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Understanding differentiation from stem cells into the dif-
ferent cell types that make up the human body is a central 
problem of basic and medical science. Although numerous 
mechanisms of cellular differentiation have been identified 
and many cell types have been characterized, it will require 
a huge coordinated undertaking to systematically map all 
human cell types and cellular differentiation states (1). Due 
to the advances in single-cell transcriptomics, it has already 
been possible to study the cell type composition of mamma-
lian organs and tissues (2–6) as well as development stages 
(7, 8). However, single-cell transcriptomics provide just a 
snapshot of the dynamics of the cell populations unless cells 
can be traced or tagged experimentally (9–12). Thus, recon-
structing cell lineages from stem cells to differentiated cells 
remains a challenge. Recently, algorithms to order devel-
opmental states and compute lineage trees based on com-
paring single-cell transcriptomes have made considerable 
progress (13–15) and have revealed insights into stem cell 
biology (16) and tissue differentiation (17–20). However, 
these algorithms have been developed for the study of dif-
ferentiation in specific cell lineages or tissues, and are not 
suitable to reconstruct all the cell differentiation trajectories 
present in complex animals. 

Given these problems, can single-cell transcriptomic ap-
proaches improve our molecular understanding of how stem 
cells differentiate into all the cell types of an entire complex 
adult animal? Freshwater planarians such as Schmidtea 
mediterranea offer a unique opportunity to answer this 
question. Planarians are immortal, as they contain as adults 

a large pool of pluripotent stem cells (neoblasts) that con-
tinuously differentiate to all mature cell types to turnover 
all tissues (21). Hence, all cell differentiation pathways are 
constantly active in adult individuals. We therefore rea-
soned that an unbiased single-cell transcriptomics approach 
should yield terminally differentiated cell types as well as a 
large number of intermediate cellular states, making planar-
ians an ideal model system to attempt the lineage recon-
struction of a whole animal. 

Here we performed highly parallel droplet-based single-
cell transcriptomics, Drop-seq (3), to characterize planarian 
cell types. We molecularly characterized dozens of cell types 
and uncovered many new ones. By applying a newly devel-
oped algorithm, PAGA, which reconciles the principles of 
clustering and pseudotemporal ordering (22), and combin-
ing it with independent computational and experimental 
approaches, we derive a consolidated lineage tree that in-
cludes all identified cell types rooted to a single stem cell 
cluster. Along this tree, we identify 48 gene sets that are co-
regulated during the differentiation of specific cell types. 
Finally, we used single-cell transcriptomics to characterize 
the cellular processes that happen during regeneration. Our 
results reveal a strong depletion of newly characterized cell 
types, suggesting that these cells are used as an energy 
source for regeneration. 

 
A high-resolution cell type atlas for planaria 
To comprehensively characterize different cell types and 
progenitor stages present in adult planarians, we performed 

Cell type atlas and lineage tree of a whole complex animal 
by single-cell transcriptomics 
Mireya Plass,1* Jordi Solana,1*† F. Alexander Wolf,2 Salah Ayoub,1 Aristotelis Misios,1 Petar Glažar,1 Benedikt 
Obermayer,1‡ Fabian J. Theis,2,3 Christine Kocks,1 Nikolaus Rajewsky1§ 
1Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Germany. 
2Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany. 3Department of Mathematics, 
Technische Universität München, Germany. 

*These authors contributed equally to this work. †Present address: Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK. 
‡Present address: Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany. §Corresponding author. Email: rajewsky@mdc-berlin.de 

Flatworms of the species Schmidtea mediterranea are immortal—adult animals contain a large pool of 
pluripotent stem cells that continuously differentiate to all adult cell types. Therefore, single-cell 
transcriptome profiling of adult animals should reveal mature and progenitor cells. By combining 
perturbation experiments, gene expression analysis, a computational method that predicts future cell 
states from the transcriptional changes, and a lineage reconstruction method, we placed all major cell 
types onto a single lineage tree that connects all cells to a single stem cell compartment. We characterize 
gene expression changes during differentiation and discover cell types important for regeneration. Our 
results demonstrate the importance of single-cell transcriptome analysis for mapping and reconstructing 
fundamental processes of developmental and regenerative biology at high resolution. 

on June 22, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/
http://science.sciencemag.org/


First release: 19 April 2018  www.sciencemag.org  (Page numbers not final at time of first release) 2 
 

