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Abstract

Background: Genome annotation is of key importance in many research questions. The identification of
protein-coding genes is often based on transcriptome sequencing data, ab-initio or homology-based prediction.
Recently, it was demonstrated that intron position conservation improves homology-based gene prediction, and that
experimental data improves ab-initio gene prediction.

Results: Here, we present an extension of the gene prediction program GeMoMa that utilizes amino acid sequence
conservation, intron position conservation and optionally RNA-seq data for homology-based gene prediction. We
show on published benchmark data for plants, animals and fungi that GeMoMa performs better than the gene
prediction programs BRAKER1, MAKER2, and CodingQuarry, and purely RNA-seq-based pipelines for transcript
identification. In addition, we demonstrate that using multiple reference organisms may help to further improve the
performance of GeMoMa. Finally, we apply GeMoMa to four nematode species and to the recently published barley
reference genome indicating that current annotations of protein-coding genes may be refined using GeMoMa
predictions.

Conclusions: GeMoMa might be of great utility for annotating newly sequenced genomes but also for finding
homologs of a specific gene or gene family. GeMoMa has been published under GNU GPL3 and is freely available at
http://www.jstacs.de/index.php/GeMoMa.
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Background
The annotation of protein-coding genes is of critical
importance for many fields of biological research includ-
ing, for instance, comparative genomics, functional pro-
teomics, gene targeting, genome editing, phylogenetics,
transcriptomics, and phylostratigraphy. The process of
annotating protein-coding genes to an existing genome
(assembly) can be described as specifying the exact
genomic location of genes comprising all (partially) cod-
ing exons. A difficulty in gene annotation is distinc-
tion between protein-coding genes, transposons and
pseudogenes.
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Genome annotation pipelines utilize three main sources
of information, namely evidence from wet-lab transcrip-
tome studies [1, 2], ab-initio gene prediction based on
general features of (protein-coding) genes [3, 4], and
homology-based gene prediction relying on gene models
of (closely) related, well-annotated species [5–7].
Experimental data allow for inferring coverage of gene

predictions and splice sites bordering their exons, which
may assist computational ab-initio or homology-based
approaches. Due to the progress in the field of next gener-
ation sequencing, RNA-seq has revolutionized transcrip-
tomics [8]. Today, RNA-seq data is available for a wide
range of organisms, tissues and environmental conditions,
and can be utilized for genome annotation pipelines.
In recent years, several programs have been developed

that combine multiple sources allowing for a more accu-
rate prediction of protein-coding genes [9–11]. MAKER2
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is a pipeline that integrates support of different resources
including ab-initio gene predictors and RNA-seq data
[9]. CodingQuarry is a pipeline for RNA-Seq assembly-
supported training and gene prediction, which is only
recommended for application to fungi [10]. Recently, [11]
published BRAKER1 a pipeline for unsupervised RNA-
seq-based genome annotation that combines the advan-
tages of GeneMark-ET [12] and AUGUSTUS [4].
Here, we present an extension of GeMoMa [7] that uti-

lizes RNA-seq data in addition to amino acid sequence
and intron position conservation. We investigate the per-
formance of GeMoMa on publicly available benchmark
data [11] and compare it with state-of-the-art competitors
[9–11].
Subsequently, we demonstrate how combining homology-

based predictions based on gene models from multiple
reference organisms can be used to improve the perfor-
mance of GeMoMa. Finally, we apply GeMoMa to four
nematode species provided by Wormbase [13] and to the
recently published barley reference genome [14], where
GeMoMa predictions will be included into future versions
of the corresponding genome annotations.

Methods
In this section, we describe recent extensions of GeMoMa
to make use of evidence from RNA-seq data, the RNA-seq
pipelines used and the data considered in the benchmark
and application studies.

