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1. Chemicals

HEPES buffer (99.5%, Sigma-Aldrich) was used to prepare the buffer at pH 7 (0.2 mM). 10 mM
sodium hydroxide (NaOH, Baker) was used to prepare the buffer at pH 12. For the CF_Fe 12 and
CF_CO_12 experiments, pure CF (99.5%, Fluka) was used. Pure CF (99%, Merck) was used for
the CF Mag, Py and aqueous FeCl, experiments and corresponding controls, since they were
performed in different laboratories. For all the CT experiments, pure CT (99%, Panreac) was
used. A solution of 0.6 mM FeCl, (99.99%, purity, Sigma-Aldrich) was prepared for the CF_aq 7,
CF aq 12,CT aq 7,CT_aq_12 and experiments with Mag and Py. Milli-sized iron (92% purity)
from Gotthart Maier Metallpulver GmbH was used in the CF_Fe 12 experiments. Nano-sized
iron (99%, Sigma-Aldrich) was used for the CT Fe 7 and CT Fe 12 experiments. 1 M acetic
acid solution was prepared from glacial acetic acid (CH3CO,H, Sigma-Aldrich) to quenching pH
12 solution in order to avoid further CF alkaline hydrolysis in the pH 12 experiments concerning

this compound.

2. Minerals and Fe(0) preparation and characterization

Natural Py and Mg crystals were obtained from sedimentary deposits in Navajun (Logrofio,
Spain) and from a retrograding skarn from Mina Cala (Huelva, Spain), respectively. The X-ray
diffraction patterns confirmed they were Py and Mag and showed no significant evidence of any
other mineral phase, although some impurities (Ca, Al, Mn in Py and Ca and Ti in Mag) were
identified with scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-
EDS). Minerals were crushed with a tungsten carbide mill (94% tungsten carbide and 6% cobalt,
Retsch model RS100) and sieved to a maximum diameter of 106 um with a Retsch AS 200 sieve.
The resulting particle size distribution ranged from 1 to 160 um with an average diameter of 40
um for Mag and from 0.1 to 400 um (due to the formation of particle aggregates) with an average
diameter of 111 um for Py. Particle size distribution of the cast Fe(0) (92% purity, Gotthart Maier
Metallpulver GmbH) ranged from 0.4 to 2.0 mm, with an average diameter of 1.2 mm. According
to the provider the particle size distribution for nano-sized Fe(0) (99%, Sigma-Aldrich) ranged
from 40 to 60 nm. The milli-sized Fe(0), nano-sized Fe(0) and micro-sized Fe-bearing minerals
were acid-cleaned to increase surface area, dissolve any unreactive oxide or organic coating
(Matheson and Tratnyek, 1994; Slater et al., 2002) and obtain a reproducible surface (Kriegman-
King and Reinhard, 1994). Milli-sized Fe(0) and minerals were soaked in degassed 0.1 M
hydrochloric solution (HCL, 32 wt %, Sigma-Aldrich) for 1 h, while for nano-sized Fe(0), soaking
was done for 5 min. All the solids were rinsed five times with degassed deionized water and dried
overnight (Matheson and Tratnyek, 1994; Slater et al., 2002). Py and Mag samples were dried in
an oven (Technopyro model PR4T) at 100 °C in closed serum bottles and lyophilized afterwards

(Telstar Cryodos-45 2001 n°376) to remove remaining water. Specific surface area was measured



by BET for milli-sized Fe(0), Py and Mag before (1.00+0.01, 0.830+0.005, 0.62+0.01 m?g,
respectively) and after acid cleaning (1.624+0.007, 2.47+0.02, 0.698+0.003 m*/g, respectively).

For nano-sized Fe(0), it was only measured before cleaning (11.16+0.09 m*/g).

3. Sampling and preservation

Except for the nano-sized Fe(0) experiments, reactions were stopped by filtration with 0.2 pm-
filters Mille-LG PTFE LCR (Merck Millipore) at different time intervals. Small aliquots were
taken for pH measurements before filtration. At pH 12, the filtered solution was neutralized by
acetic acid for quenching the alkaline hydrolysis reaction. Samples were held at 4 °C until analysis
in 12-mL glass vials covered with aluminum foil (Elsner et al., 2006) for the milli-sized Fe(0)
experiments; and in 12-mL vials amber glass vials for the Mag and Py experiments. In the case
of the nano-sized Fe(0) experiments, 0.1 mL of headspace were taken from each single 42-mL
vial for measuring CT and CF concentrations and carbon and chlorine isotope analyses by direct
injection in the equipment. For concentration estimation, calculations of total mM in the liquid

phase considering Henry’s law constant at 24 °C (Staudinger and Roberts, 2001) were performed.

