved pre-
diction accuracy. An independent dataset was used to evaluate the performance of our algorithm in a population-
based study.

Main Outcome Measures: « Statistics and accuracy to evaluate the concordance between predicted and
expert human grader classification.

Results: A network ensemble of 6 different neural net architectures predicted the 13 classes in the AREDS test
set with a quadratic weighted k of 92% (95% confidence interval, 89%—92%) and an overall accuracy of 63.3%. In
the independent KORA dataset, images wrongly classified as AMD were mainly the result of a macular reflex
observed in young individuals. By restricting the KORA analysis to individuals >55 years of age and prior exclusion
of other retinopathies, the weighted and unweighted k increased to 50% and 63%, respectively. Importantly, the
algorithm detected 84.2% of all fundus images with definite signs of early or late AMD. Overall, 94.3% of healthy
fundus images were classified correctly.

Conclusions: Our deep learning algoritm revealed a weighted k outperforming human graders in the AREDS
study and is suitable to classify AMD fundus images in other datasets using individuals >55 years of
age. Ophthalmology 2018;m:1—11 © 2018 by the American Academy of Ophthalmology. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0)/).

Supplemental material available at www.aaojournal.org.
[]

Age-related macular degeneration (AMD) is the leading
cause of severe vision impairment among people 50 years of
age and older in Western countries.' It is a multifactorial
trait influenced by both genetic and environmental effects.
The underlying mechanisms of AMD pathologic features
remain elusive.’ Age, smoking, and—to a lesser extent—
diet and sunlight exposure are among the most commonly
reported individual risk factors for disease onset. A
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genetic contribution to AMD is well established by
familial aggregation analyses, twin studies, as well as
genome-wide association studies.’

Age-related macular degeneration typically progresses in
a sequence of different stages from an early to a late form,
where atrophic and neovascular subtypes are distinguished.”
The early stages are characterized by the appearance of
yellowish deposits called drusen. Although few, small,
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distinct drusen are also typical age-related changes in the
outer retina, soft confluent drusen as well as a large number
of drusen are risk factors for the progression to late stages of
AMD.” In addition, pigmentary changes in the retinal
pigment epithelium layer can occur and also are re%arded
as independent risk factors for late-stage AMD." The
neovascular or wet form of AMD is described by the
growth of new, leaky blood vessels into the retina causing
widespread photoreceptor loss and ultimately rapid decline
in visual acuity. Geographic atrophy (GA) is characterized
by a gradual degeneration and disappearance of retinal
pigment epithelium, photoreceptor cells, and the
choriocapillaris layer in the central retina.” Both late-stage
forms can occur in the same eye or in different eyes at the
same time or in succession.

To classify patients according to their disease status,
several classification systems have been developed. Most of
those systems were derived from the Wisconsin Age-
Related Maculopathy Grading System, which is based on
the presence and extent of AMD features like drusen,
pigmentary changes, GA, and neovascularization.” Among
the most recently established used grading systems is the
9-step Age-Related Eye Disease Study (AREDS) severity
scale from AREDS report number 17, the 5-step AREDS
simplified severity scale from AREDS report number 18,’
the Three-Continent AMD Consortium severity scale,'’
the Rotterdam system,I2 as well as the clinical
classification proposed in 2013 by Ferris et al.'’ Any
classification system requires trained graders to measure
and quantify the funduscopic changes to create a grading
for the eye or the individual. This is time consuming and
also error prone. For many AMD classification systems,
the intergrader performance expressed as a quadratic
weighted K is between 22% and 86%.'"'®

So far, automated classification systems have relied on
the use of hand-designed feature-based approaches by
extracting features from a preprocessed image and then
using those features to classify the images using various
methods, for example, by automated drusen area and num-
ber quantification.'”*” Recent advances in the field of image
recognition and classification have seen a shift toward deep
learning approaches, leveraging new algorithms as well as
increased computational capacities. The most successful
deep learning approaches are based on convolution filters
that allow automated feature extraction and learning.”’
Convolution deep learning uses convolution filters to scan
images with small perceptive fields. This approach reduces
the computational load because only the weights of the
small filter are trained as opposed to a fully connected
layer. This enables the networks to contain more layers
and thus to be deeper and more comprehensive in the
classification task. In addition, the perceptive fields are
able to evaluate and perceive higher-level structures (such
as textures, structure, color, and lightning gradients), and
therefore are able to generalize many observed features.
This has led to improved accuracies for various image
classification and detection tasks such as classification of
real-life images (e.g., cars, houses, and animals), reading
and processing of license plates, as well as classifying
clinical images according to disease status.””

2

In this study, we developed an automated classification
strategy based on training deep learning models to predict
the AMD stage in color fundus images from the AREDS
study, a prospective study of the clinical course of AMD.
For classification we applied a scheme consisting of 13
classes including 9 classes based on the ARED 9-step
severity scale, 3 late-stage classes, and 1 class for ungrad-
able images. We also applied our algorithm to an indepen-
dent study to assess the algorithm’s performance in a
population-based study for future epidemiologic studies
and, potentially, for harmonizing different existing studies.

