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Abstract

The Disease Maps Project builds on a network of scientific and clinical groups that exchange best practices, share informa-
tion and develop systems biomedicine tools. The project aims for an integrated, highly curated and user-friendly platform
for disease-related knowledge. The primary focus of disease maps is on interconnected signaling, metabolic and gene regu-
latory network pathways represented in standard formats. The involvement of domain experts ensures that the key dis-
ease hallmarks are covered and relevant, up-to-date knowledge is adequately represented. Expert-curated and computer
readable, disease maps may serve as a compendium of knowledge, allow for data-supported hypothesis generation or
serve as a scaffold for the generation of predictive mathematical models. This article summarizes the 2nd Disease Maps
Community meeting, highlighting its important topics and outcomes. We outline milestones on the roadmap for the fu-
ture development of disease maps, including creating and maintaining standardized disease maps; sharing parts of maps
that encode common human disease mechanisms; providing technical solutions for complexity management of maps;
and Web tools for in-depth exploration of such maps. A dedicated discussion was focused on mathematical modeling
approaches, as one of the main goals of disease map development is the generation of mathematically interpretable
representations to predict disease comorbidity or drug response and to suggest drug repositioning, altogether supporting
clinical decisions.

Key words: disease maps; molecular biology; mathematical modeling; knowledge repository; biocuration; translational medi-
cine; pathway representation

Introduction

The concept of disease maps emerged to bridge the domains of
biological and computational research on various human dis-
orders. In essence, these maps are representations of disease
mechanisms that are both human and machine-readable [1–4].
Visual representation allows clinical and life sciences re-
searchers to explore charted disease mechanisms, which are
often complex and interconnected. Computer-tractable, stand-
ardized representation of the underlying information creates an
interface to a broad range of bioinformatic workflows. As such,
disease maps are an important platform with the potential to
link the domains of biomedical knowledge and data, providing
an intermediate step between a conceptual and an executable
model.

In the recent years, the members of the Disease Maps
Community (DMC) developed various disease maps resources,
hand in hand with other groups around the globe. The commu-
nity held its initial meeting in February 2017, hosted by the
European Institute for Systems Biology and Medicine in Lyon,
France. There we recognized a great potential in such type of ex-
change, especially because, despite different disease contexts,
we face similar challenges, ranging from establishing proper
tools and standards for knowledge encoding, through visualiza-
tion of multidimensional data sets, to handling large and com-
plex maps. We decided to meet regularly to help shape the
direction where the project is heading. In October 2017, we held
the 2nd DMC meeting, hosted by the Luxembourg Centre for
Systems Biomedicine in Belval, Luxembourg. Here, we summar-
ize this meeting, highlight important topics and outcomes of
our discussions and propose a roadmap for the development of
disease maps.

In this article, we first introduce the DMC and describe its ra-
tionale, mode of operation and spectrum of expertise. Next, we
overview the 2nd DMC meeting, highlighting important topics
and discussions of special focus. Then, we describe the mile-
stones on the ‘Disease Maps Roadmap’, identified during a dedi-
cated, extended discussion session during the meeting. In the
last chapter of the article, we briefly summarize the outcomes

and discuss further steps, including necessary standards and
tools.

The Disease Maps Community

The DMC (http://disease-maps.org/) is a group of developers
and users of disease maps of various human disorders, includ-
ing cancer, neurodegenerative and immune diseases. The com-
munity formed to exchange experiences and to establish best
practices for creation, maintenance and application of disease
maps. The group is composed of biomedical and clinical re-
searchers with expertise on particular diseases [2, 3, 5], but also
of bioinformaticians, computer scientists and mathematicians
working on technologies supporting curation and exploration of
the maps [6–8]. Because the community involves projects at dif-
ferent stages of development, upcoming disease maps can
benefit from the experience of developers at the advanced
stage. At the same time, new disease maps bring their own
unique use cases providing new perspective for the adoption of
curation standards and required technology developments. At
the time of writing, researchers from France, Germany,
Luxembourg, UK, Portugal, Spain and Turkey take part in the
DMC. The participation in the community is voluntary.

Regular meetings help to catalyze the exchange between the
community members. The 1st DMC meeting allowed us to iden-
tify challenges shared across different disease maps’ projects
and recognize the value of exchanging best practices. Moreover,
it was apparent that we need to keep track of our efforts to best
align them. Therefore, the main objective of the 2nd DMC meet-
ing (http://disease-maps.org/events) was to bring the commu-
nity up to speed about the ongoing activities, introduce new
members with their projects and engage into deep discussion
on challenges, potential solutions and the next steps to take.
This discussion was at the heart of our meeting, and is
described in detail in the following section. Participants
engaged in extensive discussions on critical topics for tools, ap-
plications, curation standards and complexity management.
Moreover, an entire session was dedicated to the topic of
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mathematical modeling. Based on the outcome of our discus-
sions, we outline the roadmap for disease maps development
(Figure 1).

