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To estimate the speedup of the dynamic scheduling (DYN) strategy relative to the static schedul-

ing (STAT) strategy under real conditions, the following four examples from practically rel-

evant model classes were benchmarked: (1) an ordinary differential equation (ODE) model1,

(2) a Markov jump processes (MJP) model of a chemical reaction network2 simulated with the

Gillespie algorithm (Gillespie 1977), (3) a stochastic differential equation (SDE) model of ion

channel noise in Hodgkin-Huxley neurons3 (Goldwyn et al. 2011) and (4) a multi-scale (MS)

tumor growth model4 (Jagiella et al. 2017). Benchmarks were run for different core number –

acceptance threshold scenarios measuring the wall time for single populations consisting of

100 particles each. Each scenario was repeated four times.

DYN was faster than STAT for both, more and less CPU cores than particles (Fig. S1a-d). For

only 50 cores, DYN’s median population wall time was between 1.4 times (Fig. S1b, MJP) and 2.8

times (Fig. S1d, MS) shorter than STAT’s (Fig. S1a-d). DYN’s advantage over STAT increased for

100 cores, being now between 2.6 times (Fig. S1a, ODE) and 4.8 times (Fig. S1c, SDE) faster than

STAT. For 200 cores, DYN was over 5.3 times (Fig. S1b, MJP) faster than STAT. STAT’s speedup

relative to single core stagnated between 20 and 39 (Fig. S1a-d), and did not seem to increase

systematically with the number of cores. This is in stark contrast to DYN’s scaling behavior:

while DYN was already at least 38 times faster than single core for only 50 cores, DYN reached

for 200 cores a speedup factor of up to 159 (Fig. S1b). Moreover the longest obtained wall times

pertained always to STAT, the shortest ones always to DYN (Fig. S1a-d).

DYN was faster than STAT for both, low and high acceptance thresholds (Fig. S1e-h). Three

different acceptance thresholds were probed for each of the four models. Larger acceptance

thresholds implied larger acceptance rates (Fig. S1e-h). For very large acceptance rates of 10−1,
DYNwas as fast as STAT (Fig. S1g, SDE, acceptance threshold 10).The overall wall time of ABC-

SMC schemes is, however, often governed by the time spent in the later generations where

acceptance thresholds and acceptance rates become smaller and more simulations need to be

performed. For acceptance rates below 10−2, DYN’s median population wall time was in the

1http://pyabc.readthedocs.io/en/latest/examples/conversion_reaction.html
2http://pyabc.readthedocs.io/en/latest/examples/chemical_reaction.html
3http://pyabc.readthedocs.io/en/latest/examples/sde_ion_channels.html
4http://pyabc.readthedocs.io/en/latest/examples/multiscale_agent_based.html
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Figure S1: Benchmarking of static (STAT, gray) and dynamic (DYN, orange) scheduling. An or-

dinary differential equation (ODE, first column, aei), a Markov Jump Process (MJP,

second column, bfj), a stochastic differential equation (SDE, third column, cgk) and

a multi-scale model (MS, forth column, dhl) were benchmarked for a single popu-

lation of 100 particles on distributed hardware employing network communication

under different core number – acceptance threshold scenarios. Each scenario was re-

peated four times. (a-h) Median population wall times (horizontal lines) and speedup

relative to estimated median single core population wall time at the same accep-

tance threshold (numbers at the lines). DYN was at least as fast as STAT in all tested

scenarios. (a-d) More cores resulted in substantially shorter population wall times

for DYN, but not as much so for STAT. (e-h) Larger acceptance thresholds resulted

in shorter population wall times (the smallest acceptance threshold for each model

displays the same data as the 200 core scenario, a-d, of the same model). (i-l) Model

simulation times were heterogeneous, ranging from a few milliseconds (i) to several

seconds (l).
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Figure S2: Batched sampling for the ordinary differential equation example to reduce communica-

tion overhead.Median population wall times (horizontal lines) and ratio of estimated

single coremedianwall time relative to themedian populationwall time (numbers at

the lines). Batched sampling using DYN in batches of size 10 (blue) decreased the

population wall times compared to STAT (gray, same data as in Fig. S1) and DYN

with batch size 1 (orange, same data as in Fig. S1).

here examined examples shorter than STAT’s (Fig. S1e-h). In the case of the MS model at ac-

ceptance threshold 6.5 ⋅ 105, this translated into less than three hours median population wall

time using DYN instead of over nine hours using STAT (Fig. S1h).

DYN was also faster than STAT for both, long and short model simulation times. The time

required for a single simulation ranged for the here considered models from a few millisec-

onds up to several seconds and was heterogeneously distributed (Fig. S1i-l). This raised the

question of how severely DYN would be affected by its communication overhead and network

latency. For the rather long simulation times of the MS model (Fig. S1l), DYN outperformed

STAT (Fig. S1d,h) as expected. Short simulation times are, however, much more difficult for

DYN to cope with. Surprisingly, even for the ODE model which had the shortest simulation

times of only a few milliseconds (Fig. S1i), DYN was faster than STAT (Fig. S1a,e). However, the

difference between 100 and 200 cores was small (Fig. S1a). To investigate the communication

overhead for the 200 core ODE scenario batched sampling in batches of size 10 was therefore

performed. The distributed worker processes communicated each in this scheme only after ev-

ery tenth simulation, thereby decreasing the overall network usage. Batched sampling did in-

deed decrease the population wall times further (Fig. S2), hence constituting a DYN variation

with increased efficiency for short model simulation times.

In summary, in these benchmarks, pyABC’s dynamic scheduling (DYN) was always at least

as fast as static scheduling (STAT) and up to 7 times faster (Fig. S1h, acceptance threshold 8⋅105).
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