Methods

Overview

The proposed deep learning classification strategy consists of 4
steps (Fig 1). In the first step, the color fundus images are
preprocessed. They are used in the second step to train multiple
convolution neural nets (CNNs) independently. In general, the
aim of training a CNN is to optimize an evaluation metric by
comparing the CNN output with the true class iteratively and
then adjusting the weights to minimize the loss between CNN
output and actual label. In the third step, a random forest
algorithm is trained to build a model ensemble based on the
results of the single CNNs. In the last step, the final model is
applied to predict AREDS testing data and the Kooperative
Gesundheitsforschung in der Region Augsburg (KORA;
Cooperative Health Research in the Region of Augsburg) study
dataset.”* The individual steps are explained in more detail below.

Thirteen Classes of Age-Related Macular
Degeneration Based on the Age-Related Eye
Disease Study 9-Step Severity Scale

We adopted a system with 13 classes based on the AREDS 9-step
severity scale. The AREDS 9-step grading aims at quantifying
AMD-related features on fundus images.'” Age-Related Eye
Disease Study grade 1 indicates fundus images with little or no
AMD-related changes, whereas fundus images with AREDS
grades 2 through 9 present changes associated with early or in-
termediate AMD.'® In addition, AREDS grades 10 through 12
represent late-stage AMD, namely GA,'® neovascular AMD,"
and images with both late-stage forms.'” Furthermore, we added
a new category to indicate fundus images that are not suitable to
grade AMD severity, ungradable.

Ethics Statement

The AREDS of the National Eye Institute, National Institutes of
Health, is a long-term multicenter, prospective study. The study
protocol was approved by an independent institutional review
board at each clinical center involved in the AREDS. Written
informed consent was obtained from all participants before
enrollment. The corresponding author (B.H.F.W) was granted ac-
cess to the AREDS data by the AREDS data access committee
through the database of genotypes and phenotypes, and our ana-
lyses are in accordance with the approved research use statement
(data access request no. 48440). The study was adherent to the
tenets of the Declaration of Helsinki and was HIPAA compliant.>*

The KORA study is a research platform to survey the devel-
opment and course of chronic diseases. The ethics committee of the
Bavarian Medical Association (Bayerische Landesirztekammer)
and the Bavarian commissioner for data protection and privacy
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Figure 1. Processing outline of the proposed classification scheme. First, fundus images are normalized to have equal illumination and color balance. Next, 6
different convolution neural net models are trained on 86770 normalized images, namely, AlexNet,” GoogLeNet,34 VGG with 11 convolution layers,;5
Inception-V3,”° ResNet with 101 layers,”” and Inception-ResNet-V2 (I-ResNet-v2).>” The class prediction from each individual network then was used
to train a random forest classifier to improve classification accuracy. Finally, the random forest ensemble model was used to predict the Age-Related Eye
Disease Study (AREDS) 9-step plus 3 scale and to identify ungradable images from 12 019 fundus images from the unrelated AREDS testing dataset, as well
as of 5555 fundus images from the Cooperative Health Research in the Region of Augsburg (KORA) study.

(Bayerischer Datenschutzbeauftragter) approved the study, which
complied with the tenets of the 1964 Declaration of Helsinki and its
later amendments. Informed written consent was obtained from all
individual participants included in the study.

gradings (AREDS 9 steps plus 3 late-stage steps) from the
AREDS from the database of Genotypes and Phenotypes (dbGaP)
(accession: phs000001.v3.p1; Table 1). The AREDS data has been
described previously in more detail.”® Briefly, AREDS is a long-

term, multicenter, prospective study of AMD and age-related
cataract to study risk factors and to understand the clinical pro-
gression of both diseases. Eligible participants were between 55
and 80 years of age at recruitment and free of sight-threatening
conditions other than cataract or AMD. Each patient was
assigned either to the training set (70% of the patients), validation
set (20% of the patients), or testing set (10% of the patients), and
all fundus images from the patient were included in the respective
dataset. Thus, the training, validation, and testing datasets con-
sisted of 86 770, 21 867, and 12019 fundus images, respectively.
Approximately 5% of the images were estimated to be ungradable

Data Acquisition

In the AREDS study, color stereoscopic fundus images from
mydriatic eyes were obtained with a Zeiss (Carl Zeiss AG, Ober-
kochen, Germany) FF series 30° camera in field 2 (centered above
the macula) as previously described.”” In the KORA study, the full
macular region and optic disc of nonmydriatic eyes were acquired
with a 45° degree Topcon (Topcon Corporation, Tokyo, Japan)
TRC-NW5S fundus camera.”> We extracted 120656 fundus
images and their respective previously performed manual