genome-wide expression profiling in individual cells using 
nanoliter droplets (Drop-seq) (3) of cells isolated from 
whole adult animals. These cells were obtained, after disso-
ciation, by fluorescence-activated cell sorting (FACS), which 
separated intact live cells from dead cells and enucleated 
cellular debris (Fig. 1A). From 11 independent experiments, 
we captured a total of 21,612 cells. We detected on average 
494 genes and ~970 transcripts (identified by using “unique 
molecular identifiers” (UMIs)) per cell. The individual da-
tasets correspond to 5 wild type samples (10,866 cells), two 
RNAi samples (3314 cells), a high-DNA content G2/M popu-
lation corresponding to cycling planarian stem cells (typical-
ly defined as X-ray sensitive “X1 cells”; 981 cells) (23, 24), 
and three wild type regeneration samples (6,451 cells; table 
S1). Sequencing depth was comparable across samples (fig. 
S1A). Biological replicates showed highly correlated gene 
expression profiles (fig. S1B). Besides, all samples showed 
high correlation with published RNA-seq data from equiva-
lent bulk cell populations (24–27) (fig. S1C). We pooled and 
analyzed all single-cell datasets together using Seurat (3). 8 
of 11 samples were fixed using methanol (28) or frozen with 
DMSO (29) to facilitate sample handling. To assess batch 
effects, we compared the overall quality across wild type 
samples. Cells from each batch were distributed similarly on 
the tSNE (fig. S1D), which resulted in comparable propor-
tions of cells per cluster (fig. S1E, table S2). Although we 
observed a mild bias in gene expression due to the preserva-
tion procedure of the samples, clustering was not affected 
(fig. S1F). However, we observed differences in the number 
of UMIs per cell across clusters (fig. S1G). Together, these 
analyses confirmed that sample preparation did not com-
promise data quality or introduce bias. Therefore, we clus-
tered the expression profiles of the individual cells from all 
samples together using Seurat (3). In total we identified 51 
cell clusters (Fig. 1B). 

We elucidated the cell type identity of clusters by exam-
ining marker genes and comparing them to previous litera-
ture (fig. S2A, B) (Supplementary Note 1). The largest cluster 
and 14 smaller clusters located in the center of the tSNE 
plot express combinations of well-known stem cell markers 
(fig. S3A), such as Smedwi-1, Smedtud-1, and bruli (fig. S3B). 
The remaining clusters corresponded to the previously de-
scribed neural, epidermal, secretory, muscle, gut and proto-
nephridia cell types (fig. S2A, S2B). However, in each of 
these categories, we found several distinct clusters (Fig. 1B) 
that express different combinations of marker genes (table 
S3, fig. S4). This result suggests that our approach can dis-
tinguish more cell types than previous studies. 

 
Single-cell transcriptomics unveils previously unchar-
acterized cell types 
In the 1980’s, Baguñà and Romero used microscopy to mor-

phologically characterize and count all major cell types in 
Schmidtea mediterranea (30). We used this resource as a 
reference to validate cell types identified by our Drop-seq 
data and cluster annotation. Even though the microscopy 
data are of a qualitative nature, we observed a strong corre-
lation between it and our molecular, unbiased Drop-seq an-
notation (Fig. 1C), suggesting that FACS sorting, 
cryopreservation or fixation and cell capture in 
nanodroplets did not influence cell type proportions. We 
validated the identity of several clusters by designing RNA 
probes targeting marker genes and performing in situ hy-
bridizations, both whole mount and in histological sections 
(fig. S5). We could confirm major known cell types such as 
different types of neurons, muscle, protonephridia, epider-
mis, and secretory cells. We identified the two main cell 
types of the planarian gut: phagocytes (Fig. 1D, red) and 
goblet cells (Fig. 1D, green), and discovered markers of pla-
narian goblet cells, including a gene without apparent hom-
ologs in other phyla. We named this gene bruixot. We also 
distinguished body and pharynx muscle (Fig. 1E). General 
muscle markers colocalized with body muscle markers in all 
the body except in the pharynx (Fig. 1E). Pharynx muscle 
was characterized by the expression of laminin (31) (fig. S5). 
The protonephridia cluster (0.3% of our wild type cells) con-
tained the two main cell types of these organs, flame and 
tubular cells (32) (figs. S4, S5). In some cases, cell clusters 
contain several similar subtypes that we cannot distinguish 
at this resolution. For instance, previously described mark-
ers of eye pigment cup cells and photoreceptor neurons (33) 
are expressed in pigment and ChAT neurons 2 clusters re-
spectively, indicating that the former are subtypes of the 
latter (fig. S6). 

We also validated a recently discovered epidermis cell 
type, which marks the boundary between the dorsal and 
ventral parts of planarians (fig. S5) (34). Additionally, we 
identified an epidermal related pharynx cell type (fig. S5) 
and several parenchymal cell types previously undescribed 
molecularly (Fig. 2B, fig. S5). Among parenchymal clusters 
we found a diversity of non-overlapping cells types, includ-
ing aqp+ and the psap+ parenchymal cells (Fig. 1F), which 
probably collectively correspond to the previously described 
fixed parenchymal cells (30, 35), pigment cells (cluster 44) 
(36, 37) and glial cells (38, 39) (cluster 47) (figs. S4, S5). Al-
together these results show that we can identify known as 
well as unknown cell types using single-cell transcriptomics 
and measure their abundances in a reproducible way. 

To investigate the function of newly identified cell types 
we used pathway and gene set overdispersion analysis 
(PAGODA) (40) to identify variable gene sets with particular 
gene ontology (GO) terms annotated (fig. S7, Supplementary 
Note 2). The clustering that emerges using these gene sets 
roughly recapitulates the one obtained with Seurat, showing 

on June 22, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/
http://science.sciencemag.org/


First release: 19 April 2018  www.sciencemag.org  (Page numbers not final at time of first release) 3 
 

the robustness of our clustering approach (fig. S7A). This 
analysis revealed that neoblasts and progenitors are func-
tionally similar, both expressing gene signatures enriched 
for GO terms related to RNA processing. Additionally, 
parenchymal clusters showed enrichment for GO terms re-
lated to lysosome, extracellular region and hydrolytic en-
zymes, and appear to share metabolic functions with gut 
cells (fig. S7B). 