4. Analytical methods

pH measurements

pH evolution was monitored using a Crison pH2001 n°6037 (Crison, Spain) in the experiments
with Py and Mag and by using a Labor-pH-Meter Lab 850 Messparameter (SI-Analytics,

Germany) in the Fe experiments.
BET

Specific surface areas were determined by the BET (Brunauer—Emmett—Teller) gas adsorption
method with a TriStar 3000 V6.04 micromeritics surface area analyzer using 5-point N
adsorption isotherms (Brunauer et al., 1938) in Centres cientifics i tecnologics de la Universitat

de Barcelona (CCiT-UB).

Particle size distribution

Milli-sized iron, Py and Mag particle size distribution was determined using a particle size
analyzer by photon correlation spectroscopy (Beckman Coulter, model N5) between 0.04 to 2000
um in Laboratori de Sedimentologia (UB).



SEM-EDS

Unaltered and crushed Py and Mag were studied with a scanning electron microscope Quanta 200
FEI XTE 325/D8395 coupled with Energy-dispersive X-ray spectroscopy Genesi (EDAX) in
CCiT-UB.

X-ray analyses

X-ray powder diffraction measurements were performed in CCiT-UB on homogenized sample
aliquots using a Bragg—Brentano 6/20 PANalytical X’Pert PRO MPD Alphal powder
diffractometer (radius = 240 mm) with Cu Ko, radiation, selected by means of a Focalizing Ge
(111) primary monochromator. Experimental conditions: sample spinning at 2 revolutions per
second; variable automatic divergence slit to get an illuminated length in the beam direction of
10 millimetres; mask defining a length of the beam over the sample in the axial direction of 12
millimetres; diffracted beam of 0.04 radians Soller slits; X’Celerator Detector with Active length
of 2.122 °. The starting and the final 20 angles were 4° and 80°, respectively. The step size was
0.017° 20 and the measuring time, 150 s per step. Mineral identification was made using the

X'Pert HighScore software (Degen et al., 2014).

5. Experimental conditions

Eh (V)

Fig. S1. Eh-pH predominance diagrams of Fe-Cl-H,O (A) and Fe-CI-S-H,O (B) systems. Fe;0, (Mag) is not allowed to form in B.
Calculations were performed using the code MEDUSA (Puigdoménech, 2010) and with [Cl],: 1.2 mM, [Fe**],o: 0.6 mM and [SO4*
Jio: 10 uM. In grey, aqueous species are represented. The arrow indicates assumed Eh experimental conditions and the dashed lines,

water stability field.



6. Degradation pathways

H donor H donor
e | e H' \1/ e | e HY \1/
CCl, l> [:CClLy] l> CHCh%’ [-CHCLy] l> [:CHCL,] CH,Cl,—=» CH,Cl =5 CH4 Hydrogenolysis
Ccr as surface complex & Ccr
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CCI4\__Z[:CC12] —>3 HCOOH/CO/CO,/CS, CT hydrolytic or thiolytic reduction ( or concerted)

as a surface transition state

Scheme S1. Discussed CT and CF abiotic reductive degradation pathways. The double arrow indicates omitted intermediate steps for simplification



7. pH evolution

In the CT experiments at pH 7, acidic conditions occurred during the first days, especially in the case of the
CT_Py 7 experiment, for which pH remained acidic during all the experimental period (4.7+1.1) (Fig. S2).
In the presence of Py at pH 12, however, the pH was kept constant (11.8+0.2) during the course of the
experiment (Fig. S2). This different behavior between pH values in homologous experiments is consistent
with previous studies, which concluded that in all Py oxidizing systems, pH tends to reach more acidic
values but when pH is higher than 11, the pH decrease is much slower than at neutral pH values (Bonnissel-

Gissinger et al., 1998). However, this pH decrease was not observed in CF_Py 7 experiment, which

suggested low Py oxidizing capacity towards CF.
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Fig. S2. pH evolution over time in the pH 7 experiments (left): CF_Fe 7 and CF_CO_7 (A, from Torrent6 et al., 2017); CF_Mag_7,
CF_Py 7and CF_aq 7 (B); CT_Mag 7,CT_Py 7andCT aq_7(C); and in the pH 12 experiments (right): CF_Fe 12 and CF_CO_12
(D); CF_Mag 12,CF_Py 12 and CF_aq 12 (E) CT_Mag_12,CT Py 12 and CT_aq_12 (F). Error bars are smaller than the symbols.