Table 1. Number of Fundus Images in the Training, Validation, and Test Datasets from the Age-Related Eye Disease Study and from the
Cooperative Health Research in the Region of Augsburg Study

No. of Fundus Images (% Total)

gg:‘g?:::;g Age-Related Eye Disease Study Cooperative Health Research in the Region of Augsburg Study

Study Scale All Training Validation Testing All Ages Age >55 Years

UG 4158 (3.45) 3117 (3.59) 712 (3.26) 329 (2.74) 322 (5.8) 155 (5.43)

1 41770 (34.62) 30278 (34.89) 7416 (33.91) 4076 (33.91) 4829 (86.93) 2409 (84.41)
12133 (10.06) 8585 (9.89) 2234 (10.22) 1314 (10.93) 226 (4.07) 150 (5.26)

3 5070 (4.2) 3570 (4.11) 1002 (4.58) 498 (4.14) 75 (1.35) 61 (2.14)

4 8985 (7.45) 6437 (1.42) 1471 (6.73) 1077 (8.96) 60 (1.08) 45 (1.58)

5 6012 (4.98) 4392 (5.06) 1008 (4.61) 612 (5.09) 24 (0.43) 18 (0.63)

6 7953 (6.59) 5755 (6.63) 1426 (6.52) 772 (6.42) 10 (0.18) 7 (0.25)

7 6916 (5.73) 4991 (5.75) 1374 (6.28) 551 (4.58) 1 (0.02) 1 (0.04)

8 6634 (5.5) 4734 (5.46) 1295 (5.92) 605 (5.03) 0 (0) 0 (0)

9 2539 (2.1) 1855 (2.14) 453 (2.07) 231 (1.92) 1 (0.02) 1 (0.04)

10 4128 (3.42) 2952 (3.4) 831 (3.8) 345 (2.87) 2 (0.04) 2 (0.07)

11 13260 (10.99) 9357 (10.78) 2445 (11.18) 1458 (12.13) 5 (0.09) 5(0.18)

12 1098 (0.91) 747 (0.86) 200 (0.91) 151 (1.26) 0 (0) 0 (0)

Total 120656 (100.0) 86770 (100.0) ~ 21867 (100.0) 12019 (100.0) 5555 (100.0) 1967 (100.0)

UG = ungradable.
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because of technical issues such as overexposure, blurring resulting
from an out-of-focus image, or dirt on the lenses. Hence, a trained
ophthalmologist identified images that could not be graded, and we
flagged those images in the datasets. Thus, we trained a classifi-
cation system consisting of 13 classes in total (12 AREDS steps
and 1 additional class comprising ungradable pictures). In addition,
5555 fundus images were provided by the cross-sectional KORA
study”® and were used as an independent testing dataset to assess
classification accuracy.

Preprocessing

The aim of the preprocessing step was to reduce the influence of
lighting variations such as brightness and incident angle of the
fundus camera between the images. We normalized the color
balance as well as local illumination of each fundus image by usin%
a Gaussian filtering to subtract the local average color (Fig 1).”
The short edge of each image was reduced to 512 pixels while
keeping the aspect ratio constant. The training, validation, and
test datasets were encoded as binary .rec files for fast access.”®

Loss Functions and Other Metrics

As the main loss metric to maximize during training, we applied a
custom weighted K metric (k. Fig SI, available at
www.aaojournal.org). The K metric is especially suited for
classification task with unbalanced class distributions and, in
addition, reflects the ordinal scaled nature of the AREDS score
(higher scores relate to a more severe phenotype). We derived k.
from Cohen’s quadratic weighted K metric, k,,,”’ by adapting the
weights to impose a larger penalty for a misclassification
between gradable and ungradable images as well as between late
AMD stages'®'? and among no AMD, early AMD, and inter-
mediate AMD classes.' * The weights for disagreements between
the AREDS classes 1 through 9 are identical to the quadratic
weighted K, k. (Fig S1, available at www.aaojournal.org), because
small deviations between these phenotypically similar classes are
tolerable with a quadratic decay. The same applies for
misclassifications among late-stage AMD classes 10 through 12.
However, disagreements between ungradable fundus images and
any other class receive the maximum possible penalty. Thus, the
weights are set to 0 in the first row and the column of the weighting
matrix, except when ungradable images are identified correctly as
such. Similarly, misclassifications among any of the classes,
including the 9-step AREDS scale (classes 1—9) and the classes
covering late-stage AMD (classes 10—12), receive maximum
penalties. Training with other loss functions, such as cross-entropy,
log-loss, as well as accuracy, top 2 accuracy, and an unweighted K,
revealed comparable model accuracies over all classes. However,
those models performed more poorly in separating early- from late-
stage AMD as well as in identifying ungradable images.

