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Abstract

Background: Gastric distention contributes to meal terminatibinere is little research on
the neural correlates of gastric distention by fobol date, neural measures have not been
obtained concurrently with measurements of gasistention.

Objectives: 1) To study how offering a small versus a largeawidad following a
standardized nutrient load affects gastric distentiver time. 2) To assess associations
between satiety experiences and brain activitythadlegree of gastric distention.

Method: 19 healthy males (age 22.2+2.5 y, BMI 21.8+1.5yparticipated in a
randomized crossover study with two treatmentsestign of a 500-kcal 150-mL liquid meal
shake followed by a low (LV, 50 mL) or a high volartHV, 350 mL) water load. At baseline
and three times after ingestion satiety was scdvi#l,scans were made to determine total
gastric content volume (TGV) and functional MRIssavere made to measure cerebral
blood flow (CBF).

Results: TGV was significantly higher for HV compared to la¥ all time points (p < 0.001)
with relative differences between HV and LV of 23Z mL after ingestion, 182+83 mL at
t=15 min and 62+57 mL at t=35 min. Hunger decredped 0.023) and fullness increased (p
= 0.030) significantly more for HV compared to L¥gestion increased CBF in the inferior
frontal gyrus and the anterior insula, but thereene differences between treatments. There
were no significant correlations between appeéitengs and CBF values.

Conclusion: Performing concurrent gastric MRI and CBF meas@r@sican be used to
investigate neural correlates of gastric distentinareased distention did not induce
significantly greater brain activation. Future @®f should further examine the role of the

inferior frontal gyrus in satiety.
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Introduction

In the effort to better prevent obesity, one stratmay be to limit caloric intake. To this end
we could strive to promote earlier meal termina{isatiation) (de Graaf & Kok, 2010).
Satiation can be increased by increased stomatdmtian (Geliebter, Westreich, & Gage,
1988). When the stomach is distended with a wited fintragastric balloon meal intake is
reduced (Saber et al., 2017). This increase iatgat was investigated by Wang et al., who
aimed to find neural correlates of gastric dismtising fMRI by inflating and deflating an
intragastric balloon with water (G. J. Wang et 2008). They observed that distention

induced brain activation in satiety related braimes, such as the amygdala and insula.

Spetter et al. showed differences in brain activatind hormone responses between gastric
infusion and ingestion (i.e., gastric plus oro-sepstimulation) of the same 500-mL nutrient
load (Maartje S. Spetter, de Graaf, Mars, Vierge&e$meets, 2014; M. S. Spetter, Mars,
Viergever, de Graaf, & Smeets, 2014). Normal ingesthowed increased activity in the
thalamus, amygdala, putamen and precuneus comimanegtched gastric infusion of the
same load. However, gastric emptying was not asdesssight in relative gastric distention
would provide more detailed information on the assted stomach distention and the rate of

gastric emptying, the contribution of which to reuactivation is hitherto unknown.

Gastric distention with a balloon and naso-gastfiasion are suitable tools to investigate
orosensory and gastric contributions to satiatitowever, they are not very naturalistic and
the results obtained with such approaches may livaited ecological validity. Also, such
approaches do not provide ways to enhance satiatidrthereby limit energy intake.
Therefore, researchers have used food manipulaioingrease gastric distention such as the

incorporation of air (Osterholt, Roe, & Rolls, 200®ater (Rolls, Bell, & Thorwart, 1999)
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and the addition of gelling fibers (Hoad et al.02p However, this introduces a possible
confounder, as incorporated air or water inevitafgct the texture of the test food and the
eating speed, both of which have been shown tatadtiation (de Wijk, Zijlstra, Mars, de
Graaf, & Prinz, 2008; Miquel-Kergoat, Azais-BraesBarton-Freeman, & Hetherington,
2015; Weijzen, Smeets, & de Graaf, 2009; WijlerknEr, Mars, & de Graaf, 2015; Zhu,

Hsu, & Hollis, 2013a, 2013b; Zijlstra, De Wijk, MarStafleu, & De Graaf, 2009).