8. Degradation study by Fe(0)
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Kinetics of Fe(0) experiments

Assuming that all the removal of CT or CF is due to a degradation process, data for CT and CF
aqueous concentration versus time can be fitted to a pseudo-first-order rate model following Eq.
S1, in order to compare kinetics among pH 7 and pH 12 and to those from the literature (Table

S1, S3).

dC/dt=-k’C (S1)
C is the target chlorinated compound concentration in pmol/L, ¢ is time in hours and &’ is the
pseudo-first-order rate constant (h™"). The &’ was obtained using the integrated form of Eq. S1, as
shown in Eq. S2, where Cj is the initial concentration of the chlorinated compound (umol/L).

Uncertainty was obtained from 95% confidence intervals (CI).

Inf=InC/Co=k 't (S2)

When possible, a surface-area-normalized reaction rate constant (kss, L m? h') was calculated
for comparison with other studies (Table S1, S3) as described by Eq. S3 (Matheson and Tratnyek,
1994; Johnson et al., 1996):

dC/dt=-k’C=-ks4 as pnC (S3)

where ag is the specific surface area of metal and p,, is the mass concentration of Fe(0).

The ks4values for CT Fe 7 and CT Fe 12 experiments are within the range of some values
reported in literature (Table S1) for CT degradation by Fe(0) or by FeS, but there are discrepancies
with other types of Fe(0) or Fe-bearing minerals (He et al., 2015). Similarly, the ks4 values for
CF _Fe 7and CF_Fe 12 experiments are lower than for nano-sized experiments (Table S1). This
confirms, as stated by Johnson et al. (1996), that variability in pollutant disappearance rates
despite surface area normalization is high, being attributable to different Fe(0) pre-treatment,

‘non-reactive’ sites amount and experimental conditions (Noubactep, 2009).



Table S1. Degradation products, pseudo first-order rate constants (k) and surface area normalized rate constants (ksx) of abiotic

degradation of chlorinated methanes by Fe(0) under anoxic conditions. n.m. =not measured.

. Degradation A ksa
Pollutant Fe(0) Conditions product K'(h'") (Lm™h) Reference
1.4+0.2 .
+ -2
or Nano: 11.2 m¥/g pH7 CF R2=095 (4.9+£0.6)x10 This study
40-60 nm pH 12 CF iéfg 'gg (4.4+0.1)x10> This study
Buffered pH 7.5 5.0+0.4 1.1+0.1
cT 271\193“111‘; , Unbuffered | 7 ’C]I){CM’ 22501 0.4820.04 | Song and Carraway (2006)
- e Unbuffered ) 2.220.1 0.49:0.04
o pH 7.7, g Fe(0) 0.30-0.45 2.8-4.1x1072
CT 2.4 m*/g ~10 pm H 7.7, 10g Fe(0) CF, DCM 172201 192.5%102 Helland et al. (1995)
0.09+0.03 m?/g pH7 0.47+0.06 (4.2+0.5)x10*
0.200.02 m/g, pH 7 0.6:0.1 (2.3+£0.4)x107
CT 7.4+0.2 m¥/g pH 7 CF 0.12+0.04 (4.0£1.4)x10° Téamara and Butler (2004)
R pH 7 0.420.1 (2.6£0.9)x102
1.79+0.07 m'/g pH 12 0.040.01 (1.620.4)<10~
CT <100 nm - CF, DCM,CH,4 0.5-2.2 5.4x10%-1.01 Lien and Zhang (1999)
EDTA (organic
Micro: ligand) 0.843-0.280 (6.5-2.1)x10°
CT 0.22 m’/g pH 3.5-7.5 CF, DCM Zhang et al. (2011)
pH 3.5-7.5 0.021-0.005 (1.7-0.4)x10*
Ultrapure water 61 9.60+1.92x107
Humic acid 2
(50-1000 me/L) 53 6.92-4.12x10
Surfactant SDS 5
cr pano (1-24mM) | Not studied 12 1.82-246x10 Feng et al. (2008)
26 m*/g 100 nm
Surfactant CTAB 10-9 14.7-14.5%10°2
(0.1-10mM) ) )
Surfactant NPE >
(0.02-1mM) 5-7 7.95-10.9%10
Milli 3
CF 77 mL pH 12.120.1 DCM (4'%1:'93 2710 (5.942.5)x10°S This study
(1.00£0.01) m*/g )
Milli (71 )x1072 4 .
CF (1.000.01) m¥g pH 6.3+0.2 DCM R2=0.93 (9£2)x10 Torrent6 et al. (2017)
Ultrapure water (1.3£0.3)x1072 1.9£0.5x10*
Humic acid 2 4
(50-1000 mg/L) 2-32x10 3-50%10
Surf. SDS
CF Nano . 2-8x1072 3-13x10*
26 m¥/g 100 nm (1-2.4mM) Not studied Feng et al. (2008)
Surf. CTAB 2 4
(0.1-10mM) 2-4x10 2-5%10
Surf. NPE 5 "
(0.02-1mM) 2-1x10 2-5x10
Buffered pH 7.5 1.9+0.2 4.2+0.5
CF Nano unbuffered |1y o, 1.4+0.1 31203 Song and Carraway (2006)
279 m’/g Equilibrated
1.540.1 3.3+0.3
(unbuffered)