 
Single-cell transcriptomics of purified stem cells and 
stem cell depleted animals reveals stem, progenitor and 
differentiated cell populations 
The great diversity of cell types identified, which included 
stem cells, differentiated cells. and presumably many pro-
genitor cells, offered a unique opportunity for exploring 
stem cell differentiation and lineage relationships between 
all cell clusters. We focused on the X1 cell sample, which is 
enriched in G2/M neoblasts (23, 24), and the histone 2b 
(h2b) RNAi treated whole planaria sample, in which stem 
and progenitor cell populations are depleted (41). Cells from 
these datasets showed a clear distribution pattern: X1 cells 
were located in the middle of the tSNE plot (Fig. 2A, red 
dots) whereas h2b(RNAi) resistant cells were clearly en-
riched in the periphery (Fig. 2A, blue dots). This distribution 
was specific and not the result of batch effects, as evident 
from the respective control samples (Fig. 2A, X1 control and 
gfp(RNAi) samples). Given that each dataset is enriched in 
particular cell populations, we reasoned that they could be 
used to distinguish cells in varying differentiation states. We 
quantified the fraction of cells per cluster from the X1 and 
h2b(RNAi) samples and compared them to wild type and 
control samples. We performed a principal component anal-
ysis (PCA) using these cellular proportions as well as the 
mean expression of the three top neoblast markers (Smed-
wi-1, tub-α1 and h2b) in each cluster. The first two principal 
components resulting from this analysis separated clusters 
according to their gene expression profiles as neoblasts, 
progenitors, and differentiated cell clusters (Fig. 2B, fig. 
S2A). Mapping onto the tSNE revealed that progenitor cell 
clusters were located between differentiated cells and ne-
oblast clusters (Fig. 2B). To corroborate the differentiation 
state of the cells in the different clusters, we pooled the cells 
in each group and correlated their gene expression profiles 
to previously described FACS populations. Neoblasts clus-
ters best correlated with X1 populations, corresponding to 
high content DNA G2/M neoblasts, progenitor clusters cor-
related with X2 populations, a mixture of G1/S neoblasts 
and early progenitors, and differentiated cell clusters corre-
lated with Xins samples, a pool of all differentiated cells 
(Fig. 2C). Altogether, our functional experiments reveal the 
stem, progenitor, or differentiated status of each cell cluster. 

 

Computational lineage reconstruction predicts a single 
tree for all major planarian cell differentiation trajec-
tories 
Existing methods to investigate cell differentiation using 
single-cell transcriptomics data were designed to study indi-
vidual lineages or organs, allow few branching trajectories 
(13, 15, 18), and often require high sequencing depth and 
associated costs (16). To overcome these limitations, we de-
veloped the general framework of partition-based graph 
abstraction (PAGA), which reconciles clustering and 
pseudotemporal ordering algorithms and allows to infer 
complex cell trajectories and differentiation trees (22). Start-
ing from the neighborhood-graph of single cells, in which 
cells are represented as nodes, the algorithm quantifies the 
connectivity of cell clusters and generates a much simpler 
abstracted graph in which nodes correspond to the clusters 
identified using Seurat and edges represent putative transi-
tions between clusters. The differentiation tree is then com-
puted as the tree-like subgraph in the abstracted graph that 
best explains all continuous progressions along the original 
single-cell graph (Supplementary Note 3). 

When running this algorithm, without any assumptions 
about the tree structure, we obtained an abstracted graph 
that shows high confidence of the branching events (Fig. 
3A) from which we can derive a single differentiation tree 
that included all the cell types and linked them to a single 
root, the neoblast 1 cluster. This tree defines independent 
differentiation branches for all the major tissues such as 
neurons, muscle, parenchyma, and gut (Fig. 3A). Additional-
ly, the tree reflects the relation between different groups of 
cells. For example, it predicts the existence of independent 
progenitor cells for the epidermis dorso-ventral boundary 
and the pharynx cell type lineages although both lineages 
are related to the epidermal lineage. In contrast, it shows 
the presence of a shared progenitor for all parenchymal lin-
eages despite containing cell types as different as glia and 
pigment cells. The connections in the tree are highly con-
sistent with the continuity of gene expression patterns along 
the various lineages (fig. S8A) except for two cases: the epi-
dermis cluster itself is disconnected from epidermal lineage, 
and muscle pharynx is connected to muscle body instead of 
muscle progenitors (fig. S8A). Together, from 51 clusters 
(with 1275 possible transitions between them), PAGA pre-
dicts 53 transitions that are mainly consistent with our 
marker based analysis. 