Milestones on the ‘Disease Maps Roadmap’

The community discussed five aspects of the disease maps,
namely: (i) tools supporting the development and use of the
maps, (ii) standards needed for biocuration of the content,
(iii) management of complex content, (iv) application of the
maps in the biomedical domain and (v) the predictive modeling
of disease mechanisms. We defined a number of milestones,
summarized in Figure 1. Some of them span multiple aspects of
disease maps. For instance, ‘encoding and use of models’ need
to be solved at the levels of tools, biocuration and modeling
methodology. Complexity management and tools share mile-
stones for ‘dynamic network layout’, while biocuration and ap-
plications both define ‘quality indicators of encoded knowledge’
as a milestone.

Tools for map creation, visualization and exploration

Disease maps are an emerging concept, bridging bioinformatics,
molecular biology and clinical research. Appropriate tools are
needed to support creation and use of the maps, including han-
dling relevant standards for knowledge encoding, annotation
and exploration. It is crucial to align new developments in this
area with concrete use cases. In fact, the development of many
available tools was initiated to directly address the needs of the
DMC, and their further development takes into account the
emerging challenges. Table 1 summarizes the tools discussed in
the following text, both those already used for disease maps de-
velopment and analysis, and those that offer new important
functionalities.

Constructing maps
A key challenge in the field is the lack of tools tailored exactly
to develop content for a disease map. Visual pathway editors
[13, 17] that offer significant level of compatibility with Systems
Biology Graphical Notation (SBGN) [11] are often used for this

purpose, contributing to content reuse. Other solutions like
Cytoscape-based Biological Network Manager (BiNoM) [9] or
PathVisio [15] allow for importing, manipulating and exporting
SBGN or CellDesigner formats. An interesting case is a graph
editor yED [18] that introduced an SBGN palette, allowing draw-
ing of graphs that look like SBGN diagrams.

Still, disease maps are frequently updated and extensively
annotated knowledge repositories, and the mentioned editors
have limited capabilities to support for such resources.
Harmonization of curation standards (see section ‘Biocuration
and knowledge representation standards’) is also difficult, as
each of the mentioned tools uses its own encoding of the con-
tent, risking an inexact translation when transferring informa-
tion between sources. An important development addressing
this problem is the Web-based editor of diagrams encoded in
SBGN: Newt [8]. The creators of Newt actively participate in the
DMC, helping to shape and benefiting from the discussed road-
map. A milestone on the road toward mechanistic, modeling-
oriented curation will be enabling support for the Systems
Biology Markup Language (SBML) [12] (see section ‘Use of maps
for mathematical modeling’) during the curation of disease
maps.

Maps exploration via Web platforms
We also discussed how to explore and analyze the content of
the disease maps. In this area, one of the first platforms for
sharing disease maps as CellDesigner diagrams was Payao [16],
followed by iPathwaysþ [4]. Their functionality was extended by
tools like Molecular Interaction NEtwoRks VisuAlization
(MINERVA) platform [6] and NaviCell [14], developed by the
DMC members. They allow for visualization of large
CellDesigner and SBGN diagrams using the Google Maps
Application Programming Interface (API) to provide interactive
annotation to maps’ elements and enable overlay of experimen-
tal data on top of these maps. Another solution for browsing
large maps are various complexity management techniques
such as expand–collapse and hide–show featured by the Newt
pathway editor [8]. However, an open issue is the exploration
and integration of simulation results from the associated mod-
els. A rough shortcut is currently available via visualization:

Figure 1. The milestones of the DMC roadmap. Five groups of topics are highlighted. Tools: Software and methods supporting the development and maintenance of

the maps; Biocuration standards: standards for knowledge gathering and encoding in the maps; Complexity management: methods that handle inherent complexity

and facilitate visual exploration of the contents of the maps; Applications: workflows where maps can be applied to support knowledge exploration, generation of new

hypotheses or support clinical decisions; and Modeling: standards and tools allowing to refine the maps into executable mathematical models.
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e.g. the outcomes of flux balance analysis can be shown by dif-
ferent thickness and color of corresponding reactions on the
map, as in Escher [21]. Another example, the iVUN system
(interactive Visualization of Uncertain biochemical reaction
Networks) [22], uses the kinetic parameters encoded in the map
directly via the visualization interface to run simulations.
Finally, the recently upgraded COnstraint-Based Reconstruction
and Analysis (COBRA) Toolbox [20] introduces a built-in visual-
ization functionality for constraint-based modeling results and
enables visualization of modeling results via the MINERVA plat-
form. Overall, current platforms for analysis and visualization
are Web-based, and with the increasing size of disease maps, it
is important to ensure scalability of expensive operations such
as layout and simulation. The increase of client-side computing
power allows to use local resources for some work and use the
Web server for heavy computations like graph layout. A mile-
stone in the direction of in-depth map exploration will be
Web-based visualization of simulation results together with the
contents of a disease map, or its parts, used for the simulation.