We also reported linear weighted and unweighted K measures,
overall accuracy, as well as top 2 accuracy, which indicates that the
true class of a fundus image is among the 2 classes that are pre-
dicted by the CNN with the highest confidence. In addition, we
reported the balanced accuracy for all models and model ensem-
bles, representing the accuracy that would be expected in case all
classes are balanced, that is, that have the same number of obser-
vations. Furthermore, we calculated the F1 metric,”” which is the
harmonic mean of precision and recall, to evaluate the CNN
performance in different AREDS classes. Finally, for each
AREDS class, we reported different measures such as sensitivity,
specificity, positive and negative predictive values using the
confusion Matrix function provided by the caret package’' in R
software.™

4

Training

We trained 6 state-of-the-art convolution neural networks imple-
mented in the MXNet Deep Learning Framework™® separately on
86 770 images from the training data. The applied CNNs were
AlexNet (SuperVision group, consisting of Alex Krizhevsky,
Geoffrey Hinton, and Ilya Sutskever at the University of
Toronto).” GoogLeNet (Google),”* Visual Geometry Group
(VGG), Department of Engineering Science, University of
Oxford with 11 convolution layers,> Inception-V3,’® Deep
Residual Learning for Ima%e Recognition (ResNet, Microsoft
Research) with 101 layers,”’ and Inception-ResNet-V2.*” We
trained each model for 10 epochs or iterations using a Cohen’s
quadratic weighted K metric as the main loss function, because
directly training with the custom weighted K metric resulted in
delayed convergence in the training accuracy and unstable
validation accuracies. Using higher epochs for initialization
resulted in delayed or poorer convergence when training with the
custom weighted K metric. The loss function was minimized
using a stochastic gradient descent optimizer with momentum
(Table S1, available at www.aaojournal.org). Using the
initialized models, we trained each model for at least another 30
epochs with the custom weighted K metric (Fig S1, available at
www.aaojournal.org). Training was stopped as soon as the
validation K values no longer increased or started to decrease.
We then selected the most suitable epoch to use for prediction
based on a high validation K and a lower training K, because
overfit models performed poorly in model ensemble computation.
The training parameters for each neural net architecture are listed
in Table S1 (available at www.aaojournal.org).

We performed the computations an a single system equipped
with two Nvidia GTX 1080 Ti graphics processing units (GPUs)
having each 11.2 GB of random access memory (RAM) memory
as well as a single Nvidia Titan X Pascal with 12.1GB of RAM
memory. This allowed multi-GPU training in which the images in
each training batch are partitioned evenly among the GPUs and are
processed simultaneously. The results are averaged across the
GPUs. The available RAM, the size of the images, as well as the
model architecture, that is, the number of convolutional layers
suitably filtered, pose a limit on the maximum possible batch size
that can be used for training. In addition, we used backward
propagation mirroring as implemented in the MXNet framework,
which reduces the required RAM by approximately 50% for most
architectures, at the cost of increased computation time (by
approximately 15%).

Data Augmentation

To increase the diversity of the dataset, and thus to reduce the risk
of overfitting the CNNs, we applied data augmentation methods.
Classification should be independent of image transformations as
long as the transformations do not alter the diagnostically decisive
characteristics, that is, the macula and surrounding region are not
affected. During training, each image was scaled to 512x512
pixels, and we applied several augmentations to each image: (1)
images were cropped randomly on both height and width for
approximately 10% of their size, (2) images also were randomly
mirrored or flipped, (3) images were rotated randomly between 1°
and 180°, and (4) the aspect ratio was adjusted randomly between
0% and 15%.

Random Forest for Ensemble

Initially, we evaluated the performance of various methods to
compute the network ensemble in the validation data set. In
particular, we applied Support Vector Machines (implemented in R
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software®®), multilayer perceptrons (implemented in MXNet),
Gradient Boosting Classifiers (implemented in Scikit-learn in Py-
thon’®), majority voting, as well as random forest classification
(implemented in R software) and found that a random forest
classifier showed the best classification metrics and was less
prone to overfitting. We therefore constructed the model
ensemble by training a random forest classifier. Generally in a
random forest classification task, a number of decision trees are
computed and the final classification corresponds to the majority
vote among the individual trees.’” Using the predicted class
probabilities of the 6 CNN models, we trained the random forest
using 1000 trees on the training dataset. To optimize the control
parameters of the random forest algorithm (such as the maximum
number of trees and convergence parameters), we used the
validation dataset consisting of 21867 color fundus images and
reported the performance of the best model ensemble on an
independent test dataset consisting of 12 019 images. In the
KORA study data of 5555 images, we applied the resulting
ensemble to evaluate the performance in a dataset that is
completely independent without any overlap of images, different
image acquisition conditions, and a different study design
(population-based, cross-sectional study including many controls,
some early AMD and few late AMD cases, as well as other sight-
threatening conditions) compared with the CNN-generating dataset
(clinic-based, prospective cohort without confounding blinding
conditions). Based on the confusion matrix comparing the
physician-based classification with the CNN-based classification,
we derived different K statistics and proportions of agreement.