Furthermore, PAGA yields a pseudotemporal ordering of 
individual cells within each cluster consistent with our stem 
cell ablation and purification experiments, and therefore 
confidently predicts their differentiation status, even for cell 
types for which separate progenitor clusters could not be 
identified (fig. S8B). For instance, when we sorted the goblet 
cells by pseudotime, we observe a higher percentage of X1 
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cells in early pseudotime and h2b(RNAi) cells in the late 
pseudotime (fig. S8B). To validate this observation, we per-
formed double FISH of bruixot, our newly identified goblet 
cell marker, and adb (aprenent de bruixot), a gene expressed 
earlier in the goblet cluster pseudotime (fig. S8B). Consist-
ently, adb was expressed in the gut (fig. S8C) overlapping 
with bruixot, but staining more cells located in the periph-
ery of the gut that clearly lacked goblet cell morphology (fig. 
S8D). This indicates that adb is a marker of immature gob-
let cells and that computationally estimated pseudotime 
correctly orders cells according to their differentiation sta-
tus. 

Although the tree predicts the connectivity of cell clus-
ters, it does not give any information about the direction of 
the trajectories. Thus, we used the tree topology to estimate 
the developmental potency of each cluster, i.e., their ability 
to give rise to other cells. We developed a potency score that 
is conceptually similar to the stemID score previously pro-
posed to identify stem cells (16) but additionally estimates 
pluripotency vs. multi- or unipotency of cell populations. It 
is computed as the normalized degree of each cluster in the 
abstracted graph (Supplementary Note 4). This analysis 
showed that neoblast 1, the largest stem cell cluster, had a 
score of 1 (Fig. 3B), correctly assigning pluripotency to ne-
oblasts as expected from earlier literature (21). We note that 
the potency score is independent of prior information and 
therefore can be used to identify stem cells from single-cell 
transcriptomics data alone, a feature that is particularly 
useful in less well-studied non-model organisms. Progenitor 
clusters showed lower potency than neoblasts, and higher 
potency scores than differentiated cells (Fig. 3B), in agree-
ment with a gradual potency loss. To assess the stem cell 
and progenitor status of the clusters connected in the center 
of the PAGA topology, we mapped X1 and h2b(RNAi) data 
onto the tree. Most X1 cells were located in the neoblast 1 
cluster (Fig. 3C) whereas h2b(RNAi) resistant cells were 
more enriched in the leaves of the tree (Fig. 3D). Thus, both 
PAGA and stem cell ablation and purification independently 
support the stem and progenitor status of these clusters. 

The remaining neoblast clusters had lower potency 
scores than the neoblast cluster 1 and were connected to it. 
These clusters share the majority of marker genes with the 
neoblast 1 cluster (table S3) and do not correspond to previ-
ously identified specialized neoblasts of the sigma, gamma 
and zeta class (26, 42, 43) (fig. S9). Although some of these 
neoblast clusters are connected to differentiated cell types 
(Fig. 3A), most do not give rise to differentiated cell types, 
raising the possibility that they represent neoblasts in dif-
ferent metabolic, cell cycle or activation states (Supplemen-
tary Note 5). 

We detect expression of specialized neoblast markers 
among both neoblast and progenitor clusters (figs. S10, S11). 

Although present in neoblasts, sigma markers were most 
highly expressed in neural and muscle progenitors, gamma 
markers in gut, and parenchymal progenitors and zeta 
markers in epidermal progenitors (fig. S9D). These clusters 
are mostly devoid of X1 cells (Fig. 3C) and therefore corre-
spond mainly to post-mitotic progenitors. 

 
RNA velocity confirms lineage relationships predicted 
by PAGA 
To independently validate the differentiation trajectories 
predicted by PAGA we used velocyto (44). This method 
computes RNA velocity, defined as the rate of change of 
mRNA levels for a gene in time, in every single cell. In dif-
ferentiating cells in which changes in gene expression are 
dominated by changes in transcription rates, the ratio of 
unspliced to spliced reads for a given gene within a cell will 
be proportional to the temporal change of the logarithm of 
spliced reads (or mature mRNAs) (44). Thus, one can esti-
mate the future mRNA level of a gene by computing its ve-
locity and a linear fit. By aggregating over many genes in a 
cell, one can estimate the cellular expression state to which 
the cell is apparently moving in time. We estimated mRNA 
velocities for each cell and projected the estimated future 
states of cells onto the tSNE, which describe the paths pre-
dicted by the mRNA velocity model (Fig. 3E and fig. S12A). 
These paths show a highly homogenous stem cell popula-
tion that moves slowly to progenitors, which will differenti-
ate to mature cell types. The long arrows at the edges of the 
clusters likely are due to the averaging on the force field, as 
they do not appear when individual arrows are plotted (fig. 
S12A). These paths largely agree with the trajectories pre-
dicted by PAGA, and also confirmed the connection between 
muscle progenitors and pharynx muscle predicted from 
gene expression changes (fig. S12A). Additionally, velocyto 
can also model longer cell trajectories in order to identify 
their root (Fig. 3F) and terminal end points (Fig. 3G), which 
corresponded to the tSNE regions containing stem cells and 
terminally differentiated cells, respectively. Velocyto cannot 
provide information from disconnected clusters. As a result, 
all disconnected clusters contain differentiation trajectories 
with independent start and end points (Fig. 3F, G). 

The estimates of RNA dynamics obtained with velocyto 
also identified regions where genes are mainly induced or 
repressed compared to the steady state level. This infor-
mation can be helpful to investigate relations between clus-
ters that appear disconnected on the tSNE. We used these 
estimates to study the expression of marker genes from the 
epidermis cluster. These genes are clearly induced in epi-
dermal progenitors and repressed in mature epidermis, 
where they are mainly expressed (fig. S12B). Thus, mRNA 
metabolism patterns provide additional support to the dif-
ferentiation trajectory connecting late epidermal progeni-
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tors to epidermis that we predicted based on gene expres-
sion changes (fig. S8A). 

