
Systems biology

pyABC: distributed, likelihood-free inference

Emmanuel Klinger1,2,3, Dennis Rickert2 and Jan Hasenauer2,3,*

1Department of Connectomics, Max Planck Institute for Brain Research, 60438 Frankfurt, 2Institute of

Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764

Neuherberg and 3Center for Mathematics, Technische Universität München, 85748 Garching, Germany

*To whom correspondence should be addressed.

Associate Editor: Oliver Stegle

Received on May 16, 2017; revised on March 26, 2018; editorial decision on April 27, 2018; accepted on May 10, 2018

Abstract

Summary: Likelihood-free methods are often required for inference in systems biology. While

approximate Bayesian computation (ABC) provides a theoretical solution, its practical application

has often been challenging due to its high computational demands. To scale likelihood-free infer-

ence to computationally demanding stochastic models, we developed pyABC: a distributed and

scalable ABC-Sequential Monte Carlo (ABC-SMC) framework. It implements a scalable, runtime-

minimizing parallelization strategy for multi-core and distributed environments scaling to thou-

sands of cores. The framework is accessible to non-expert users and also enables advanced users

to experiment with and to custom implement many options of ABC-SMC schemes, such as accept-

ance threshold schedules, transition kernels and distance functions without alteration of pyABC’s

source code. pyABC includes a web interface to visualize ongoing and finished ABC-SMC runs and

exposes an API for data querying and post-processing.

Availability and Implementation: pyABC is written in Python 3 and is released under a 3-clause

BSD license. The source code is hosted on https://github.com/icb-dcm/pyabc and the documenta-

tion on http://pyabc.readthedocs.io. It can be installed from the Python Package Index (PyPI).

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: jan.hasenauer@helmholtz-muenchen.de

1 Introduction

The development of predictive models of biological processes

requires the estimation of parameters from experimental data. For

model classes such as ordinary differential equations, tailored

approaches exploiting specific model properties have been devel-

oped to solve these inverse problems (Raue et al., 2015). However,

this has not been possible for many other relevant model classes

such as stochastic models of intracellular processes or multi-scale

models of biological tissues. These models are often so involved and

problem-specific that they have to be considered as black-boxes

(Jagiella et al., 2017). Black-box models can be simulated, but their

internal structure cannot be exploited. To parameterize these mod-

els, likelihood-free methods, such as ABC-SMC schemes (Sisson

et al., 2007; Toni et al., 2009), have been developed. ABC-SMC

schemes use numerical simulations of the model to infer its parame-

ters and can therefore be applied to parameterize a broad class of

models. Although some ABC-SMC frameworks for Python exist,

these frameworks lack, e.g. customization options like (adaptive) ac-

ceptance threshold schedules or transition kernels, (Kangasrääsiö

et al., 2016), do not implement scalable parallelization strategies,

adaptive population size selection or model selection (Jennings and

Madigan, 2017), only parallelize across the cores of a single ma-

chine (Ishida et al., 2015), or only leverage GPUs but not distributed

infrastructure (Liepe et al., 2010) (for a detailed feature comparison

see Supplementary Table S1). pyABC addresses these shortcomings.

2 Implementation

2.1 Features
Some of the unique features of pyABC are

• a scalable, dynamic parallelization strategy,
• adaptive population size selection (Klinger and Hasenauer, 2017),

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Bioinformatics, 2018, 1–3

doi: 10.1093/bioinformatics/bty361

Advance Access Publication Date: 14 May 2018

Applications Note

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty361/4995841
by Helmholtz Zentrum Muenchen user
on 26 June 2018

https://github.com/icb-dcm/pyabc
http://pyabc.readthedocs.io
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty361#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty361#supplementary-data
https://academic.oup.com/


• tightly integrated support of both, the R- and the Python

language,
• distributed model selection,
• web-based visualizations.

Further highlighted features include

• multi-core and distributed execution,
• adaptive, local transition kernels and acceptance threshold

schedules,
• configuration and extension without alterations of its source

code.

pyABC can be combined with any user-defined computational

model, distance function and parameter prior. Models can be

defined as functions mapping the model parameters onto simulated

data. This ensures a high degree of flexibility and allows the internal

usage of, e.g. the Systems Biology Markup Language (SBML) or

GPUs. Custom- and scipy.stats-distributions are supported as

priors. Post-processing and analysis is supported via the included

visualization functions and the API which provides pandas data

frames, or by directly querying the underlying relational database.

2.2 Multi-core and distributed execution
Single-machine multi-core execution and multi-machine distributed exe-

cution in cloud and cluster environments is featured by pyABC. A var-

iety of distributed execution engines is supported, such as ad hoc

clusters (e.g. the Dask distributed cluster and the IPython parallel clus-

ter), bare grid-submission systems (e.g. SGE and UGE), and Redis

based, low-latency setups. Furthermore, two parallelization strategies

for the sampling of particles in the individual populations are provided:

• Static Scheduling (STAT): For each particle, one task is started

on the available infrastructure. Within each task, proposal

parameters are sampled and model simulations are run until

exactly one simulation’s parameter is accepted (Fig. 1a and b).