Integrating maps in a shared repository
Another challenge that requires proper tools is the integration
of maps into a repository. As disease maps projects mature, it is
natural to break up large complex maps into smaller modules,
which can be used independently or composed into the full
map. This asks for a platform to manage multiple maps simul-
taneously, and cross-link their content. Currently, MINERVA
and NaviCell offer support in creating a single hierarchical
multi-modular disease map. A challenge that remains to be ad-
dressed is a repository spanning multiple disease maps, allow-
ing us to query resources of various disease domains, either by
keyword or by network neighborhood. For this to happen, we
need to propose solutions for versioning and comparing differ-
ent maps, also taking into account different annotations and
context of particular projects with the aim to converge into the
common standard of disease maps annotations and representa-
tion. Often, the lossless conversion between formats like SBML,
SBGN or Biological Pathway Exchange (BioPAX) [10–12] is not
possible. Therefore, it is crucial to develop a framework for a
unifying notation for encoding the disease mechanisms and
annotating them (discussed in the section ‘Biocuration and
knowledge representation standards’), supported by converters
minimizing the information loss on translation. A good step in
this direction may be a repository of uniform, reusable modules
and models of pathways that are common for multiple dis-
orders, and can be used across many projects (discussed in the
section ‘Map complexity management’). Efforts like
FAIRDOMhub, the NDex platform and the Physiome Model
Repository go in a similar direction [23, 25, 27]. The effective use
of a shared repository is only possible with a powerful set of
queries including graph-based ones such as shortest paths be-
tween a specified set of molecules and common target of a gene
set [28]. Here, a milestone will be a translation of one or more
common modules between different disease maps. Another im-
portant goal to be reached is enabling communication between
different disease maps, allowing to query their resources.

Biocuration and knowledge representation standards

Biocuration of a disease map is a difficult task that heavily de-
pends on the expertise of the curator. A clearly defined set of
best practices can facilitate this process, similarly to protocols
for construction of biomodels [29]. External resources like
Gene2Disease or MalaCards, and tools like Integrated Network

and Dynamical Reasoning Assembler (INDRA) [30–32] can help
in organizing and referencing the disease-related knowledge
integrated into a map.

Curation standards
A number of curation standards can help with harmonizing the
content in various disease maps. Graphical notation and model-
ing languages like SBGN, SBML or CellML [11, 12, 26] offer good
guidance in encoding molecular networks, while annotation of
biological entities according to the Minimal Information
Requested In the Annotation of biochemical Models (MIRIAM)
guidelines is supported by the Identifiers.org infrastructure [33].
Whenever modeling-level description is available, the model
structure can be automatically checked for consistency, e.g. to de-
tect divergent reactions, or negative concentrations of molecules
[34]. Continuous checks for correctness against these standards
and resources are a key activity for developing useful disease
maps. However, the specificity of certain disease mechanisms is
often difficult to describe in a standardized manner. Encoding and
annotating protein complexes or specific post-translational modi-
fications in a diagram may be challenging for the curator, when
the proper balance between clarity and precision is not obvious.
Thus, it is important to establish a set of quality indicators for the
curated mechanisms indicating their usefulness and the precision
of the underlying information.

Map updates
The standards mentioned above describe the format of the con-
tent. Another important aspect that requires attention is the
relevance to the disease area—keeping the content up-to-date
and relevant for current and upcoming analytical challenges.
This requires dedicated curation effort, but also a community of
users in the field who evaluate the content and assess its rele-
vance for the disease of interest. Thus, supporting a given dis-
ease map by accompanying social networking tools, like
discussion forums, may help catalyze the communication.
From the computational point of view, text mining solutions
may be used to identify potentially relevant mechanisms to in-
clude or review. These suggestions can be in turn discussed
openly with the community, encouraging discussion and en-
gagement. Testing such a text mining-based update system and
comparing it across different disease maps may provide new
ideas how to accelerate the time-consuming curation process.
Additionally, this may lead to improvement of the algorithms of
text mining supporting the curation, as they are tested against
manually curated information.

Knowledge representation consistency
The DMC projects cover various pathologies and are at different
stages of development. This diversity results in varying depth of
curation for particular diseases and their mechanisms. For in-
stance, knowledge about specific mutations and their mechan-
isms is important for the cancer field, while chronic disorders
may put less emphasis on it. For this reason, the content of dif-
ferent disease maps should be reused with care. Molecular
pathways implemented in a map for neurodegenerative dis-
eases may be relevant in inflammatory disorders, but they
might have to be modified or extended. Therefore, consistent
and precise annotation is necessary for both appropriate use
and successful reuse of curated content. Although platforms
like MINERVA offer an annotation consistency check, the verifi-
cation takes place after the curated content is uploaded to the
platform. A curation tool checking for annotation consistency
on-the-fly would help to avoid errors and omissions, improving
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the quality of generated content and reducing the curator’s
burden.