 
A consolidated lineage tree of planarian stem cell dif-
ferentiation into all major cell types 
Taken together, our results show that both computational 
and experimental methods agree in the identification of 
stem cells, progenitors and differentiated cells. By combin-
ing all four independent lines of evidence (PAGA, gene ex-
pression changes, stem cell ablation and enrichment 
experiments, and velocyto) we provide a single consolidated 
tree that models stem cell differentiation trajectories into all 
identified cell types of adult planarians (Fig. 4A). The result-
ing cell lineage tree correctly recapitulates the known ex-
pression changes described during epidermal differentiation 
(26, 34, 45) (Fig. 4B). We observed a continuous decrease of 
the expression of Smedwi-1, a well characterized neoblast 
marker (fig. S3), with pseudotime progression whereas early 
(prog-1) and late (agat-1) epidermal progenitor as well as 
mature epidermis (vim-1) markers increased their expres-
sion at consecutive time points (Fig. 4B). 

According to the consolidated lineage tree, neoblasts 
(35% of our wild type cells) differentiate into at least 23 in-
dependent cell lineages. There are 6 major differentiation 
fates (57% of cells) (table S2), each representing more than 
1% of total cells: epidermal, parenchymal, neural, muscle, 
gut, and a pharynx cell type. For these major fates, we iden-
tified progenitor and differentiated states. Additionally, we 
identified 10 minor lineages (6% cells; each less abundant 
than 1% of total cells) that differentiate from the neoblasts, 
but for which we were unable to identify progenitors. 

 
Self-organizing maps identify gene programs underly-
ing cell differentiation 
We used our data to identify gene sets that coordinately 
change their expression during differentiation. For this 
analysis, we discarded all cells from neoblast clusters that 
did not give rise to differentiated cell types in our consoli-
dated cell lineage tree. The remaining cells were ordered 
following the tree for each lineage and sorted within each 
cluster according to their pseudotemporal ordering (Fig. 
5A). Subsequently, we used self-organizing maps (SOMs) 
(46) to identify 48 sets of highly variable genes that coordi-
nately change their expression during differentiation (47) 
(Fig. 5B, fig. S13 and table S4). Many of these sets contain 
some genes previously known to be expressed in the respec-
tive lineages and in some cases involved in their differentia-
tion (table S5). For instance, gene sets 10 and 11 contain 
genes that are highly expressed in neoblast and progenitor 
clusters, such as Smedwi-1 and tub-α-1, whose expression 
drops during differentiation (Fig. 5B and fig. S13). Similarly, 
we found gene sets that are regulated along muscle, neu-

ronal, parenchymal, gut and epidermal differentiation (Fig. 
5B, top row). They contained genes expressed in these line-
ages, such as mhc for the muscle and chat for the neuronal 
lineage, but also included well-known regulators of their 
differentiation, such as myoD (48) and coe (49). As a conse-
quence of analyzing all detected planarian cell lineages sim-
ultaneously, we not only identified gene sets involved in 
lineage specific programs but also gene sets co-regulated 
during the differentiation of several fates (Fig. 5B, mid and 
bottom row). Taken together, these results show that single-
cell transcriptomics of a whole organism allows the recon-
struction of specific differentiation events for many differ-
entiation fates in parallel, enabling the identification of 
previously undetected combinations of co-regulated genes. 

 
Molecular profiling of planarian regeneration by sin-
gle-cell transcriptomics 
Freshwater planarians are well known for their remarkable 
regenerative capacities. Planarians can be cut into small 
pieces, and each piece (except for the pharynx and the most 
anterior tip of the head which are devoid of neoblasts) can 
regenerate a complete, albeit much smaller, organism in a 
matter of days. This process is dynamically complex and 
involves the orchestration of all cellular differentiation 
pathways. The animal does not grow (as it cannot eat) dur-
ing the process. Thus, the truncated body fragments need to 
reshape their body proportions to adjust to their new size by 
the process termed morphallaxis (50). It is still largely un-
known how each individual cell type behaves in this pro-
cess. 

Given the detected cell type abundances and the cell dif-
ferentiation tree of steady state adult animals, we asked if 
we could use Drop-Seq to profile the cellular and tran-
scriptomic changes that occur during regeneration. We cut 
planarians in 5-7 pieces, discarded the head piece and pre-
pared the remaining body pieces for single-cell tran-
scriptomics immediately after cutting (day 0), and 2 and 4 
days after cut (Fig. 6A, fig. S14). We compared regenerating 
samples to day 0 using Seurat and detected hundreds of 
differentially expressed genes in both samples (tables S6, 
S7). By pooling all cells we were able to detect upregulation 
after 2 days of regeneration of 16 of the 128 wound induced 
genes described in a previous study (42, 51) (table S6, fig. 
S15A). The shallowness of Drop-seq data makes difficult to 
assess differences in lowly expressed genes. However, Drop-
seq allows distinguishing the cell types that undergo these 
changes, showing that runt-1 and egr-2 are upregulated in 
the neoblast 1 cluster (fig. S15B) and jun-1 in the muscle 
body cluster (fig. S15C; tables S7, S8). 