Assessing Important Features in Fundus Images
Using Convolution Neural Nets

To evaluate how the CNNs assessed the fundus images, we
randomly masked 10 000 100x 100-pixel fields in 1 fundus image
from AREDS classes 3 through 12 with the mean pixel value of the
respective image.*” This approach effectively masks important
AMD-related features in the fundus image and allows assessment
of the importance of those features. In addition, images from
AREDS classes 1 (healthy) and 2 (few drusen) were masked by 10
000 40x40-pixel fields with a pixel value of O (black). By adding
small black areas to otherwise healthy fundus images, we could
assess whether the addition of unexpected features in certain areas
of the fundus image influences the classification confidence. Next,
we allowed GoogLeNet predict the AREDS class of the masked
images and calculated the confidence of the CNN for the true
AREDS class. A significant drop in confidence indicates that this
area was indeed an important feature for the respective true
AREDS class. Next, for each pixel in the fundus image, we
calculated the average confidence for the true class by averaging

the confidence observed for all those images that masked the
respective pixel. Finally, we overlaid the original fundus image
with areas that show a significant drop in confidence for the true
AREDS class.

Data Availability Statement

Phenotypes and fundus images from the AREDS are available
at dbGAP (http://dbgap.ncbi.nlm.nih.gov/; accession,
phs000001.v3.p1). The KORA data are available on an individual
project agreement with KORA at https://epi.helmholtz-muenchen.de/.
The individual models (architecture and the trained weights) as well as
the model ensemble are publicly available at https:/github.com/
RegensburgMedicallmageComputing/ARIANNA.  The authors
possess no intellectual property on the methods or the models
themselves.

Results

Training the Individual Convolution Neural Net
Models and Model Ensemble

In total, we used 86 770 fundus images from the AREDS to train 6
different CNNs and used 21 867 fundus images to estimate the
model’s validation accuracy after each iteration (Fig S2, available
at www.aaojournal.org). Initially, we trained each network for 10
iterations using a quadratic weighted K loss function, because
training directly with the custom metric resulted in a less stable
training process and in a higher variance in validation accuracy.
After those iterations, we trained each model using the custom K
metric, which heavily penalizes misclassification errors between
ungradable and gradable images, as well as between fundus
images from healthy patients and early or intermediate AMD
patients and fundus images showing signs of late-stage AMD
(Figs S1 and S2, available at www.aaojournal.org). The different
network architectures had overall accuracies ranging between
57.7% and 61.7% and with quadratic weighted K values ranging
from 89.7% to 91.1% in an independent test set of 12 019
fundus images (Table 2). By combining the different network
architectures in a model ensemble using random forests, we were
able to improve the overall accuracy to 63.3% and weighted K to
92.1% in the AREDS test dataset (Table 2; Table S2, available
at www.aaojournal.org). In addition, the model ensemble showed
an improved Cohen’s K value of 55.5% and a Cohen’s linear
weighted K of 83.3% as well as a top 2 accuracy of 85.7%. The
gain in classification accuracies can be attributed to increased
precision as well as recall over all AREDS classes, because the
F1 metric of the model ensemble outperforms the individual

Table 2. Comparison of Different Metrics for Different Model Architectures in the Age-Related Eye Disease Study Test Dataset

Name of Convolution Neural Net Ko K Ky K. ac ac, acy,
AlexNet 48.13 79.27 89.7 80.43 58.3 80.8 70.3
GoogLeNet 48.06 78.93 89.45 80.93 57.7 81.1 71.1
VGG 50.53 80.66 90.5 81.52 59.8 83.3 71.3
Inception-v3 52.19 81.72 91.11 82.84 60.7 84.2 72.9
ResNet 53.06 81.66 90.79 82.39 61.7 84.5 4.2
Inception-ResNet-v2 52.44 81.04 90.98 83.06 61.1 83.7 71.6
Ensemble: random forest 55.47 83.32 92.14 84.03 63.3 85.7 4.7

ac = accuracy; ac, = average balanced accuracy over all classes; ac, = top 2 accuracy; k. = custom weighted Cohen’s K; k; = linear weighted Cohen’s K;k, =

quadratic weighted Cohen’s K; kg = unweighted Cohen’s k.
Data are percent.
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Figure 2. Confusion matrix and F1 scores over all classes in the Age-Related Eye Disease Study (AREDS) test set. A, Confusion matrix of the test set
depicting the true versus the predicted class of 12019 fundus images. The colors represent the custom K weighting scheme used in the training process (Fig
S1, available at www.aaojournal.org). B, The F1 score of the 6 neural net architectures as well as the F1 score of the model ensemble were calculated as the

harmonic mean of precision and recall of each AREDS class.

models in almost all classes (Fig 2). Importantly, the different
model architectures showed a high rate of agreement with each
other with an average quadratic weighted K of 91% between the
models. Taken together, the model ensemble showed the best
classification performance across all investigated metrics and
thus was used for further steps.