GeMoMa using RNA-seq
GeMoMa predicts protein-coding genes utilizing the gen-
eral conservation of protein-coding genes on the level of
their amino acid sequence and on the level of their intron
positions, i.e., the locations of exon-exon boundaries in
CDSs [7]. To this end, sequences of (partially) protein-
coding exons are extracted from well-annotated reference
genomes. Individual exons are thenmatched to loci on the
target genome using tblastn [15], matches are adjusted for
proper splice sites, start codons and stop codons, respec-
tively, and joined to full, protein-coding genes models. In
this process, the conserved dinucleotides GT and GC for
donor splice sites, and AG for acceptor splice sites have
been used for the identification of splice sites border-
ing matches to the (partially) protein-coding exons of the
reference transcripts. The improved version of GeMoMa
may now also include experimental splice site evidence
extracted from mapped RNA-seq data to improve the
accuracy of splice site and, hence, exon annotation. We
visualize the extended GeMoMa pipeline in Fig. 1.
Starting from mapped RNA-seq data, the module

Extract RNA-seq evidence (ERE) allows for extracting
introns and, if user-specified, read coverage of genomic
regions. GeMoMa filters these introns using a user-
specified minimal number of split reads within the

mapped RNA-seq data. Introns passing this filter define
donor and acceptor splice sites, which are treated inde-
pendently within GeMoMa. If splice sites with experimen-
tal evidence have been detected in a genomic region with a
good match to an exon of a reference transcript, these are
collected for further use. If no splice sites with experimen-
tal evidence have been detected in a genomic region with a
goodmatch to an exon of a reference transcript, GeMoMa
resorts to conserved dinucleotides allowing to identify
gene models that are not covered by RNA-seq data due to,
e.g., very specifically or lowly expressed transcripts. Com-
bining two potential exons, all in-frame combinations
using the collected donor and acceptor splice sites are
tested and scored according to the reference transcript.
The best combination is used for the prediction.
Based on this experimental evidence, the improved

version of GeMoMa provides several new properties
reported for gene predictions. The most prominent fea-
tures are transcript intron evidence (tie) and transcript
percentage coverage (tpc). The tie of a transcript varies
between 0 and 1, and corresponds to the fraction of
introns (i.e., splice sites of two neighboring exons) that
are supported by split reads in the mapped RNA-seq
data. In case of transcripts comprising a single coding
exon, NA is reported. The tpc of a transcript also varies
between 0 and 1, and corresponds to the fraction of (cod-
ing) bases of a predicted transcript that are also covered
by mapped reads in the RNA-seq data. Further properties
reported by GeMoMa are i) tae and tde, the percentages
of acceptor and donor sites, respectively, with RNA-seq
evidence, ii) minCov and avgCov, the minimum and aver-
age coverage, respectively, of the predicted transcript, and
iii) minSplitReads, the minimum number of split reads
supporting any of the predicted introns of a transcript.
Optionally, GeMoMa reports pAA and iAA, the percent-
age of positive-scoring and identical amino acids in a
pairwise alignment, if the reference protein is provided
as input.
GeMoMa allows for computing and ranking multiple

predictions per reference transcript, but does not fil-
ter these predictions. Predictions of different reference
transcripts might be highly overlapping or even identi-
cal, especially if the reference transcripts are from the
same gene family. Since GeMoMa 1.4, the default param-
eters for number of predictions and contig threshold have
been changed which might lead to an increased number
of highly overlapping or identical predictions. In addi-
tion, it might be beneficial to run GeMoMa starting from
multiple reference species to broaden the scope of tran-
scripts covered by the predictions. However, these may
also result in redundant predictions for, e.g., orthologs or
paralogs stemming from the different reference species
considered. To handle such situations, the new module
GeMoMa annotation filter (GAF) of the improved version
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Fig. 1 GeMoMa workflow. Blue items represent input data sets, green boxes represent GeMoMa modules, while grey boxes represent external
modules. The GeMoMa Annotation Filter allows to combine predictions from different reference species and produces the final output. RNA-seq
data is optional