All cells from the regenerating samples fall into clusters 
that are present in wild type samples, indicating an absence 
of regeneration-specific types or trajectories (table S2). 
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However our analysis revealed significant changes in cell 
composition during regeneration: on one hand, we observed 
a large increase in the number of neoblasts, consistent with 
an increase in mitotic activity, and of neural progenitors, 
reflecting active neurogenesis to replace missing brain 
structures after head removal (Fig. 6B, fig. S16). On the oth-
er hand, we detected that both parenchymal progenitor cells 
and differentiated parenchymal cell types were depleted 
(Fig. 6B, fig. S16), indicating that these cells are cleared in 
the process of reshaping the planarian tissue. The cell pro-
portion changes at day 2 and 4 were clearly correlated (Fig. 
6C), indicating that aqp+ parenchymal cells are the most 
depleted cell type. We experimentally confirmed this obser-
vation by in situ hybridization on planarian tissue sections 
(Fig. 6D) and counting aqp+ parenchymal cells (Fig. 6E) 
(Mann Whitney U-test p-value < 1e-7). Our results indicate 
that parenchymal cells are highly depleted upon regenera-
tion, implying that they may be used to metabolically fuel 
the regeneration process (52). 

 
Discussion 
In this study, we used the stem cell population and the ex-
treme regeneration capabilities of adult flatworms to gener-
ate an atlas of cell types at high resolution. We identified, 
quantified, and molecularly characterized 37 cell types in-
cluding 23 terminally differentiated cell types, and numer-
ous progenitor and stem cells clusters. Although our 
sequencing data are relatively shallow, molecular character-
ization of cell types using computational methods was ro-
bust, agreed well with previously published microscopy 
data, and revealed progenitor and differentiated cells. This 
implies that the grouping of incomplete transcriptomes of 
thousands of cells into clusters did not suffer significantly 
from capture rates or other confounding factors. 

The resolution of our data depends on both the number 
of cells sequenced and the number of genes detected per 
cell. Considering only wt and control samples (~11,000 
cells), we can identify differentiated cell clusters containing 
about 10 cells. Therefore, we estimate that cells present at a 
frequency of <1:1000, such as such as cintillo+ cells (53) and 
photoreceptor neurons (33), will be missed by our approach. 
Besides, we failed to identify certain neoblast subpopula-
tions previously described in the literature (26, 42). This 
result could be due to the low sensitivity of Drop-seq, which 
captures only a fraction of mRNAs in a cell. However, we do 
detect the expression of the proposed marker genes of these 
subpopulations. They appear to be spread among neoblasts 
and progenitor clusters (fig. S8), which still express neoblast 
markers such as Smedwi-1 at low levels (figs. S3, S11). This 
indicates that the boundary between stem cells and lineage-
committed progenitors is probably not sharp. Further stud-
ies will help describing and delimiting these boundaries. 

Projecting high dimensional gene expression data of 
thousands of transcriptomes onto a two-dimensional plot 
(for example by the widely used tSNE method (54)) visually 
reveals clusters. However, it is impossible to infer the rela-
tionships among them, as the distances between clusters 
cannot be interpreted as differentiation trajectories. To 
solve this problem, we used computational and experi-
mental methods to reconstruct a lineage tree. PAGA and 
velocyto provide two complementary approaches to study 
cell differentiation using single-cell transcriptomics. While 
velocyto allows finding the differentiation trajectories of 
individual cells within a cell continuum based on RNA me-
tabolism, PAGA allows inferring the average differentiation 
paths of a group of cells, even when they are disconnected. 
Thus, combining these two computational methods results 
in a robust lineage prediction. This prediction is supported 
by the continuity of expression of marker genes and the 
mapping of stem cells and differentiated cells on the tree 
(Fig. 4A), and validates known differentiation trajectories 
such as that of the epidermal lineage (Fig. 4B) (34). 

We used PAGA (22) to reconstruct in an unbiased way 
the lineage tree of all major planarian cells. This method, 
although indirect, allows reconstructing the lineage infor-
mation from the transcriptomic snapshot of individual cells. 
Besides, in contrast to high throughput lineage tracing 
methods (9–12), which rely on using transgenic or 
CRISPR/Cas tools, it can be applied to every species provid-
ed that single cells can be isolated and sequenced. Using 
this method, we identified de novo planarian stem cells and 
predict their differentiation paths to at least 23 different 
lineages, including several multipotent progenitor popula-
tions. Importantly, these tools can readily be applied to oth-
er organism to identify de novo stem cells, identify their 
differentiation trajectories and estimate the developmental 
potency of the resulting cell populations. 

Pseudotemporal ordering of cells along these lineages al-
lowed us to discover gene sets that are putatively involved 
in differentiation programs, highlighting the similarities 
and differences that exist across tissues, and identifying sev-
eral genes known to be involved in cell differentiation not 
only in planarians but also in other species, such as myoD, 
nkx6 and pax6. Further characterization of these gene sets 
should be the subject of future studies. As we show for the 
h2b RNAi phenotype, Drop-seq also allows profiling pertur-
bation studies at both the transcriptomic and cellular levels. 
In general, and beyond planaria, we can foresee that future 
studies will use single-cell transcriptomics coupled to loss-
of-function experiments to unravel the specific developmen-
tal functions of genes or regulatory networks. 