Isotopic fractionation of Fe(0) experiments

The extent of a contaminant transformation for a defined reaction in terms on stable isotope ratios

can be determined by its isotopic fractionation (¢) following the Rayleigh approach (Eq. S4),

where 0o and J; are isotope values in the beginning (0) and at a given time (t), respectively, and f

is the fraction of substrate remaining at time t.




Isotope signatures are usually reported in per mil (%o) using the delta notation relative to
international standards, i.e. Vienna PeeDee Belemnite for carbon (5'*Cypps) and the international

Standard Mean Ocean Chloride (SMOC) for chlorine (5*’Clsmoc).
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Fig. S3. Logarithmic plots according to Rayleigh equation (Eq. S4) of carbon (A, C panels) and chlorine (B, D panels) isotope ratios
during CT reductive dechlorination by Fe(0) at pH 7 (upper panels) and at pH 12 (lower panels). £C and €CI values are given. Dashed
lines represent 95% CI of the linear regression. Error bars display the uncertainty calculated by error propagation including
uncertainties in concentration (5%) and isotope measurements (0.5%o for 8'3C and 0.2%o for 8*’Cl). In some cases, error bars are

smaller than the symbols.
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Fig. S4. Logarithmic plots according to Rayleigh equation (Eq. S4) of carbon (A) and chlorine (B) isotope ratios during CF reductive
dechlorination by Fe(0) at pH 12. €C and €CI values are given. Dashed lines represent 95% CI of the linear regression. Error bars
display the uncertainty calculated by error propagation including uncertainties in concentration (5%) and standard deviation of

duplicates in isotope measurements. In some cases, error bars are smaller than the symbols.



Calculation of Apparent Kinetic Isotope Effects (AKIE)

Carbon and chlorine AKIE values were calculated following Eq. S5 (Elsner et al., 2005), where
n 1s the number of atoms of the considered element in the molecule, x is the number of these atoms
located at the reactive site/s, and z is the number of atoms located at the reactive site/s and being
in intramolecular competition. AKIEc of CT in the CT Fe 7 and CT_Fe 12 experiments was
calculated using n=x=z=1, while for AKIEc|, n=x=z=4 was used. The uncertainty of the AKIE
was estimated by error propagation in Eq. S7. The results of these experiments were compared to

reductive dechlorination studies reported in literature in Table S2.

1

(S5)
ZXn &
1+ X
( X 1000]

AKIE, ~

Carbon isotopic mass balance

Carbon isotopic mass balance (8'°Csym) was calculated following Eq. (S6) (Hunkeler et al., 1999;
Aeppli et al., 2010) where x is the molar fraction of each compound relative to the total molar
CMs mass from those isotopic values that are available in each experiment. The uncertainty of

8"3Csum was determined by error propagation in Eq. S6.
8" Csum (%0)=xc18"*Cerxcrd*Certxpemd*Cpem (S6)

The extent of degradation and pathway-specific contributions

Assuming that only one degradation process occurs, the extent of degradation (D) can be
estimated using the expression derived from the Rayleigh equation (Eq. S7), where &y and o, are
isotope values in the beginning (0) and at a given time (t), respectively and ¢ is the isotope

fractionation of the transformation reaction under consideration.