of GeMoMa now allows for joining and reducing such pre-
dictions using various filters. Filtering criteria comprise
the relative GeMoMa score of a predicted transcript, fil-
tering for complete predictions (starting with start codon
and ending with stop codon), and filtering for evidence
from multiple reference organisms. In addition, GAF also
joins duplicate predictions that originate from different
reference transcripts.
Initially, GAF filters predictions based on their rela-

tive GeMoMa score, i.e., the GeMoMa score divided by
the length of the predicted protein. This filter removes
spurious predictions. Subsequently, the predictions are
clustered based on their genomic location. Overlapping
predictions on the same strand yield a common cluster.
For each cluster, the prediction with the highest GeMoMa
score is selected. Non-identical predictions overlapping
the high-scoring prediction with at least a user-specified
percentage of borders (i.e., splice sites, start and stop
codon, cf. common border filter) are treated as alterna-
tive transcripts. Predictions that have completely identical
borders to any previously selected prediction are removed
and only listed in the GFF attribute field alternative. All
filtered predictions of a cluster are assigned to one gene
with a generic gene name. Finally, GAF checks for nested

genes in the cluster looking for discarded predictions that
do not overlap with any selected prediction, which are
recovered. In the benchmark studies comparing GeMoMa
with state-of-the-art competitors, we directly use the GAF
results without any further filters on attributes reported
by the GeMoMa pipeline.
In addition to the modules for annotating a genome

(assembly) described above, we also provide two addi-
tional modules in GeMoMa for analyzing and comparing
to prediction to a reference annotation. The module Com-
pareTranscripts determines that CDS of the reference
annotation with the largest overlap with the prediction
utilizing the F1 measure as objective function [7]. The
module AnnotationEvidence computes tie and tpc of all
CDSs of a given annotation. Hence, these two modules
can be used to determine, whether a prediction is known,
partially known or new and whether the overlapping
annotation has good RNA-seq support.

MAKER2 predictions
Recently, we have shown that GeMoMa outperforms
state-of-the-art homology-based gene predictors [7]. We
are not aware of any homology-based gene predic-
tion program that allows for incorporating of RNA-seq
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data. Hence, we provide predictions of MAKER2 using
the same reference proteins as GeMoMa for a mini-
mal comparison. Internally, MAKER2 uses exonerate [5]
for homology-based gene prediction. We run MAKER2
with default parameters except protein2genome=1,
and genome and protein set to the respective input
files. In addition, we run MAKER2 using (i) RNA-seq
data in form of Trinity 2.4 transcripts (-jaccard_clip) [16],
(ii) homology in form of proteins of one related refer-
ence species, and (iii) ab-initio gene prediction in form
of Augustus 3.3 [4]. In this case, we run MAKER2 with
default parameters except genome, est, protein, and
augustus_species, which have been set to the corre-
sponding species. For comparison, we run Maker2 with
the same parameter settings but using the GeMoMa pre-
dictions for protein_gff instead of using protein.

RNA-seq pipelines
Computational pipelines have been used to infer gene
annotation from RNA-seq data produced by next genera-
tion sequencing methods. Dozens of tools and tool com-
binations have been proposed. Here, we focus on the short
read mapper TopHat2 [17], the transcript assemblers
Cufflinks [1] and StringTie [2], and the coding sequence
predictor TransDecoder [16]. Based on the transcript
assemblers, we build two RNA-seq pipelines following the
instructions in [11].

Data
For the benchmark studies, we consider target species
and their genome versions as specified in the BRAKER1
supplement. For the homology-based prediction by
GeMoMa, we choose one closely related reference species
per target species that are sequenced and annotated
[13, 18–20]. For these species, we consider the latest
genome versions available (Additional file 1: Table S1).
For the analysis of C. elegans, we use the man-
ually curated gene set of C. briggsae provided by
Wormbase. In addition, we use the experimental evi-
dence from RNA-seq data referenced in the BRAKER1
publication.
For the analysis of the four nematode species,