Furthermore, we used single-cell transcriptomics to pro-
file cellular abundance changes upon regeneration. Our ex-
periments revealed that several of our newly described 
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parenchymal types are depleted in regeneration. These cell 
types had been largely overlooked in molecular studies but 
had been described, based on microscopy, in the literature 
decades ago. This is in part due to the unbiased nature of 
both microscopic and single-cell transcriptomic data. We 
note that these parenchymal cells are highly enriched in 
lysosomes and other vacuoles and might be an energy reser-
voir that regenerating planarians mobilize to fuel regenera-
tion. 

To make our data easily accessible, we built an interac-
tive app that allows to query and interpret all sequencing 
data (https://shiny.mdc-berlin.de/psca). We also provide a 
detailed tutorial for the lineage reconstruction algorithm 
PAGA that we hope will serve as a reference for future stud-
ies (https://github.com/rajewsky-lab/planarian_lineages). 
Together, our results show that single-cell expression profil-
ing can be used to systematically annotate cell types of en-
tire animals, to reconstruct stem cell differentiation lineages 
of whole organisms, and to study complex processes such as 
regeneration (and their relation to lineages used in normal 
development) at single-cell resolution. Our results and 
methods demonstrate that single-cell approaches will be-
come an indispensable method to study developmental and 
regeneration biology. 

 
Methods summary 
Single-cell transcriptomic profiling of asexual adult planari-
ans from the species Schmidtea mediterranea was per-
formed using Drop-seq. Single cell suspensions were 
prepared by dissociating cells from adult planarians of 4-10 
mm in length using trypsin. We used FACS to discard bro-
ken and dead cells. Cells were either directly processed for 
Drop-seq or preserved in methanol or DMSO for later pro-
cessing. For RNAi experiments, animals were injected with 
dsRNA against the coding region of h2b or gfp for three 
consecutive days, kept at 20°C, and their cells prepared for 
FACS and single cell transcriptomics 5 days after the third 
injection. For regeneration experiments, animals raging 4-10 
mm in size were cut in 5-7 pieces, the head pieces were dis-
carded and the remaining pieces were processed for Drop-
seq immediately, 2 or 4 days after cut. 

Computational analysis of the sequenced samples was 
done using Dropseq tools and the Seurat package (3). Brief-
ly, reads were mapped to the S. mediterranea dd_Smed_v6 
transcriptome and processed using Dropseq tools and cus-
tom perl scripts to generate Digital Gene Expression (DGE) 
matrices for each sample. Finally, all DGE matrices were 
joined. Variable genes across all clusters were used to per-
form a Principal Component Analysis (PCA). The first 50 
PCs obtained were then tested for significance and those 
with a p-value < 10e-5 were used to perform clustering. The 
robustness of the obtained clusters was assessed and spuri-

ous clusters were merged to obtain a final set of 51 clusters. 
Cell type identification was performed by calculating 

marker genes for each cluster. Manual inspection, compari-
son to previously published single-cell data, and experi-
mental validation using in situ hybridizations of the marker 
genes reported allowed the identification of the different 
cell populations. Additional characterization of the identi-
fied cell types was performed by characterizing GO-term 
based gene sets using PAGODA (40). Experimental valida-
tion of cell types was done using whole mount in situ hy-
bridization and in situ hybridization on histological sections 
as previously described and using probes complementary to 
marker genes (table S9). 

Lineage reconstruction was done by combining the un-
supervised graph obtained with the PAGA algorithm (22) 
with velocyto (44), gene expression analysis, and experi-
mental data from h2b(RNAi) and X1 facs sorted cells. To 
calculate RNA velocity with velocyto, we mapped the reads 
from all datasets to the planarian genome in order to ex-
tract spliced and unspliced reads. These analyses allowed us 
to obtain a pseudotemporal order of cells that was used to 
identify gene sets that change during stem cell differentia-
tion using self-organizing maps. 