1000

D) =| 1-[ 210001100 (S7)
8, +1000

Pathway-specific contributions to total degradation of a pollutant may be estimated using the
expression derived by Van Breukelen (2007) (Eq. S8), where F is the distribution of pathways 1
and 2; €C and €Cl are the C and Cl isotope fractionation values of the two pathways, respectively
and A is the obtained dual C-Cl isotope slope for a target pollutant.

AgSl_g€

F =
(e5-€5")-ncef'-€tH

(S8)

10



Summary of €, AKIE and A values from studied and reported experiments

Table S2. Comparison of € and AKIE values for C and Cl isotopes in different reductive dechlorination studies. n.m.: not measured; n.ap.: not available;

Degradation

Ebuke (%) £

€buikct (%0) =

Compound pathway Type Conditions 95%CI nc Xc Zc AKIEc 95%CI na Xa Za AKIEq A=gC/eCl Reference
Reductive dechlorination by Streitwieser limit KIEc = 1.057 (Elsner et al., 2005; Aelion et al., 2010) Streitwieser limit KIEc = 1.013 (Elsner et al., 2005)
C—Cl bond cleavage
Reductive L -
CF S abiotic Fe(0) pH 7 laboratory -33+11 1 1 1 1.034+0.012 3+1 3 3 3 1.008 +0.001 8+2 Torrento et al. (2017)
dechlorination
Reductive L .
CF A abiotic Fe(0) pH 12 laboratory 209 1 1 1 1.020£0.009 2+1 3 3 3 1.006+0.001 8+1 This study
dechlorination
CF Reductive abiotic Fe(0) laboratory  -29.4 £2.1 1 1 1 1.030£007 nm n.m. Lee et al. (2015)
dechlorination
Reductive outer-
CF sphere single CO; radical anions laboratory -17.7+0.8 -2.6+0.4 6.7+0.4 Heckel et al. (2017)
electron transfer
Reductive biotic (Dehalobacter sp.
CF dechlorination CF50 consortium) laboratory -27.5+0.9 1 1 1 1.028+0.002 n.m. n.m. Chan et al. (2012)
Reductive biotic (Dehalobacter
CF I sp.UNSWDHB laboratory -43+0.5 1 1 1 1.004 n.m. n.m. Lee et al. (2015)
dechlorination .
consortium)
Hydrogenolysis + . . . .
CF reductive Biotic (field slurry) with 0oy 1424 I 1 1 1014£0002 -24+04 3 3 3 L0072% 741  Rodriguez-Fernindez et
S vitamin B, 0.0004 al. (2017)
elimination
. abiotic (goethite, .
CT Redu_ctlv_e magnetite, lepidocrocite,  laboratory -26to -32 1 1 1 1.027to 1.033 n.m. n.m. Zwank et al., (2005);
dechlorination R Elsner et al. (2004)
hematite, siderite)
Reductive . . . Zwank et al. (2005);
CT dechlorination abiotic (mackinawite) laboratory  -10.9 to -15.9 1 1 1 1.011to1.016 n.m. n.m. Neumann et al. (2009)
Reductive -
CT dechlorination abiotic (Zn(0)) laboratory -10.8 0.7 1 1 1 1.01 n.m. n.m. Vanstone et al. (2008)
. Nano-sized Fe(0) at pH 7 1.0037 and  -0.58 and - 1.00233 and 5.8+04 .
CT Hydrogenolysis and pH 12 laboratory  -3.7 and -3.4 1 1 1 1.0034 0.55 4 4 4 1.00220 and 6.120.5 This study
CT Hydrogenolysis ~ Aqueous FeCl, at pH 12 laboratory 3+£3 1 1 1 1.003 £0.003 This study
Hydrogenolysis 1.0060 £
CT and thiolytic Pyrite at pH 7 laboratory 542 1 1 1 1.005+0.002 -1.5+0.4 4 4 4 0 0004 29+0.5 This study
reduction '
Hydrogenolysis 1.0036 +
CT and thiolytic Pyrite pH 12 laboratory 4+1 1 1 1 1.004+0.001 -09+04 4 4 4 0 0004 3.7+0.9 This study
reduction '
Hydrogenolysis 1.0032£0.000
CT and hydrolytic Magnetite at pH 12 laboratory 2+1 1 1 1 1.002+0.001 -0.840.2 4 4 4 ' 5 ' 2+1 This study
reduction?