Denoting by n the number of desired particles, then even for

infrastructures with more than n cores, only n cores are

employed. The tasks are queued, if n is larger than the number of

cores and are executed as slots become available.
• Dynamic Scheduling (DYN): Parameter sampling and model simu-

lation are continuously performed on all available hardware until n

particles are accepted (Fig. 1c and d). All running simulations are

then waited for to complete, yielding m � n accepted particles. The

n accepted particles started first are included in the next population

while the remaining m – n accepted particles are discarded (to pre-

vent bias towards parameters with shorter simulation times). DYN

provides a scalable parallelization strategy aiming to minimize the

total wall time. A precursor of DYN was proposed by Jagiella et al.

(2017), the implementation was, however, not reusable.

For STAT, the degree of parallelism is limited to the population size

n and decreases as particles are accepted (Fig. 1a), whereas DYN

uses all available cores until n particles are accepted (Fig. 1c).

Moreover, DYN is faster than STAT for more and less cores than

particles in realistic scenarios (supplements) and scales further with

increasing number of cores (Fig. 1e).

2.3 Configuration, customization and extension
The pyABC package is modular and extensible facilitating to experi-

ment with and to develop new ABC-SMC schemes. Following the

documented API, transition kernels, (adaptive) acceptance threshold

schedules, distance functions, summary statistics and other options

can be customized and configured. Model simulation and distance

calculation can be combined to interrupt the simulation and reject it

early to reduce the runtime, e.g. if the distance is a cumulative sum

as it is commonly the case for time series simulations. The frame-

work can be run on new parallel environments providing corre-

sponding custom map functions or implementations of the

concurrent.futures.Executor interface.

3 Conclusion

pyABC addresses the need for distributed, likelihood-free inference

for computationally demanding models. While pyABC’s less scalable

STAT strategy is also implemented elsewhere (Ishida et al., 2015;

Jennings and Madigan, 2017; Stram et al., 2015), the runtime opti-

mized, more scalable DYN strategy is, to the authors’ knowledge,

not available in any other ABC-SMC package. pyABC is the only

framework featuring adaptive population size selection (Klinger and

Hasenauer, 2017). Due to its flexibility and extensibility, we expect

pyABC to be applied to a wide range of commonly used problem

classes, including differential equations, Markov jump processes and

multi-scale models.

Funding

This project has received funding through the European Union’s Horizon

2020 research and innovation programme under grant agreement no.

686282, and the German Federal Ministry of Education and Research under

the grant agreement no. 01ZX1310B.

Conflict of Interest: none declared.

References

Ishida,E.E.O. et al. (2015) cosmoabc: Likelihood-free inference via Population

Monte Carlo Approximate Bayesian Computation. Astron. Comput., 13, 1–11.

(a)

(e)

(b) (c) (d)

Fig. 1. Dynamic scheduling outperforms static scheduling. (a)–(d) Static sched-

uling (STAT) and dynamic scheduling (DYN) for five particles and eight cores.

The core usage (a), (c) and the total number of accepted particles (b), (d) are

depicted over wall time. A sample either satisfies the acceptance threshold and

is included in the next population, satisfies the acceptance threshold but is dis-

carded (i.e. not included in the next population) or does not satisfy the accept-

ance threshold and is rejected. In (c), the fifth accepted sample (light-blue)

is not included in the next population. (e) Comparison of wall time for 10 par-

ticles of a single population. The model was a two dimensional Gaussian

x � Nðl; IÞ. To emulate simulation time, each evaluation was slept for

s � Uð½0:0075s; 0:0125s�Þ. The proposal distribution for l was l � Uð½0; 10�2Þ,
the distance Euclidean, acceptance threshold 0.3 and observation x ¼ ð5; 5Þ.

2 E.Klinger et al.

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty361/4995841
by Helmholtz Zentrum Muenchen user
on 26 June 2018



Jagiella,N. et al. (2017) Parallelization and High-Performance Computing

Enables Automated Statistical Inference of Multi-scale Models. Cell Syst., 4,

194–206.e9.

Jennings,E. and Madigan,M. (2017) astroABC: An Approximate Bayesian

Computation Sequential Monte Carlo sampler for cosmological parameter

estimation. Astron. Comput., 19, 16–22.

Kangasrääsiö,A. et al. (2016) ELFI: Engine for Likelihood-Free Inference. In:

NIPS 2016 Workshop on Advances in Approximate Bayesian Inference.

Klinger,E. and Hasenauer,J. (2017) A Scheme for Adaptive Selection of

Population Sizes in Approximate Bayesian Computation—Sequential

Monte Carlo. In: Feret,J. and Koeppl,H. (eds) Computational Methods in

Systems Biology, Lecture Notes in Computer Science. Cham, Springer, pp.

128–144.

Liepe,J. et al. (2010) ABC-SysBio—approximate Bayesian computation in

Python with GPU support. Bioinformatics, 26, 1797–1799.

Raue,A. et al. (2015) Data2Dynamics: a modeling environment tailored

to parameter estimation in dynamical systems. Bioinformatics, 31,

3558–3560.

Sisson,S.A. et al. (2007) Sequential Monte Carlo without likelihoods. Proc.

Natl. Acad. Sci. USA, 104, 1760–1765.

Stram,A.H. et al. (2015) al3c: high-performance software for parameter

inference using Approximate Bayesian Computation. Bioinformatics, 31,

3549–3551.

Toni,T. et al. (2009) Approximate Bayesian computation scheme for param-

eter inference and model selection in dynamical systems. J. R. Soc. Interface,

6, 187–202.

pyABC 3

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty361/4995841
by Helmholtz Zentrum Muenchen user
on 26 June 2018