To preform cell counting of regenerating planarians, pos-
itive cells were automatically counted using a custom script 
for ImageJ (https://imagej.net). 
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Fig. 1. Cell type atlas by single-cell transcriptomics. A. Experimental workflow. B. tSNE representation of the 
single-cell transcriptomics data with clusters colored according to the expression of previously published marker 
genes as follows: grey, neoblasts; orange, neuronal lineage; red, muscle; purple, secretory; blue, epidermal lineage; 
pink, protonephridia; green, gut; magenta, parenchymal lineage. C. Proportions of cell types identified by Baguñà and 
Romero by microscopy (left) and as identified by tallying up our annotated Drop-seq clusters (right). The outer ring 
shows the proportion of each individual cluster, which includes neoblasts, epidermal (epidermal and rhabdite), 
parenchymal (fixed parenchymal), pigment, neuronal (nerve), muscular, gut (gastrodermal and goblet), secretory 
(acidophilic and basophilic) and protonephridia (flame) cells. We did not find “striped” cells in our dataset. Overall, we 
find many subtypes for each of the original cell types. D-F tSNE plots (upper panels) showing the expression of 
marker genes and their expression patterns in adult animals using double in situ hybridizations on tissue sections 
(lower panels). Nuclei in D and F were stained with Hoechst and are shown in blue in the overlay. Scale bars: 100 μm. 
The color scale for tSNE plots ranges from light grey (no expression) to blue (high expression). 
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Fig. 2. Neoblast ablation and enrichment experiments show stem and progenitor clusters. A. tSNE plots 
showing the distribution of the cells of an X1 FACS sorted sample (red) and its whole cell population control 
(x1 control, magenta), and a h2b(RNAi) sample with its negative control (gfp(RNAi), green). X1 cells are 
enriched in the center of the plot while h2b(RNAi) cells are enriched in the periphery. B. PCA analysis 
considering the expression level of neoblast marker genes and the log odds ratio of the amount of cells per 
cluster from h2b(RNAi) and X1 experiments compared to wt and control samples separates neoblasts (grey), 
progenitor clusters (yellow) and differentiated cell clusters (blue). The location of these clusters is shown on 
the tSNE plot on the right. C. Gene expression correlation between bulk RNA-seq data from FACS sorted X1, 
X2, Xins populations and whole worms and the pooled clusters as defined in B. Neoblasts show a stronger 
correlation with X1, progenitors with X2, and differentiated cells with Xins and whole worms. 
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Fig. 3. Lineage tree reconstruction by PAGA and velocyto. A. Abstracted graph showing all the possible edges with 
a probability higher than 10e-6 connecting two clusters and their confidence. Each node corresponds to each of the 
clusters identified using Seurat. The size of nodes is proportional to the amount of cells in the cluster. The most 
probable path connecting the clusters is plotted on top with thicker edges. B. Lineage tree colored according to 
potency score, which ranges from blue (0) to yellow (1). C, D. Lineage trees colored according to the % of X1 (C) or 
h2b(RNAi) resistant (D) cells in each cluster. X1 cells are most abundant in the neoblast 1 cluster whereas h2b(RNAi) 
resistant cells are mostly located in the leaves of the tree. E. Velocyto force field showing the average differentiation 
trajectories (velocity) for cells located in different parts of the tSNE plot. F, G. Root (F) and terminal end-points (G) 
obtained after modeling the transition probabilities derived from the RNA velocity using a Markov Process. The color 
scale represents the density of the end points of the Markov Process and ranges from yellow (low) to blue (high). 
 

on June 22, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/
http://science.sciencemag.org/


First release: 19 April 2018  www.sciencemag.org  (Page numbers not final at time of first release) 14 
 

 
  
  

Fig. 4. Consolidated lineage tree of planarian stem cell differentiation 
into all major types. A. Consolidated lineage tree including 4 
independent sources of evidence. The topology of the tree is shown 
according to PAGA, marker-based connections are shown with red 
edges. Velocyto supported connections are shown with thick edges. 
Progenitor and differentiated cell clusters according to neoblasts 
ablation and enrichment experiments are shown with yellow and blue 
halos, respectively. B. Gene expression changes of marker genes for the 
individual stages during epidermal differentiation (in pseudotime). 
Relative expression of maker genes from neoblast (Smedwi-1), early 
(prog-1) and late (agat-1) progenitors as well as from the epidermis (vim-
1). A maximum of 1000 cells from neoblast 1, epidermal neoblasts (en), 
early epidermal progenitors (eep), late epidermal progenitors 1 (lep 1) 
and 2 (lep 2) and epidermis were sampled. Grey thin dashed lines show 
the expression of Smedwi-1 after randomly permuting cells (rand 1) or 
after randomly sorting cells within each cluster (rand 2). 
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Fig. 5. Identification of gene sets regulated and corregulated in cell 
differentiation. A. Schematic workflow of the analysis performed to 
identify gene sets involved in lineage decisions. Pseudotemporal 
ordering of the cells from all lineages and clustering of variable genes 
using SOMs allowed the identification of 48 gene sets. B. Graphical 
representation of gene expression changes during cell differentiation of 
12 gene sets. For each gene set, the normalized expression of the genes 
is shown on the edges of the tree and ranges from blue (low expression) 
to red (high expression). Next to each tree, representative genes from 
each gene set are highlighted. 
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Fig. 6. Molecular profiling of regeneration by single-cell transcriptomics. A. Experimental workflow: 
planarians were cut into small pieces, head pieces were discarded and the remaining pieces were processed 
for single-cell RNA sequencing 0, 2 and 4 days after cut. B. Quantification of neoblasts, neural progenitors and 
differentiated clusters and parenchymal progenitors and differentiated clusters. Significant differences 
calculated using a fisher test with an adjusted p-value < 0.001 are marked with **. C. Cluster outlines colored 
according to the log2 (odds ratio) of changes in regeneration at day 2 (left) and day 4 (right) vs day 0, 
showing enriched clusters in green colors and depleted clusters in magenta colors. Significant changes are 
indicated by black solid outlines. D, E. In situ hybridization on sections (D) and quantification (E) of aqp+ 
parenchymal cells in regenerating planarians after 0 and 4 days of regeneration. Mann Whitney U-test p-value 
< 10e-7. Scale bar: 100 μm. 
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