The presence of calories slows gastric emptyingni@a Mars, De Graaf, & Smeets, 2016a;
Marciani et al., 2001). Therefore, a possible wagdntrol both orosensory exposure as well
as manipulate gastric distention would be to intaeda caloric load first, and then manipulate
gastric distention with water. Using water loadaas new: increased water consumption
during the day or with a meal has been shown tease satiety (Daniels & Popkin, 2010;
Lappalainen, Mennen, Van Weert, & Mykkanen, 1998pkey, Constant, Popkin, &
Gardner, 2008). However, the method used in theentipaper is more specific, that is the
caloric load is ingested first, allowing the subhsenfly added water to increase stomach
distention. A benefit of this approach would bet the eating speed and associated
orosensory experience is similar between conditiddslitionally, if — intragestrically - the
water remains separated from the nutrient loadiild/not change caloric density of the
nutrient dense liquid and only add pure distentite. hypothesise that water taken with a
meal may sieve from the stomach (Camps, Mars, daf(z& Smeets, 2016b; Marciani et al.,

2012), but this would still create added distenfmmnsome time.

The primary aim of this study was to assess wheaetfect is of offering a small versus a

large water load following a standardized meal astigc distention over time. The secondary
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aim was to examine associations between subjeatipetite feelings, brain activity and

gastric distention.



83  Participantsand Methods

84

85 Design

86  Participants came to our facilities 2 times in@d@mized crossover design. Each participant
87  was always scanned on the same time in the moafiagan overnight fast. Participants were
gg  offered a standardized liquid meal followed by eith small (50 mL, LV) or a large (350 mL,
89  HV) water load in a random and balanced order.

90

91  Participants

92 Nineteen healthy males (age 22.6+2.4 y, BM| 22.84b/nf) participated. They were

93  recruited by website and flyers around the campWageningen University. A flowchart of
94  the study can be found Bupplemental Figure 1. Inclusion criteria were: being male, aged
95 between 18 and 35 y, having a BMI between 18 ank2%’, being of self-reported good

96 general health, willing to comply with study procees, willing to be informed of incidental
97  findings. Exclusion criteria were: unexplained weifpss or gain of >5 kg in the last two

98  months, oversensitivity to any of the food itemedis1 the experiment, any reported

99  pathologies relating to the gastrointestinal trglsich might influence results, use of any
100 medications which may influence gastrointestinaktion, having any contraindications for
101 undergoing an MRI, not signing the informed condenn, and being employed or studying
102  at the Division of Human Nutrition at Wageningenilénmsity.
103  Potential participants filled out an inclusion qu@snaire to screen for eligibility.
104  Subsequently, they attended a screening meetimgnttiaded measurement of weight and
105 height and explanation of the study proceduresirfigwscreening, potential participants
106  participated in a mock scanner trial to familiariaem with the scan procedures (Lueken,

107 Muehlhan, Evens, Wittchen, & Kirschbaum, 2012) tiegrants were unaware of the exact
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aim of the study; they were only informed aboutfdt that we were investigating the
digestive system and brain activation.

The study procedures were approved by the Meditat& Committee of Wageningen
University and in accordance with the DeclaratibrHzlsinki (1975) as revised in 2013
(NL48059.081.14). The study was registered withRo&ch Trial Registry under number
NTR4573. Results from the HV condition were used@amps et al., 2016b).

Written informed consent was obtained from all jpgrants.

Treatments

Both treatments consisted of a meal shake ander Vead, offered in a paper cup. The
ingredients of the shake were 50 g cream (AH Baslmert Heijn B.V. Zaandam, the
Netherlands), 53 g dextrin-maltose (Fantomalt Mia®, Cuijk, the Nederlands), 8 g vanilla
sugar (Dr.Oetker®, Amersfoort, the Nederlands)g3they powder (Whey Delicious
Vanilla, XXL Nutrition, Helmond, the Netherlands)yd 100 mL waterT{able 1). The
macronutrient composition of the shake resembletkad meal with 50% of the energy from
carbohydrates, 30% from fat and 20% from protehe $hake was mixed in a container with
an internal whisking ball for approximately 30 seds. The shake was prepared about 15
minutes before intake, and offered at ~18 °C. k s@sumed from a cup, all subjects
finished consumption within 40 sec. The subsequetér load was 50 mL for LV and 350
mL for HV. The water was ingested directly folloithe shake, which all subjects were able

to do within 30 seconds.