Predicting Age-Related Eye Disease Study Scale
in the Cooperative Health Research in the
Region of Augsburg Dataset

Many CNN models fail to perform accurately in unrelated
datasets because of technical differences (e.g., camera setup,
illumination, further processing) and clinical differences (e.g.,
inclusion or exclusion criteria, grading of non-AMD—specific
features).”> To evaluate our algorithm, we used 5555 fundus
images from the KORA study” and predicted their AREDS
scale using the model ensemble that had excellent classification
accuracies in the AREDS test dataset. The observed accuracies

Table 3. Comparison of Evaluation Metrics for the Cooperative
Health Research in the Region of Augsburg Study Dataset Using
the Model Ensemble

Metric Ko K Kq K. ac acy acy,
All ages 3490 1955 11.01 3875 831 905 638
Age >55 years  45.80 41.87 3496 5511 194 913 649
Age >55 years* 50.07 5838 6330 6138 825 94.8 653

ac = accuracy; ac, = average balanced accuracy over all classes; ac; = top 2
accuracy; K. = custom weighted Cohen’s K; k; = linear weighted Cohen’s
K;K; = quadratic weighted Cohen’s K; ko = unweighted Cohen’s K.

Data are percent.

*Excluding non—age-related macular degeneration pathologic features
(e.g., synchysis, central serous chorioretinopathy, myopia related changes),
artifacts and inadequately illuminated images.

were higher than the accuracies observed in the AREDS data,
because most of the fundus images were of individuals without
any changes related to AMD (Table 3; Table S2, available at
www.aaojournal.org). However, we observed reduced weighted
and unweighted K values in the KORA dataset, particularly
because of 313 misclassified fundus images that were classified
to show features of neovascular AMD (AREDS class 11), but
that were actually images from healthy individuals (Fig 3).
Most of those fundus images were from young individuals (40
years of age and younger) who demonstrated dominant macular
reflexes, which were absent in fundus images in the AREDS
because of the increased inclusion age of 55 years or older.
Therefore, by restricting the analysis to fundus images from
individuals 55 years of age and older—as corresponding to the
AREDS age range—we observed significantly increased
accuracies as well as increased unweighted and weighted K
values (Table 3; Table S2, available at www.aaojournal.org).
Importantly, 76 of 1677 fundus images from individuals 55
years of age and older showed definite features of intermediate
AMD (AREDS classes 4—9), and our classification scheme
would correctly identify 63 of those and place them in a
category of more than 4 (82.2% sensitivity and 97.1%
specificity). Furthermore, our algorithm successfully identified
all fundus images with late-stage AMD (AREDS classes
10—12; sensitivity, 100%; specificity, 96.5%). Importantly, 1504
images showing a healthy fundus (AREDS class 1) were iden-
tified correctly as such, resulting a specificity of 84.2% and
sensitivity of 94.3% for this class.

A Closer Look at Misclassified Images in the
Cooperative Health Research in the Region of
Augsburg Dataset

Among the 44 images that were classified erroneously to be in
AREDS class 11, although they were actually class 1 or 2, 15 had
photographic and digital artifacts, 6 fundus images were either too
bright or too dark for accurate assessment by CNNs, 4 images
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KORA Study all ages

185 82 3

102 4378 173

Predicted AREDS Class

True AREDS Class

KORA Study age > 55 years

Predicted AREDS Class

UG 1 2 3 4 5 6 7 8 9 10 11 12
True AREDS Class

Figure 3. Confusion matrix of the true and predicted classes in the Cooperative Health Research in the Region of Augsburg (KORA) study. The true Age-
Related Eye Disease Study (AREDS) class is plotted against the AREDS class predicted by the algorithm. The colors denote the weighting scheme that was
used to train the neural networks. Fundus images that were classified mistakenly as AREDS class 11 but that did not have AMD-associated changes are
highlighted in pink. Most of those images are from young individuals with visible macular reflexes. By restricting the analysis to images from individuals 55
years of age and older, the occurrence of misclassification can be reduced drastically.

showed signs of epiretinal membranes, and 5 showed severe
fundus changes associated with myopia (Fig S3, available at
www.aaojournal.org). Similarly, 7 of 29 fundus images from
classes 1 and 2 mistakenly classified in AREDS class 4 showed
changes associated with central serous chorioretinopathy, and an
additional 10 images showed technical artifacts or other
pathologic features that were recognized by the algorithm as
disease-associated changes (Fig S3, available at
www.aaojournal.org). Excluding those images increased the
quadratic weighted k measure to 63.2% (from 11.0%) and the
unweighted K to 50.1% (from 34.9%; Table 3).