Connecting maps to disease hallmarks
Another challenge curators face is to design the map in such a
way that end users can recognize the mechanisms of the dis-
ease and tell them apart from the normal, physiological func-
tion of a given pathway. Also, users often interpret the map
based on their individual data sets, for instance for subgroups
of patients, or specific cell lines.

While curating the map’s content, it is important to evaluate
it methodically for the relevance to each disease area.
Replication of hallmark findings in a given domain is often tan-
gible, as many appropriate data sets are now publicly available,
either via general repositories of molecular phenotypes, such as
Gene Expression Omnibus [35] and the Expression Atlas [36] or
disease-specific resources such as the Genomic Data Commons
[37] and the Human Protein Atlas [38] in the case of cancer.
Identification of differentially expressed molecules and their
visualization on the map will help to refine the map’s content,
but also will be a demonstration of its utility. A series of such
analyses may help to calculate significance and vulnerability
scores, describing how strongly a given mechanism is impli-
cated in the disease, and how often it is perturbed.
Benchmarking scenarios, describing these in silico validation ex-
periments, are a necessary component of disease map develop-
ment. Such scenarios and benchmark data sets will have to take
into account the disease heterogeneity and differences in statis-
tical approaches used for data preparation across studies.

Map complexity management

Disease maps aim to describe disease mechanisms, which often
span across multiple scales of human physiology and involve
numerous cross-talking pathways. This comes with the chal-
lenge of meaningful organization of such complex knowledge.
Thus, complexity management in our case aims to resolve the
perception difficulty of different scales and mechanisms with-
out losing the understanding of the disease as a whole.

Complexity management foundations for disease maps are
distilling the relevant content to the disease context, highlight-
ing the mechanisms critical for the pathology, categorizing the
mechanisms based on their general biological relevance and
creating high-level, abstract views of relationships between key
concepts. These approaches are used already at the stage of
curating the maps’ content.

Network complexity
Densely connected biological networks are impossible to draw
without edge crossing (nonplanar graphs). A currently applied
approach is to create multiple instances of (to clone) a molecule
in various contexts (different compartments, pathways or
modifications), which reduces visual clutter. This task can be
automated by an algorithm suggesting when to clone a certain
molecule to improve overall graph perception [39]. Similarly,
clearly separable modules of a disease map can be transformed
into submaps, linked hierarchically to the overview map. At the
same time, visualization and management of such distributed
content become more difficult, as different instances of the
same molecule, or separate submaps, have to be meaningfully
searched and explored. Development of tools for exploration of
hierarchically abstracted and modularized networks is an im-
portant milestone on the road toward managing network com-
plexity. Testing the existing functionality of Newt for collapsing

subnetworks, especially for large-scale disease maps, will help
to better specify challenges in front of such tools.

Finally, we noticed that in the field of electrical engineering,
which was a source of inspiration for developing standards for
graphical network representations, established conventions
exist for representing crossing wires on the electrical diagrams.
As creating network diagrams completely free of edge crossing
does not seem to be possible or useful, developing standards on
resolving possible misinterpretations would be a useful step in
managing complexity of large disease maps.

Scale complexity
Another group of complexity management techniques concerns
map visualization. These include semantic zooming into dia-
grams [6, 7], collapsing and expanding subnetworks in a dia-
gram [8] or bundling edges to discover structure of dense
networks [40]. One important type of semantic zooming subdiv-
ides different content types among multiple layers, where the
zoom level defines the level of complexity seen by the user. For
instance, the highest zoom level could show the most generic
physiological view, e.g. the tissue or organ affected by the dis-
ease, the zoom layer below would show cell type relationships
in the tissue, while subsequent zooms would show different
levels of complexity of underlying cellular and molecular net-
works. Visualization of these complex networks at low granu-
larity can be facilitated by representing network motifs
(commonly encountered graph structures, like phosphorylation
or complex formation) as recognizable symbols, or highlighting
the most relevant molecules for the disease. This hierarchical
way of layered display can be complemented by ‘vertical’ layers,
showing separately different classes of molecular processes,
e.g. transcription, signaling or metabolism.