Scan session procedures
SeeFigure 1 for an overview of the scan sessions. After alpaaticipants provided baseline

appetite ratings. Following this, a baseline s@arstomach content and a baseline perfusion
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CBF scan of 5 minutes were performed. After thestipipants exited the scanner and
consumed the shake, followed by the water loacerAfbnsumption, participants were
positioned in the scanner and stayed there foroxppately 50 minutes. During this time we
performed gastric MRI scans and obtained appetitegs at 2, 15 and 35 minutes post
ingestion. At 5, 18 and 40 minutes post ingestverperformed CBF scans with a duration of
5, 8 and 5 minutes, respectively. The MRI body aod 32-channel head coil were

exchanged during the session as needed.

Appetiteratings
Subjective appetite ratings were given via the seaimtercom. Participants verbally scored
hunger, fullness, prospective consumption, desiesat and thirst between 1 and 100 points

(Noble et al., 2005).

Gastric volume

Participants were scanned with the use of a 3-T&slmens Verio (Siemens AG, Munich,
Germany) MRI scanner using a-Weighted spin echo sequence (HASTE, 24 6-mm slices
2.4 mm gap, 1.19 x 1.19 mm in-plane resolutionj)hwieath hold command on expiration to
fixate the position of the diaphragm and the stdmate duration of one scan was
approximately 18 seconds. A custom segmentatidrcteated in MeVisLab (MeVis Medical
Solutions AG, Bremen, Germany) was used to mandalyeate gastric content - excluding
air - on every slice (Kuijf, 2013). Gastric contelume on each time point was calculated
by multiplying surface area of gastric content glere with slice thickness including gap
distance, summed over the total slices showingigasintent. The different layers within the
stomach were segmented separately and then surordetetmine total gastric volume

(TGV) (Figure?2).
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Brain activity

Data acquisition

Cerebral blood flow (CBF) was measured with a 32nrctel head coil using perfusion MRI
(Pollock et al., 2009) on the same scanner. Images obtained with a PICORE Q2T ASL
sequence, using a frequency offset corrected imremilse and echo planar imaging readout
for acquisition. A total of 19 axial slices weregaaed in ascending order. Each measurement
consisted of tag and control images with the follmunmaging parameters: inversion time
(T, TIL =700 ms, TI2 = 1800 ms, repetition tim&800 ms, echo time =13 ms, in plane
resolution = 3 x 3 mm, field of view = 192 x 192 mamd flip angle = 90°, with a slice
thickness of 5 mm. The first image of the series wsed to estimate the equilibrium
magnetization of the blood (MOB) to allow for ahgel Cerebral Blood Flow (CBF)
quantification. At 27 minutes post ingestion a hrgholution T-weighted anatomical image
was acquired (magnetization-prepared rapid gradieimb (MPRAGE), matrix size = 256 x
256, 192 sagittal slices, 1 x 1 x 1 mm isotropigals, TR = 1900 ms, TE=2.26 ms, Tl =

900 ms).

Image processing

Image processing was performed using functions ttemASLtbx (Z. Wang et al., 2008) in
conjunction with SPM8 (Wellcome Trust Centre forud@maging, London, UK) similar to
Kullmann et al. (Kullmann et al., 2015). The tagl@ontrol ASL images were separately
motion corrected and a common mean image was dreatdsequently, the ASL images
were coregistered to the anatomical image and dmdatith a 3-dimensional isotropic

Gaussian kernel of 6 mm full-width at half-maximum.
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Relative CBF maps were generated by subtractingatpéom the control images. The one
compartment model was used for absolute CBF queatidn (Buxton et al., 1998; Wang et
al., 2003) using the following parameters: invensédficiency ¢)=0.95, water partition
coefficient §)=0.9 ml/g, T1 of arterial blood (})=1684 ms. T1was incrementally adjusted
per slice with 39.5 ms. The anatomical image wasabzed using SPM8 unified
segmentation, and the resulting parameter filewsasl to normalize the CBF maps to MNI

space retaining 3 x 3 x 5 mm resolution.