A Peek into the Black Box of Deep Neural
Networks

Neural networks often are regarded as black boxes, which makes
interpretation of results difficult.”” To visualize the important areas
in the fundus images that are perceived and integrated by the
perceptive fields, we randomly masked fundus images and let the
CNN predict the AREDS class. In case the mask covers
important phenotypic features for the respective class, a
significant drop in confidence of prediction can be observed
(Fig 4). Generally, the CNN recognizes important features in the
macular region. Masking parts of the fovea further reduced the
confidence of the CNNs. However, as soon as the pathologic
changes are spread across the entire fundus image (e.g., in case
the neovascular lesions encompass the entire macula as observed
in AREDS class 11), masking a small portion of the image does
not result in a reduced confidence.

Discussion

High Classification Accuracy in the Age-Related
Eye Disease Study Dataset

Herein, we present an automated classification scheme based
on the AREDS 9-step plus 3 severity scale and ungradable

fundus images with high classification accuracy, out-
performing a human grader in the AREDS dataset by
reporting classification metrics (unweighted K of 55.2% for
AREDS 9-step plus 3 classes), similar to those observed for
regraded images of the same grader (intragrader unweighted K
value of 58%). 10 Therefore, the model ensemble is well suited
to classifying fundus images according to their AMD-
associated changes. Interestingly, most model architectures
show a stronger agreement on the assessment of the indi-
vidual fundus images between each other (average quadratic
weighted K, 91%) than compared with intergrader agreement
between physicians,'” in line with the observation from other
studies aimed at grading fundus images for diabetic
retinopathy.”’ As other investigators have noted, the neural
network was provided with only the image and associated
grade, without explicit definitions of features (e.g., drusen,
pigmentary changes, or atrophic areas). Because the
network learned the features that were most predictive for
the respective class, it is possible that the algorithm is using
features previously unknown to or ignored by humans that
may be highly predictive of certain AREDS classes.
Alternatively, the algorithm was able to grade the respective
features more consistently within the areas defined by the
grading grid.

Interestingly, the F1 score was similar for all 6 neural net
architectures across all AREDS classes, but differed
significantly for class 12. We believe that this is the result of
3 factors: (1) class 12 contained the fewest samples, so the
networks were not able to learn from many different training
examples; (2) AREDS class 12 includes individuals who
have both features of GA (class 10) as well as features of
neovascular AMD (class 11), which further increases
complexity for prediction because the quantifiable features
overlap with other classes; and (3) the different model ar-
chitectures may have to make tradeoffs between predicting

7
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AREDS 1

AREDS 2

AREDS 3

AREDS 4

AREDS 5

AREDS 6

< 50% confidence

confidence < 10%

AREDS 7

AREDS 8

AREDS 9

AREDS 10

AREDS 11

AREDS 12

Figure 4. A peek into the black box of convolution neural nets. A representative image from each Age-Related Eye Disease Study (AREDS) class was
masked randomly 10000 times by a small rectangular field. We then used GoogLeNet to predict the true AREDS class of the masked images and recorded
the confidence of the algorithm for the respective class. We then mapped the confidence onto the respective fundus image to highlight areas that are
important for the convolution neural net (CNN) to predict the true AREDS class correctly. Masking areas within the blue borders reduces the CNN’s
confidence to less than 50%. Even stronger reduction in confidence is highlighted in green (confidence between 30% and 50%), yellow (confidence between

10% and 30%), and red (confidence less than 10%).

certain classes. For instance, AlexNet showed the best F1
score for detecting class 12 (GA plus neovascular AMD);
however, the price was that it performed worse at detecting
classes 10 (GA) and 11 (neovascular AMD).

Previous efforts primarily have aimed at automated
grading of fundus images of fewer classes and have shown
reliable classification metrics outperforming human graders.
For instance, recently, a deep learning approach was used to
classify fundus images from the AREDS according to a 2-,
3-, or 4-step AMD severity scale, and the performance of
this a}i)proach was compared with the accuracy of a physi-
cian."" The automated grading deep learning approach
showed similar K statistics, because the physician and was
able to outperform her at certain tasks. Notably, the
unweighted and linear weighted K values for the 4-class
classification problem were 70% and 79%, respectively,
for the algorithm and 66% and 79%, respectively, for the
physician. Our approach revealed even higher classification
accuracies in a more complex setting. When broken down to
a 4-class problem as described previously,” comprising no
AMD (AREDS class 1), early AMD (AREDS classes 2 and
3), intermediate AMD (AREDS classes 4—9), and late
AMD (AREDS classes 10—12), our algorithm revealed an
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unweighted and linear weighted Kk of 74% and 83%,
respectively, in the AREDS and 42% and 51%,
respectively, in the full KORA study.