Layout complexity
Hierarchical layers allow complexity management at the over-
view level for easier navigation to a particular area of the map.
However, when examining details of molecular processes, users
need tools to disentangle dense bundles of interactions and re-
late the content in front of their eyes to the rest of the disease
map. Display of such local views can be implemented with the
help of dynamic layouts, where the wiring of the diagram is
temporarily changed in the area examined by the user to better
reflect current context. Interactively changing the layout on-
the-fly can be foreseen for the local views because of their small
size. For instance, the technique of hyperbolic trees may allow
us to remove local edge crossings in an area of the map, which
would be infeasible for the entire map [41]. The local topology of
the network can also be adapted to minimize the curvature of
locally viewed edges [42], or it can be modified to reflect the up-
loaded data sets. In these data-driven layouts differentially
regulated molecules can become larger and more central, while
flux balance analysis results may change the length of the edges
to reflect the reaction rate. There are alternative methods for
creating data-driven layouts of biological networks, based on
nonlinear dimension reduction constrained by the network
structure [43]. These and other complex graph visualization
methods such as hierarchical bundling of smoothed edges [44]
can greatly facilitate understanding the complex structure of
connections between the objects on the map and its relation to
the studied data sets.

Managing technical complexity
A less conceptual but not less important aspect of managing
complexity of disease maps is related to technical problems, i.e.
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it concerns a set of questions related to performance and
interoperability.

Despite the development of a new generation of network
editors, efficient manipulations needed for constructing and
maintaining disease maps with thousands of nodes remain
challenging. Here, one could explore the possibilities of existing
approaches for complex and multiscale visualizations used in
other domains such as the Web Graphics Library (WebGL). For
instance, while dealing with large and complex networks, one
can reuse existing methods of advanced memory caching that
avoid keeping the whole complex network in memory, like it is
done in Google Maps for smooth browsing of huge raster geo-
graphical images.

The interoperability between existing standards approved
by the community, such as SBGN Markup Language (SBGN-ML),
SBML 3.0 with Layout and Render extension and de facto stand-
ards used to construct most of disease maps, like the
CellDesigner proprietary SBML extension, remains a challenge.
However, this aspect happened to be relatively inexpensive to
improve. For instance, at the time of writing, a new fully func-
tional bidirectional converter from CellDesigner to SBGN-ML
has been developed as a collaborative effort between DMC
members (https://github.com/royludo/cd2sbgnml). Such tools
will allow the use of the rich computational systems biology
toolkit to analyze the existing collections of disease maps.

Applications of disease maps

The way disease maps are used drives the curation of the con-
tent and indicates directions for technology development [45].
Disease maps are created for various purposes, for instance as a
didactic resource, a knowledge repository, a platform to visual-
ize data or a collection of predictive molecular signatures.
These use cases reflect different stages of development of a dis-
ease map, when its contents are continuously refined from a
collection of most known mechanisms of a given disease (‘hall-
marks’) through verification against established expertise and
available experimental data.

Access to bioinformatic databases
Disease maps applications that focus on knowledge exploration
require easy and direct access to various data resources.
MINERVA and NaviCell platforms provide such access to a num-
ber of annotation sources, like HUGO Gene Nomenclature
Committee (HGNC), UniProt, Chemical Entities of Biological
Interest (ChEBI), PubChem or Gene Ontology [46–49]. From our
experience, users can better understand representations of par-
ticular disease mechanisms if they can cross-check descriptions
of the included molecules. However, advanced data interfaces
are needed, such as querying pathway databases for entire se-
quences of reactions from Reactome or WikiPathways [50, 51].
Newt implements such functionality for drawing interactions. A
corresponding feature for visual exploration of disease maps re-
mains to be implemented.

Tissue and disease specificity
Visual navigation through complex content will be greatly facili-
tated by introducing visual tags for cell or tissue types on the
maps. Highlighting elements or interactions unique for certain
physiological environments is needed for users to disentangle
complex bundles of reactions, and to understand them.
Semantic zoom functionalities, already implemented to a cer-
tain degree in disease maps platforms (discussed in the section
‘Map complexity management’), need to be extended. When

zooming into complex networks, the content should be pre-
sented with gradually increasing number of details, based on
the complexity of underlying physiology and on the density of
explored molecular networks.

Individual disease maps represent contextualized pictures
of various pathologies. Comparing disease maps’ contents will
help to identify deregulation of mechanisms specific to a given
disorder, as well as pathways implicated in a number of pathol-
ogies. Such comparisons become tangible thanks to pipelines
for data cross-linking and visualization of complex networks.
Combined with patient-specific data, such exploratory analysis
in maps of overlapping pathologies, like cancer subtypes, may
support personalized medicine by facilitating interpretation of
patient-specific drug resistance.

Health and disease data interpretation pipelines
Clinical applications of disease maps [45, 52] are close to the
role of a Clinical Decision Support System, with an emphasis on
exploration and interpretation of medically relevant data. Big
health data, collected in great amounts by health-care providers
and pharmaceutical companies, need to be structured and in-
terpreted through visualization. This is a scenario where dis-
ease maps may provide a valuable context to large data sets,
allowing meaningful filtering and summary of otherwise indi-
gestible numbers. Initial steps in creating big health data pipe-
lines to disease maps have been taken [45], where a disease
map is used to visualize gene expression based on patients’
demographic data.