Statistical analyses

A Shapiro-Wilk test for normality was performedngiSPSS, per time point per treatment on
the variables. The data did not significantly difie@m a normal distribution. Post-ingestive
values were baseline corrected. A linear mixed rhattd treatment and time as fixed factors
and participant as a random factor was performeé&P8S (IBM, Armonk, USA) to test for
significant differences between treatments on sataings and TGV. Post hoc Sidak
adjusted tests were performed to further examiearthin effects in case of a significant
interaction. Significance level was set at a p-#ati0.05. Data are expressed as mean+SD

unless otherwise stated.

Whole-brain group level analyses were performe8RM12 (Wellcome Trust Centre for
Neuroimaging, London, UK). To investigate CBF chesg full factorial analysis was
conducted including the factors treatment (LV, HMH time (baseline, post ingestion, 15 and
35 min). The threshold for significance was set &mily wise error—corrected (FWE) peak
P-value = 0.05. In case of significant clustersFGRBIlues of the different anatomical areas
were extracted using the WFU PickAtlas (Maldjiaautienti, Kraft, & Burdette, 2003;

Tzourio-Mazoyer et al., 2002) and MarsBaR toolbBreft, Anton, Valabregue, & Poline,
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2002) (marsbar.sourceforge.net). A second fulldiaat analysis in SPM was conducted with

the addition of TGV as a covariate.

The association between appetite ratings and egtt&ZBF values was tested by calculating

the Pearson correlation coefficient in SPSS.
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213 Results

214  Satiety ratings

215  Satiety and thirst ratings over time can be sedngare 3.

216  Hunger ratings significantly changed over time (p.608) and there was a significant

217 suppressive effect on hunger by HV in comparisobMdp = 0.023). Fullness ratings

218  significantly changed over time (p = 0.030) andrfess was significantly increased more by
219  HV (p = 0.030). Desire to eat ratings significarthanged over time (p = 0.004) and desire to
220 eat was significantly more suppressed by HV (pG88). Prospective consumption ratings
221 significantly changed over time (p = 0.001) andspextive consumption ratings were

222 significantly more suppressed by HV (p < 0.001)irStiratings significantly changed over
223 time (p = 0.003) and thirst was significantly msrgpressed by HV (p < 0.001).

224  There were no significant interaction effects fatiety ratings.

225

226  Total gastric volume

227 A graph of the TGV for both treatments can be sedngure 4. Figure 5 shows TGV per

228 treatment, as well as differences in volume ofvtlager and shake layers.

229 LV TGV was 251+24 mL directly after ingestion, 2@8mL at t = 15 min and 166+28 mL
230 att=35min. HV TGV was 543+37 mL directly afiagestion, 391+82 mL att = 15 min and
231 229+50 mL at t = 35 min.

232 TGV was significantly changed over time (p < 0.08t4)l TGV was significantly higher for
233 HV (p <0.001). There was a significant interactbmween time and treatment for TGV (p <
234  0.001). Post hoc tests revealed TGV was signifigagreater for HV compared to LV at all
235 three time points (all p < 0.001). Differences betw HV and LV were 292+37 mL directly
236  after ingestion, and of 182+83 mL at t=15 min a@d%/ mL at t=35 min.

237
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Brain activation

An overview of significant clusters can be foundrable 2. There was no significant main
effect of treatment on brain activation. There wamsyever, a significant main effect of time
in the opercular part of the left inferior frontalrus (MNI (-57, 17, 22), Z = 5.49, k = 938,
Pwe = 0.001). This cluster extended into the triangaled orbital parts of the inferior frontal
gyrus. There was a contra-lateral cluster in tiaagyular part of the right inferior frontal
gyrus (MNI (54, 29, 22), Z = 4.81, k = 319,£< 0.001). This cluster extended into the right
middle frontal gyrus and the insula.

There was no significant interaction between time @meatment.

There were no significant correlations between aifgpeatings and CBF values. There were

no significant correlations between TGV and CBRueal
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Discussion

Main results

We examined how offering a small versus a largeemlaad following a standardized meal
affects gastric distention over time. Gastric MRtadshow that TGV was significantly larger
for HV over the course of the measurement perio@ddition, appetite was suppressed more
for HV than for LV. CBF increased over time in aof the bilateral inferior frontal gyrus

and adjacent insula. However, differences betwesairhents were not significant, although

HV tended to increase brain activity at severaktpoints compared to LV.