11



Hydrogenolysis
CT among other

Biotic (field slurry)

laboratory

-16+£6

1.016 £ 0.001

-6+3

Rodriguez-Fernandez et

1.023+£0.003 6.1£0.5

. al. (2017)
reductions
CT Reduction Biotic (t_'leld_slurry) with laboratory 1342 1 1.013 %0003 410 4 1.015 2 0.002 5.1 Rodriguez-Fernandez et
processes vitamin B, al. (2017)
1,1,I-TCA Reductive — abiotic (Cr(Il), FeOand Cu oo _1610-14 1 1.027£0002  nm. n.m. Elsner et al. (2007)
dechlorination and Fe mixtures)
Reductive C 1.0158 £ 1.0160 +
1,1,1-TCA dechlorination abiotic (Fe(0)) laboratory -7.8+0.4 1 0.0008 -5.2+0.2 3 0.0006 1.5+0.1 Palau et al. (2014)
Reductive abiotic (hydrolysis/ 1.0033 £ 1.0145 =
1,1,1-TCA dechlorination dehydrohalogenation) laboratory -1.6+0.2 1 0.0004 -4.7 +0.1 3 0.0003 0.33+0.04 Palau et al. (2014)
Reductive _r 1.0036 Sherwood Lollar et al.
1,1,1-TCA dechlorination biotic laboratory -1.8to-1.5 1 40,0006 n.m. n.m. (2010)
Reductive -
1,2-DCA dechlorination abiotic (Zn(0)) laboratory 29.7+1.5 1 1.03 n.m. n.m. Vanstone et al. (2008)
Reductive . PR
TCE A abiotic (Fe(0)) laboratory -13+£2 1 1.0275 -2.6 0.1 3 1.008 £ 0.001 5.2+0.3 Audi-Mir6 et al. (2013)
dechlorination
Reductive - Lojkasek-Lima et al.
TCE dechlorination abiotic (Fe(0)) field -12 1 1.0254 -3.0 3 1.009 42 2012)
TCE Reductive abiotic (FeS) laboratory ~ -27.9 to -33.4 1 1.059t1.072 nm nm Liang et al. (2007)
dechlorination ' ' ’ ' o o ’
TCE Reductive biotic (corrinoids) laborat 15.0 to-18.5 32t0-4.2 03t08 R ing et al. (2014)
dechlorination abiotic (corrinoids aboratory  -15.0 to -18. -3.2to -4. 310 0. enpenning et al.
Reductive s
TCE I abiotic (vitamin B12) laboratory  -16.7 to -17.2 1 1.034to 1.036 n.m. Slater et al. (2003)
dechlorination
Reductive o . _
TCE S abiotic (cyanocobalamin) laboratory -16.1+0.9 1 1.03 -4.0+0.2 3 1.01 39+0.2 Cretnik et al. (2013)
dechlorination
TCE Reductive biotic laboratory ~ -8.8+0.2 1 1.0179 35405 3 1.0106 27401  Wiegertetal. (2013)
dechlorination
Reductive L. . Bloom et al. (2000); Slater
TCE dechlorination biotic (KB-1 consortium) laboratory  -2.5to-13.8 1 1.005to0 1.028 n.m. n.m. etal. (2001)
biotic (S. multivorans, D.
Reductive michiganesis BB1 and 1.008 to .
TCE dechlorination BD1 mixed Dehaloc. laboratory  -4.1to0-15.3 1 1.0315 n.m. n.m. Liang et al. (2007)
consortium)
TCE Reductive biotic (S. multi ) laboratory  -20.0 to -20.2 371039 501t0-53 Renpenning et al. (2014)
dechlorination - mutvorans Y ’ ’ ' ’ ' ' P g ’
Reductive biotic (G. lovleyi SZ, D. .
TCE dechlorination hafniense Y51) laboratory  -9.1to-12.2 1 1.02 27t0-3.6 3 1.01 34+£02 Cretnik et al. (2013)
TCE Reductive biotic (mixed Dehaloc. .y aiory 164+ 0.4 1 101740001 -3.6+03 3 1.004+0.000 4.7 Kuder et al. (2013)
dechlorination consortium)
Reductive L . -34+1t0- Renpenning et al.,
PCE dechlorination abiotic (corrinoids) laboratory ~ -22.4 to -25.3 438 4.6t07.0 (2014)
Reductive TSI 1.033 to
PCE dechlorination abiotic (vitamin B12) laboratory  -15.8 to -16.5 2 1.034 n.m. n.m. Slater et al. (2003)
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Reductive 1.052 to