In the end, disease maps may be a great support to
knowledge-based drug discovery using patients’ data, but only
after drug databases can be linked with the maps’ content and
supported by dedicated analytical pipelines. For instance, dis-
ease maps may become a platform for network data-driven
drug response prediction. This will require identification and
assessment of disease-rewired pathways, network analysis to
identify a desired intervention set (target interactions or elem-
ents in the network) and mapping this intervention set back to
drug databases, looking for secondary use of existing medica-
tions (drug repositioning).

The final goal of a disease map development is to become
mathematically interpretable and to support clinical decisions
in a given domain. Importantly, the process of refining and
exploring a disease map itself provides knowledge building,
even without an immediate clinical application. Although the
map is created to be quantified and analyzed with data to pre-
dict a clinically relevant outcome, its qualitative interpretation
can have a great value in hypothesis generation and for guiding
experimental design. This is an important note to take into ac-
count when managing expectations about applications of a dis-
ease map.

Use of maps for mathematical modeling

Disease maps are currently used to organize knowledge and to
visualize data. The ultimate goals are however the generation of
testable hypotheses, the identification of actionable targets and
the support of clinical decision making. To achieve this, execut-
able mathematical models are required. Depending of the
required level of resolution, qualitative models (e.g. logical or
Boolean models), or quantitative models (e.g. ordinary differen-
tial equations, stochastic differential equations or Markov jump
processes) can be used. Yet, the formulation of mathematical
models requires more information than the use of maps for
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visualization, and this generates additional challenges to
address.

Construction of executable mathematical models from disease maps
The formulation of executable mathematical models requires
information on molecular species and their interactions. For the
formulation of qualitative models, information about the mode
of interaction between molecular species is required (e.g. acti-
vating or inhibiting). This information can be extracted from
SBGN Activity Flow maps [53, 54]. However, most of the avail-
able disease maps use SBGN Process Descriptions or a combin-
ation of SBGN Process Descriptions and SBGN Activity Flow
diagrams. This complicates an automatic construction of a lo-
gical model substantially. For the formulation of quantitative
models, information about the properties of reactions is neces-
sary, including stoichiometry and reaction kinetics [55]. While
stoichiometry should be encoded in SBGN Process Descriptions,
the kinetic rate laws are usually missing. The definition of rate
laws requires additional information or assumptions, e.g., that
a reaction follows the law of mass action kinetics. Some efforts
have been launched to generate logic and numerical models
from pathway maps [56]. For instance, the ongoing work on
automated translation of SBGN and CellDesigner formats into
logical models may help to bridge the quantitative and qualita-
tive applications of disease maps. However, this remains a chal-
lenging task, providing results of mixed quality. To support the
construction of executable mathematical models from disease
maps, the first milestone would be the definition of a standard
operating procedure (SOP), which informs biocurators about the
minimal information, which has to be implemented in the dis-
ease maps. In this context, the use of SBML for the model for-
mation and automatic checking of model consistency might be
more appropriate. An important issue is therefore to ensure a
proper link between molecular processes and the phenotype of
interest.

Parameterization or executable mathematical models
Quantitative mathematical models usually possess unknown
parameters, e.g. binding affinities and degradation rates. To en-
sure that the models are predictive, these parameters have to
be estimated from experimental data. This requires compre-
hensive data sets as well as computational methods for statis-
tical inference.

Data sets are available in the literature and in established
databases, such as BRENDA [57] and SABIO-RK [58]. However,
most literature-based data sets are unstructured and difficult to
assess. Furthermore, the quality of experimental data varies
heavily. A milestone for any disease map project aiming at
quantitative models therefore is the establishment of a data-
base of general and disease-specific data. The databases could
be created together with the disease maps, and encode essential
qualitative properties as well as quantitative data. The data-
bases established for different projects should ideally follow
common standards.

To estimate the unknown parameters from the available
data, an efficient computational pipeline is required. As disease
maps usually possess hundreds or even thousands of state vari-
ables and parameters, the resulting computational complexity
might be challenging for established toolboxes such as
COmplex PAthway SImulator (COPASI) [59], Data2Dynamics
[60], Parameter EStimation TOolbox (PESTO) [61] or
PottersWheel [62]. Moreover, such a large number of variables
will require an automated procedure to check parameter identi-
fiability. A milestone is the establishment of a scalable

computational pipeline, which is applicable to the standardized
models and databases established in the disease map projects.
Such a pipeline could combine efficient objective function and
gradient evaluation methods [63] with advanced parallel opti-
mization schemes [64].