Our work shows that it is possible to concurrentigasure both gastric volume and brain
activity. By changing the MRI coils (body coil ahdad coil) in quick succession we were
able to obtain one baseline and three post-ingestgasurements of both gastric content and
CBF. To our knowledge this is the first paradignaliow direct comparison of MRI
determined gastric content with neural activatione effect of the introduction of water after
ingestion of the shake was that it did not mix imt@-igure 2). The data indicates that the
water ingested after the liquid food stimulus fioah top and empties relative quickly from
the stomach. This is in line with other work shogvastric sieving of low caloric watery

fluid while retaining more calorie-dense gastriotamt (Marciani et al., 2012).

In line with our hypotheses activation in the HVhddion tended to be higher than that in the
LV condition, although the difference was not sfgaint. This may imply that our
manipulation was not strong enough to invoke medsartreatment differences. Earlier
paradigms that did find a brain response to gadisiention (Maartje S. Spetter et al., 2014,
G. J. Wang et al., 2008) used a 500-mLload, howéarger volumes have also been used

(Ly et al., 2017). Ly et al. report activation doedistention induced by a balloon in the right
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275  insula, but activation in this area decreased veheuatrient stimulus of the same volume was
276  infused.

277

278  Our results show activation in the opercular pathe inferior frontal gyrus, which has also
279  been shown to be associated with gastric stimulatith a liquid meal after a 36-h fast (Del
280 Parigi et al., 2002). Gut hormones such as chotekisn, GLP-1, Peptide YY (PYY) and

281 ghrelin are known to affect brain activity (McLauigh& McKie, 2016; Zanchi et al., 2017).
282  PYY has been implicated in regulating gastric enmgty(Savage, Adrian, Carolan,

283  Chatterjee, & Bloom, 1987). Weise et al. reporbaitive correlation between plasma PYY
284  and right inferior frontal gyrus resting state CiBRhe same region that we found responds to
285 distension (Weise, Thiyyagura, Reiman, Chen, & §f§K012). Interestingly, stable plasma
286 PYY levels have been shown after non-nutrient diste of the stomach (Oesch, Riegg,
287  Fischer, Degen, & Beglinger, 2006), which is irelwith work showing that PYY release is
288 mediated by caloric chime (Essah, Levy, SistrurllyK& Nestler, 2007). Future work may
289  strive to include PYY plasma measurements to ingat& correlations with inferior frontal
290 gyral activation. Additionally, CCK and ghrelin widube interesting appetite hormones that
291 may help to understand associations between gasstention and brain activity.

292

293  Our data show an increase and subsequent decrnedgletianterior insula activity after

294  ingestion. There was greater insula activatiorHdrthan for LV although this difference

295  was not significant. Anterior insula activationaissociated with visceral and sensory

296 integration (Avery et al., 2017). E.g. the antermula is activated by pure gastric distention
297  with an intragastric balloon (G. J. Wang et al Q&0 Previous work has shown that

298  viscerosensation of the stomach tends to be asedaiath the right insula (Ladabaum,

299  Roberts, & McGonigle, 2007; Stephani, FernandezaB&aca, Maciunas, Koubeissi, &
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Luders, 2011; Vandenberghe et al., 2007). Our tesué consistent with this, as we show
significant CBF changes within the right anteriosula over the course of our measurements.
However, though HV led to higher CBF values, we i see the greatest CBF values

directly post ingestion which is the moment of gesadistention.

We scanned participants in a supine position;gbsstion is different from real life were
gravity also affects gastric emptying, thereforedldispersion throughout the stomach may
be slower. Stimulating the antral gastric wall basn shown to be important in increasing
emptying contractions (Mizrahi, Ben Ya'acov, & l|&©12), and antral stimulation may be
different due to the position of the gastric contetative to the body in a supine position.
However, in the literature a supine position is owon for gastric MRI studies, and studies
which compared positions have found similar emmidteingoetter et al., 2006). Lastly, in a

within-subject design relative gastric emptyingeliénces remain intact (Jones et al., 2006).

Gastric emptying is usually measured over a lopgeiod of time, up to 180 minutes (Hoad
et al., 2004; Marciani et al., 2001; Marciani ef a012). Our data show that for this
combination of a liquid food stimulus and wateg thfference in volume between LV and

HV declines from 250-300 mL to around 60 mL in tinst 35 minutes. This shows that our
CBF measurement fell right into the period with thest divergent gastric volumes between
the treatments, indicating that with the curremadagm it should have been possible to detect
differences between CBF changes. However, thetafiag have been too small to be

detectable in this sample.