PCE dechlorination abiotic (FeS) laboratory ~ -24.6 to -30.2 2 2 2 1.064 n.m. n.m. Liang et al. (2007)
Reductive biotic .
PCE dechlorination (Desulfitobacterium) laboratory -5.6+0.7 2 2 2 1.0113 20+05 4 4 4 1.0081 25+0.8 Wiegert et al. (2013)
Reductive biotic
PCE S (Desulfitobacterium laboratory -19.0 0.9 2 2 2 1.019 -5.0£0.1 4 4 4 1.005 3.8+£0.2 Cretnik et al. (2014)
dechlorination Vietl)
Reductive biotic (Sulfurospirillum, .
PCE dechlorination PceATCE) laboratory -3.6+£0.2 2 2 2 1.007 -1.2+£0.1 4 4 4 1.005 27+£0.3 Badin et al. (2014)
Reductive biotic (Sulfurospirillum, .
PCE dechlorination PceADCE) laboratory -0.7+0.1 2 2 2 1.001 -0.9 +£0.1 4 4 4 1.004 0.7+0.2 Badin et al. (2014)
Reductive _ . -0.4 to - .
PCE dechlorination biotic (S. multivorans) laboratory -1.3t0-1.4 0.6 2.2t02.8  Renpenning et al.(2014)
biotic (S. multivorans,
Reductive D. michiganesis BB1 1.003 to .
PCE dechlorination and BD1 mixed laboratory -1.3t0-7.1 2 2 2 1.0415 n.m. n.m. Liang et al. (2007)
Dehaloc. consortium)
Reductive - 0.42 to .
PCE dechlorination biotic field n.ap. n.ap. n.ap. n.ap. 112 Wiegert et al. (2012)
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9. Degradation study by Fe-minerals and FeCl,

Kinetics of Mag, Py and aq experiments

Table S3. Degradation products, pseudo first-order rate constants (kos) and surface area normalized rate constants (ksa) of abiotic
degradation of chlorinated methanes by iron minerals under anoxic conditions. n.m.=not measured; n.d.= not detected; n.a.=not
available; n.ap.=not aplicable

Pollutant | Mineral phase Conditions Del;g::;l:zlton Kobs (d') ksa (Lm?2d™") Reference
CT FeCly(aq) pH 12.140.1 CF 0.3£0.2 n.ap. This study
Magnetite (17 (8+5)x10 .
CT m/L) pH 12.0+0.1 CF 1.4+£0.8 (R>=0.8) This study
. (1.6+0.6)x10 .
CT Pyrite pH4.7+1.1 CF, CS, 1.0+0.4 (R2=0.72) This study
2
CT Pyrite pH 11.80.2 CF, CS, 12+0.4 (%;Q(X) 160) This study
Mackinawite
CT (13 m¥g) pH 7.2 CF n.a. 1.2+0.06 (Zwank et al., 2005)
Mackinawite 5
CT (77 m¥/g) pH7.2 CF n.a. (3.0£0.22)x10 (Zwank et al., 2005)
1 (Choi and Lee,
CT FeS (33 g/L) pH 7.5 CF, C,Hy, CHs | (2.98+0.22) x10 n.a. 2009)
(Lipczynska-
CT FeS (200 g/L) pH 6.5 n.m. (4.15£0.12) x10" n.a Kochany et al.,
1994)
(Lipczynska-
CT FeS, (200 g/L) pH 6.5 n.m. (4.15£0.19) x10" n.a Kochany et al.,
1994)
FeS fresh (0.73 (Devlin and Muller,
CT o) pH 7-8 CF, CS, 1.07 n.a 1999)
FeS aged (0.73 (Devlin and Muller,
CT o) pH 7-8 CF, CS, 1.24 na 1999)
) (Assaf-Anid and
CT FeS (18g/L) - CF, DCM 9.7x10 n.a Lin, 2002)
FeS (0.05 m%/g). (Butler and Hayes,
CT Freeze dried pH 8.3 CF 5.2+0.62 2000)
FeS coating on
0.13 g/L
. 0.28+0.14 (Hanoch et al.
CT Goethite and pH 8.0 CF n.a ’
0.20 g/l 0.22+0.12 2006)
hematite
Py (0.01 m%/g; CF, CO,, CS,, (Kriegman-King and
cT 1.2-1.4 m%/L) PH 6.5 formate 0.16 Reinhard, 1994)
CT Pyrite Neutral pH CF 0.22 n.a (Devhnl 2911’91(;)1\/[1.11161',
CT Pyrrhotite Neutral pH CF 0.91 n.a (Devhnl gr;(;)Muller,
CT Magnetite Neutral pH CF, CH, na. 8.9x10™* (Mccozr(r)n()l%( el
CT Green rust pH 8.0 CF na 6.23x10° (Liang and Butler,
2010)
Green rust .
CT (dodecanoate pH 8+2 CF, HCOOH, 1.56 to 2.64 n.a (Ayala-Luis et al.,
. CcO 2012)
anions)
CT Magnetite H 7.0 CF, CO na 4.8x10* (Danielsen and
£ pHL/ ’ A : Hayes, 2004)
CT Magnetite pH 7.2 CF n.a. 1.2x10’! (Zwank et al., 2005)
. 2.2x102 (Vikesland et al.,
CT Magnetite pH7.8 CF, CO n.a. 9.9x10 2007)
2
CF FeCl, (aq) pH 12.1+0.1 n.d. (61?:)160 n.ap. This study
CF Magnetite pH 11.8+0.4 n.d. 0]1{9:8 ;) 3 (6+£2) x1073 This study
)
CF Pyrite pH 11.5:0.4 DCM (4;231: (6+2) x10° This study
5 . (Kenneke and
CF FeS (0.14 m*/g) pH 7.8 n.m. n.a. 6.1x10 Weber, 2003)
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By-products concentration of Mag, Py and aq experiments
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Fig. S5. Concentration (mM) of parent compound (CT or CF) and corresponding by-products (CF, CS, or DCM) of those Mag (A),
FeCl, (B) and Py (C,D,E) experiments where by-products were detected.
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Isotopic fractionation of Mag, Py and aq experiments
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Fig. S6. Logarithmic plots according to Rayleigh equation (Eq. S4) of carbon (A) and chlorine (B) isotope ratios during CT reductive