C. brenneri, C. briggsae, C. japonica, and C. remanei,
we use the genome assembly and gene annotation of
Wormbase WS257 [13]. We choose the model organism
C. elegans as reference species (Additional file 1: Table S2).
In addition to genome assembly and gene annotation, we
also use publicly available RNA-seq data of these four
nematode species, which have been mapped by Worm-
base using STAR [21]. We used a minimum intron size of
25 bp, a maximum intron size of 15Kb, specify that only
reads mapping once or twice on the genome are reported,
and alignments are reported only if their ratio of mis-
matches to mapped length is less than 0.02. In accordance

with the previous benchmark study, we use the manually
curated gene set of Wormbase.
For the analysis of barley, we use the latest genome

assembly and gene annotation [14]. As reference species,
we choose A. thaliana [22], B. distachyon [23], O. sativa
[24], and S. italica [25] (Additional file 1: Table S2).
In addition to genome assembly and gene annotation,
we also used RNA-seq data from four different public
available data sets (ERP015182, ERP015986, SRP063318,
SRP071745). Reads were mapped and assembled using
Hisat2 and StringTie [26]. As reference annotation, we
used the union of high and low confidence annotation.
As independent evidence for validating GeMoMa pre-

dictions in the nematode species and barley, we use ESTs
and cDNAs. While Wormbase provides coordinates for
best BLAT matches, we adapt the pipeline and download
all available EST fromNCBI and map them to the genome
using BLAT [27].

Results and discussion
Benchmark
The comparison of different software pipelines is often
critical as a) specific parameters settings might be cru-
cial for good results and b) different input might be used.
For these reasons, we designed the benchmark as follows.
First, we use publicly available gene predictions results.
Second, we limit the number of reference species to one
in the initial study.
We used GeMoMa for predicting the gene annota-

tions of A. thaliana, C. elegans, D. melanogaster, and
S. pombe. In Table 1, we summarize the performance of
BRAKER1, MAKER2, and CodingQuarry as reported in
Hoff et al. [11], as well as the performance of GeMoMa
with and without RNA-seq evidence, purely RNA-seq-
based pipelines and various MAKER2 predictions. The
results of CodingQuarry reported by Hoff et al. [11] devi-
ate substantially from those originally reported by Testa
et al. [10]. We find that the performance of CodingQuarry
is highly sensitive to RNA-seq processing, whereas the
performance of GeMoMa is barely affected (Additional
file 1: Table S5). For all comparisons, we provide sen-
sitivity (Sn) and specificity (Sp) for the categories gene,
transcript, and exon, respectively [28]. In addition, we
compare CodingQuarry with GeMoMa for S. cerevisiae
(Additional file 1: Table S6).
First, we compare the two purely homology-based

predictions, namely on the one hand side MAKER2 using
exonerate and on the other hand side GeMoMa without
RNA-seq data. In all cases, we use the same reference
species and reference proteins. We find that MAKER2
using only homologous proteins has a higher exon speci-
ficity than GeMoMa without RNA-seq data for C. elegans,
while the opposite is true for all other categories and
target species.



Keilwagen et al. BMC Bioinformatics  (2018) 19:189 Page 5 of 12

Ta
b
le

1
Be
nc
hm

ar
k
re
su
lts

on
th
e
BR

A
KE
R1

te
st
se
ts

M
A
KE
R2

+
(e
xo
ne

ra
te
)

G
eM

oM
a+

w
ith

ou
t

RN
A
-s
eq

da
ta

G
eM

oM
a+

w
ith

RN
A
-s
eq

da
ta

RN
A
se
q-

C
uf
fli
nk
s

RN
A
se
q-

St
rin

gT
ie

BR
A
KE
R1

∗
M
A
KE
R2

∗
C
od

in
gQ

ua
rr
y∗

M
A
KE
R2

+
(e
xo
ne

ra
te
,

Tr
in
ity
,A
ug

us
tu
s)

M
A
KE
R2

+
(G
eM

oM
a,
Tr
in
ity
,

A
ug

us
tu
s)

Ar
ab

id
op

sis
th
al
ia
na

(r
ef
.A
.l
yr
at
a)