Our paradigm allows concurrent measurement of igasttume and brain activation. There

has been work showing different effects of gastratention of a balloon versus the same
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volume infused as a nutrient rich liquid (Geeraettal., 2011). However, there it was
unknown for how long the infused nutrients werairetd in the stomach, and what the
volume of the gastric content was during the corntamh CBF measurements. Our work
opens up possibilities to use nutrient load ancemnmedmbinations as a specific tool for

understanding the effect of gastric distention.

Conclusions

This study is the first to employ concurrent inkested gastric MRl and CBF measurements.
Offering a large versus a small water load aftstaadardized meal significantly increases
gastric distention for over 35 minutes and supgesppetite. A liquid meal with or without
an increased intragastric volume of 300 mL watenalodiffer enough to induce significantly
different CBF changes. However, this method isasye&nd valid method to increase gastric

distention.
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Tables

Table 1. Energy content and nutrient compositiothefshake.

Ingredients, per 100g

shake

Protein powderg 12.4
Creamg 20.8
Dextrin-maltoseg 21.9
Vanilla sugayg 3.3
Water,g 41.6
Total, g 100

Nutrients, per 100g

shake

Energy, kJ 1,393

Carbohydrategy 40
Of which mono- and 7

dissacharides

Fat,g 10
Of which saturated 7

Protein,g 20

Fiber,g 1.7

Total ingested

Shake weightg 241

Shake volume mL 150

Shake energykJ (kcal) 2,093 B00)

"Nutrient composition of the shake resembles a miredl, with 50% of the energy load
coming from carbohydrates, 30% from fats and 208mfprotein.
’The shakes for the two treatments were completwiifas, but followed by either 50 mL of

water (LV) or 350 mL of water (HV), making totalmgumed volume 200 mL or 500 mL.



Table 2Whole brain analysis of LV and HV in 19 healthy rhen
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Area k° | MNI® z Phwe

X y z
Inferior frontal gyrus - opercular
part L 938 | -57 17 22 5.49 0.001
Inferior frontal gyrus - triangular
part L -51 38 7 5.16 0.006
Inferior frontal gyrus - orbital pant
L -51 35 -5 5.02 0.012
Inferior frontal gyrus - triangular
part R 319 | 54 29 22 4.81 0.031
Middle frontal gyrus R 48 38 22 4.76 0.039
Anterior insula R 36 14 -11 4.53 0.101

1 Main effect of time in a 2 x 4 full factorial moldeith treatment and time as factors, L

stands for left hemisphere, R for right hemisphérieister size in number of voxef&/oxel

coordinates in Montreal Neurological Institute spac
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Figurelegends
Figure 1.

Overview of one experimental session for one ppdrd.

Figure 2.

MRI images of transverse slices at the height eflitrer, shortly after ingestion of the shake.
Left: original images. Right: the same slices asaghon the left but with the gastric content
delineated manually based on signal strength asatet! by colorization. Water yields high
signal in a p-weighted scan, and therefore appears bright. ghbrvatery layer can be
observed above the nutrient rich layer. In the HNge the nutrient rich fraction has been
marked with an S and the water fraction with a WSupplemental Figure 2 an in vitro

example of the SEPARATE condition with similar layg can be seen.

Figure 3.
Hunger, fullness, prospective consumption, desirat and thirst plotted over time. There

were significant differences between treatmentaficappetite measures (n = 19).

Figure 4.
TGV plotted over time. TGV was significantly grelater HV in comparison to LV. TGV at

all three time points was significantly differergttveen the treatments (n = 19).

Figure 5.
TGV plotted over time, as well as difference betw#ee individual layers within the stomach

(n =19).
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Figure 6.

Color coded F-map of the main effect of time oudrlanto study population mean anatomical
image (F = 5.72 corresponds to p = 0.001). In tia@ly percent CBF deviation from baseline
per treatment over time for the bilateral infefimntal gyrus — triangular part (y = 38) and the

right anterior insula (y = 14) (n = 19).
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