Personalization of models using data
A parameterized quantitative model can in principle be used for
decision support in the clinic. To provide patient-specific pre-
dictions, the model needs to be personalized with patient-
specific information. While this is a procedure fairly easy to do
with small models, such as the ones used in pharmacokinetic/
pharmacodynamic modeling, it is much less so in the case of
large maps with a great number of molecular partners. In recent
studies, exome and transcriptome sequencing data of cancer
cell lines have been used to set cell line-specific translation
rates [65, 66]. In a similar study, the mRNA expression was used
to predict the survival of individual neuroblastoma patients
[67]. While both approaches were successful in the respective
applications, transcription rates and mRNA levels can change in
response to treatment. For an analysis of the long-term re-
sponse of patients, alternative strategies may be necessary. A
milestone in this respect will be to develop different individual-
ization approaches and then assess them in a range of applica-
tions. In addition, disease-related functional variants need to be
implemented to benefit from comprehensive sequencing and
genome-wide association studies (GWAS).

Summary

A ‘disease map lifecycle’, as shown in Figure 2, starts with cur-
ation and integration of knowledge about disease mechanisms.
This collected knowledge, combined with experimental data
and annotations from bioinformatics databases, supports better
understanding of the disease and formulation of systems-level,
data-driven hypotheses. The ‘disease map lifecycle’ is a dy-
namic process, as feedback from the interpretation of such con-
textualized knowledge leads to the design of further, tailored
data interfaces, permits better consolidation of knowledge
within the repository and may, if validated experimentally,
introduce new knowledge about disease mechanisms for fur-
ther curation and incorporation into the map. The milestones of
the community-driven roadmap (Figure 1) are indicated in
Figure 2.

Application example: drug repositioning
Signaling pathways implicated in human diseases create a com-
plex network with redundant pathways. This complexity ex-
plains frequent failure of one-drug-one-target paradigm of
treatment, resulting in drug resistance in patients. To overcome
the robustness of the cellular signaling network, the treatment
should be extended to a combination therapy scheme [68].

Disease maps allow integrating patient high-throughput
data together with the information about biological metabolic
and signaling machinery specific to a given disease. This in turn
may help deciphering molecular patterns specific to each pa-
tient and finding the best combinations of candidates for thera-
peutic targeting. A simple drug repositioning scenario may
involve creating data overlays for tissue-specific gene and pro-
tein expression and their visual analysis for spatial and tem-
poral patterns in signaling cascades encoded in a given map. As
disease maps platforms [6] provide a direct interface to
DrugBank [69] and ChEMBL [70], the user can browse for drugs
targeting the most interesting elements of the network directly
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via the visual interface. With a number of other such resources
available, like STITCH [71], KEGG Drug [72], Cancer Therapeutics
Response Portal [73], Kinome NetworkX [74] or NCGC pharma-
ceutical collection [75], this data interface can be extended to
provide more extensive drug target search results.

Moreover, the digital and standardized form of disease maps
enables their network structure to be easily extracted for high-
throughput computational analysis, following the workflow es-
tablished by the steps of visual exploration and analysis. The
members of DMC performed such analyses to find synthetically
interacting genes [76], predict drug synergy [77] or suggest com-
plex intervention sets that open a possibility of drug reposition-
ing [52, 78].

Thematic highlight: mathematical modeling in
human diseases research

The thematic highlight of the 2nd DMC meeting was mathemat-
ical modeling and disease maps. Building a computational
model from a disease map is a process of transformation of a
static literature-based representation into a dynamic executable
format. This is important for a better understanding of how a
disease progresses over time. It is also an environment where
hypotheses and assumptions can be added and tested. Here,
the prior knowledge (literature curation) can be integrated with
newly generated data including omics data. Different types of
computational models can be developed on the basis of the

same pathway-based disease map. During the community
meeting, we started reviewing and discussing possible
approaches.

N. L. N. focused his presentation on the representation and
modeling of allosteric proteins sensing calcium signals. Proteins
with multiple binding sites, multiple independent features
(such as binding partners, domains, conformations) and multi-
subunit complexes are difficult to represent, let alone model.
Trying to enumerate all molecular states leads to a combinator-
ial explosion of entities to model, and an even greater explosion
of reactions to include. Some avenues allow to circumvent the
problem, from rule-based modeling to abstract proteins repre-
senting probabilistic populations, or even implicit representa-
tions, e.g. Hill functions. Some of these approaches were
illustrated by modeling Calmodulin, Calcineurin and CaMKII re-
sponses during synaptic plasticity.

J. H. presented parameter estimation methods based on ad-
joint sensitivities. These methods possess much better scalabil-
ity properties than state-of-the-art approaches and facilitate
the parameterization of large-scale models, potentially also
executable models derived from disease maps. An application
to a large-scale model of cancer signaling—essentially a disease
map—was presented with more than a thousand chemical
species and several thousands of unknown parameters [65]. J. H.
demonstrated that the mechanistic model provides more accur-
ate prediction for cell proliferation than statistical approaches.