dechlorination by magnetite at pH 12 (upper panels) and carbon isotope ratios during CF reductive dechlorination by magnetite at pH

12 (C). €C and €CI values are given. Dashed lines represent 95% CI of the linear regression. Error bars display the uncertainty

calculated by error propagation including uncertainties in concentration (5%) and standard deviation of duplicates in isotope

measurements. In some cases, error bars are smaller than the symbols.
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Discussion of CT degradation in Mag experiments at pH 7 and pH 12

Although CT degradation by Mag was not detected in CT _Mag_7 experiments, CT degradation by Mag
has been previously reported in the literature. This discrepancy might be attributed to the use in the present
experiments of micro-sized Mag in contrast to nano-sized Mag (Hanoch et al., 2006; Maithreepala and
Doong, 2007; Vikesland et al., 2007); to the use of a lower Mag/CT ratio than in Zwank et al., (2005); or
to the use of different minerals treatments (Hanoch et al., 2006) or different amounts of Fe(IT) (Zwank et
al., 2005; Vikesland et al., 2007). Total dissolved Fe(II) content was not measured in the present
experiments (the theoretical added FeCl, amount was 0.6 mM) and thus comparison with previous studies
is not straightforward. However, the added 0.6 mM of FeCl, was chosen to mimic field conditions since
Fe(II) concentrations in anoxic groundwater usually range from 0.009 to 0.179 mM, reaching

concentrations up to 0.896 mM (World Health Organization, 2003).

CT degradation with Mag is strongly pH dependent, being faster at higher pH because of the higher density
of deprotonated sites at the mineral surface responsible of dechlorination (Danielsen and Hayes, 2004; Lin
and Liang, 2013). However, Fe(Il) sorption and surface precipitation of Fe(OH);(am) onto Mag or other
precipitates like green rust are more stable under alkaline conditions and might also contribute on CT
degradation (Klausen et al., 1995; Erbs et al., 1999; Liger et al., 1999). In addition, alkaline pH also
enhances Fe(II) oxidation to Fe(III) aqueous species (Fig. S1), favoring the CT hydrogenolysis to CF as the
overall reaction potential is 0.7 V, while it takes a value below or equal to zero at pH 7. Finally, it is also
reported that in nano-sized Mag experiments particle aggregation is expected to decrease as the solution
pH increases above or below the pH of isoelectric point (Vikesland et al., 2007), so the available surface to

dechlorinate could be higher at pH 12 than at pH 7.
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