Using Convolution Neural Nets to Classify
Fundus Images from Other Population-Based
Cohorts

In the AREDS dataset, the different metrics were correlated
highly, and better-performing models generally out-
performed worse-performing models in all evaluated met-
rics. In the KORA study, however, the model ensemble
accuracy decreased when restricting the analysis to in-
dividuals 55 years of age and older, probably because many
healthy fundus images (which are easier to identify with our
scheme) were removed from the analysis. However, the
balanced and top 2 accuracy, as well as all investigated Kk
metrics, were increased, indicating that the model performed
better on the data. The proposed automated classification
scheme therefore is limited largely to classification of im-
ages from individuals 55 years of age and older, because the
algorithm was trained on fundus images from individuals
who were at least 55 years of age at enrollment. When
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evaluating our algorithm on a population-based study
including general adults 25 to 75 years of age, the quadratic
weighted and unweighted K values were markedly lower.
We were able to show that this was the result of the presence
of macular reflexes, particularly in younger individuals, that
the algorithm mistakenly identified as disease-associated
changes. The algorithm was not able to learn that macular
reflexes are not disease-associated changes because the
youngest individual in the AREDS was 55 years of age at
recruitment, and macular reflexes are rarely observed in
older individuals.

In addition, several other pathologic features as well as
technical artifacts in the KORA images, which the algorithm
was not trained to detect, further attenuated our classifica-
tion accuracies in a population-based setting. This is not
surprising because patients with other sight-threatening
diseases were excluded in the prospective setting of the
AREDS, and thus, the algorithm was not able to learn that
those diseases are not associated with AMD. Nevertheless,
the algorithm had an acceptable specificity and sensitivity to
detect healthy and diseased fundus images in the KORA
dataset restricted to fundus images from individuals older
than 55 years (unweighted and quadratic weighted K of
50.1% and 63.2%, respectively). Both manual and auto-
mated AREDS grading have inherited inaccuracies. How-
ever, misclassification of images by 1 or 2 steps on the scale
is not that severe for most subsequent applications, espe-
cially because many steps are quite similar in appearance.
Thus, our proposed algorithm is suitable to be applied to
other population-based studies to expand the number of
currently available datasets to dissect risk factors for early
AMD and late AMD.

To increase the specificity further (i.e., to reduce the
number of false-positive findings), a trained ophthalmologist
can identify erroneously classified images as well as images
demonstrating other pathologic features. Alternatively, other
retinal diseases can be excluded by the imaging center, for
instance, using a questionnaire or medical records. How-
ever, because the large majority of images in a population-
based study are expected to be of healthy eyes, the proposed
scheme already will reduce the burden of labor by correctly
classifying most healthy fundus images as such. Impor-
tantly, the proposed classification scheme may be useful to
harmonize the classification of different epidemiologic
studies that use color fundus images for AMD classification,
a challenge that is usually time consuming,'’ but necessary,
to be able to compare studies or to conduct meta-analyses.
In such a setting, confounding pathologic features and
low-quality fundus images usually are excluded already,
which should result in acceptable AREDS grading in those
studies, similar to the accuracies observed in the KORA
study after exclusion of other pathologic features and
restricted to individuals 55 years of age and older.

Convolution Neural Nets Primarily Detect
Changes in the Macular Region

By randomly masking regions in the fundus image, we were
able to assess the importance of certain regions for classifi-
cation confidence of the CNNs. The CNNs try to assess

features in the macular region of the fundus images, which is
to be expected because the AREDS 9-step plus 3 scale was
developed to quantify changes in this area.'’ Importantly,
masking the foveal region of the fundus images further
decreased the confidence of the algorithm, potentially
reflecting the decision to count only pigmentary changes in
the central grid and not in the outer grid to contribute to the
final AREDS class.'” In case the AMD-associated changes
are too numerous and cover most of the fundus image,
masking a small portion of the fundus image did not decrease
the confidence in the prediction. This further highlights that
the CNNs are able to detect local as well as global features to
predict the AREDS scale. Although it is possible that CNNs
can find a way to “game the system” and be accurate in
identifying diseases by using novel features or a combination
of features, we did not observe this in our study. Future
studies may be able to include additional phenotypic, genetic,
or other image information (such as information about the
second eye) in the training process to improve the classifi-
cation accuracy further.

In conclusion, taken together, our new algorithm showed
high classification accuracies outperforming human graders
in the AREDS data and can be used to grade fundus images
from population-based studies in individuals 55 years of age
and older. Other pathologic features have to be excluded
either before classification or afterward by a trained
ophthalmologist. Nevertheless, our algorithm should reduce
the financial burden and workload significantly by correctly
identifying images with any pathologic features present.
Importantly, our algorithm learned to extract important
features from the macular region of the fundus images,
further reinforcing the notion that automated grading sys-
tems indeed can be trained to detect specific disease-related
changes in fundus images. At the current stage, we do not
suggest that this classification system should be used by in
an eye clinic or ophthalmologist practice. Although the
model ensemble is acceptable at identifying healthy fundus
images, fundus images with features of AMD or other dis-
ease will causes the model ensemble to make a prediction
for a certain AREDS class. In the future, we hope that we
can improve the model by incorporating images from
population-based surveys that contain other phenotypes to
enable a CNN that can be used to prescreen patients, to aid
diagnosis in day-to-day patient care, or both.
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