R. M. T. F. discussed important differences between the no-
tions of a reconstruction, a model and a map of molecular

Figure 2. A life cycle of a disease map with the roadmap milestones. The figure illustrates the life cycle of a disease map, starting from the biocuration based on the

relevant literature and available pathway databases. This knowledge is synthesized into a comprehensive repository: the disease map. Data interfaces and links to bio-

medical databases, together with accessible, visualized content allow for informed interpretation toward knowledge exploration, generation of new hypotheses or clin-

ical decision support. The outcomes of the interpretation step link back to particular phases of the life cycle. ‘Data interfaces’ feedback describes the possibility of

interconnecting additional data sources for better interpretation. ‘Synthesis’ feedback indicates improved knowledge organization within the disease map.

‘Biocuration’ feedback means introduction of new, validated hypothesis about the disease-related mechanisms.

Notes: Milestones discussed for the Disease Maps Roadmap are mapped on the diagram as follows: T: Tools, T1: Modeling-oriented curation, T2: Visualization of simu-

lation results, T3: Information exchange between maps; B: Biocuration standards, B1: Knowledge quality indicators, B2: Review of the text mining support, B3: On-the-

fly consistency check, B4: Connecting mechanisms and disease hallmarks; C: Complexity management, C1: Dynamic subnetwork collapsing, C2: Algorithms for layered

scale complexity, C3: Methods for dynamic layouts, C4: Handling large diagrams; A: Applications, A1: Cross-linking disease maps and pathway databases, A2: Data-

based tissue specificity, A3: Data interpretation pipelines, A4: Quality assessment via in silico replication; M: Modeling, M1: Minimal information set for modeling,

M2: Database of general and disease-specific data, M3: Scalable computational pipeline for models, M4: Model-based individualization approaches.
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mechanisms in human physiology. He presented the Recon re-
source [79], the most complete reconstruction of human metab-
olism to date, and how in combination with constraint-based
modeling it is used in systems-level biomedical research. The
latest version of the reconstruction, called Recon3D [80], intro-
duces structures of proteins and metabolites to the encoded re-
actions, and can be an important support to the canonical
metabolic pathways in various disease maps. As an example, he
discussed a map of mitochondrial metabolism, developed on the
basis of Recon3D, that can support Parkinson’s disease research.

A. Z. challenged the possibility of immediate use of disease
maps in mathematical modeling, suggesting that they are cur-
rently playing a role of interactive encyclopedias rather than
blueprints for chemical kinetics-based modeling of large reac-
tion networks (structural network models). He argued that the
disease maps rather reflect our knowledge in the corresponding
domains together with its incompleteness and controversy.
Thus, A. Z. coined a notion of executable encyclopedia as oppos-
ite to structural model, as a hypothetical approach based on
pragmatic middle-out mathematical modeling as opposite to
the pure bottom-up approach.

Key Points

• The Disease Maps Project is an interdisciplinary effort
toward a systematic use of knowledge and data in re-
search on human diseases.

• The proposed testable milestones will help Disease
Maps’ users, curators and technology developers to har-
monize efforts and best practices.

• The suggested ‘lifecycle’ of a typical disease map pro-
ject encompasses approaches available in the commu-
nity and demonstrates applications.

• Mathematical modeling is discussed as an important
aspect of Disease Maps, helping to refine their content
and allowing to formulate predictions about disease
mechanisms.

Outcomes and outlook

The 2nd DMC meeting brought together curators of disease
maps, developers of methodologies and tools and users. This
allowed us to clarify objectives and use cases, and aligned them
into a multi-lane roadmap for disease maps. The DMC will pro-
gress in parallel on several different lanes: tools, applications,
curation standards, complexity management and mathematical
modeling, at different paces, but in the same direction and with
the same goal. Importantly, there are stages of the roadmap
where the milestones align across the lanes. These will be
treated with priority by the community.

Our discussions brought up a number of resources that we,
disease maps curators and users, can benefit from. Participation
of leaders of the Physiome and Recon projects [79, 81] led to
ideas on how to capitalize on existing and well-structured
knowledge and methods they developed. We reviewed current
and upcoming interfaces to pathway databases and data ana-
lysis pipelines that will help us to curate and interpret the
maps’ content.

This productive series of meetings will continue. The 3rd
DMC meeting is scheduled for June 2018 in Paris, hosted by
Institut Curie (http://disease-maps.org/events). We aim to re-
view and update the roadmap and enlarge the community.

Most importantly, we would like to maintain the atmosphere of
collaboration and open exchange within the community, which
is the key to improvement and further development of the
Disease Maps Project. There are several tools, approaches and
platforms developed by DMC members. Exposure of the partici-
pants to these resources will allow active exchange of know-
how, and parallel hands-on tutorials will be provided.
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