G
en

e
Sn

44
.0

61
.3

66
.5

28
.9

35
.9

64
.4

51
.3

N
A

56
.9

57
.9

G
en

e
Sp

47
.8

65
.7

71
.3

47
.9

59
.1

52
.0

52
.5

N
A

65
.7

67
.8

Tr
an
sc
rip

tS
n

37
.5

52
.2

57
.2

26
.6

33
.7

55
.0

43
.5

N
A

48
.3

49
.1

Tr
an
sc
rip

tS
p

47
.8

65
.7

65
.3

35
.6

48
.3

50
.9

52
.5

N
A

65
.7

67
.8

Ex
on

Sn
70
.0

79
.3

80
.6

58
.1

60
.8

82
.9

76
.1

N
A

81
.8

82
.1

Ex
on

Sp
81
.9

86
.6

87
.5

81
.9

87
.1

79
.0

76
.1

N
A

87
.5

88
.6

Ca
en
or
ha

bd
iti
se
le
ga

ns

(r
ef
.C
.b
rig
gs
ae
)

G
en

e
Sn

26
.2

39
.6

49
.1

18
.7

22
.6

55
.0

41
.0

N
A

40
.5

47
.3

G
en

e
Sp

38
.0

49
.9

63
.8

29
.1

36
.1

55
.2

30
.8

N
A

51
.5

56
.4

Tr
an
sc
rip

tS
n

21
.0

30
.7

39
.8

16
.2

20
.0

43
.0

31
.3

N
A

31
.4

36
.2

Tr
an
sc
rip

tS
p

38
.0

49
.9

58
.7

24
.1

30
.1

53
.2

30
.8

N
A

51
.5

56
.4

Ex
on

Sn
50
.3

64
.2

67
.1

54
.4

59
.1

80
.2

69
.4

N
A

70
.5

75
.2

Ex
on

Sp
82
.6

81
.5

87
.5

81
.3

84
.1

85
.3

62
.3

N
A

85
.6

86
.7

D
ro
so
ph

ila
m
el
an

og
as
te
r

(r
ef
.D

.s
im
ul
an

s)

G
en

e
Sn

64
.3

78
.2

83
.1

55
.7

55
.2

64
.9

55
.2

N
A

61
.5

64
.0

G
en

e
Sp

69
.2

81
.6

87
.1

71
.3

73
.5

59
.4

46
.3

N
A

69
.6

71
.9

Tr
an
sc
rip

tS
n

44
.1

52
.9

65
.0

48
.7

49
.0

46
.1

38
.5

N
A

42
.7

44
.3

Tr
an
sc
rip

tS
p

69
.2

81
.6

81
.2

60
.1

65
.7

57
.9

46
.3

N
A

69
.6

71
.9

Ex
on

Sn
69
.0

76
.3

80
.0

67
.8

66
.2

75
.0

66
.5

N
A

74
.3

76
.3

Ex
on

Sp
89
.1

92
.0

93
.3

85
.4

88
.3

81
.7

66
.9

N
A

88
.0

89
.1

Sc
hi
zo
sa
cc
ha

ro
m
yc
es
po

m
be

(r
ef
.S
.o
ct
os
po

ru
s)

G
en

e
Sn

49
.2

76
.4

79
.2

69
.0

65
.8

77
.4

42
.8

79
.7

71
.6

74
.6

G
en

e
Sp

59
.9

84
.6

88
.0

93
.8

92
.5

80
.5

68
.7

72
.6

88
.1

89
.1

Tr
an
sc
rip

tS
n

49
.2

76
.4

79
.2

69
.0

65
.8

77
.4

42
.8

79
.7

71
.6

74
.6

Tr
an
sc
rip

tS
p

59
.9

84
.6

87
.6

80
.5

71
.3

76
.5

68
.7

72
.6

88
.1

89
.1

Ex
on

Sn
56
.1

81
.6

83
.1

77
.2

77
.7

83
.2

50
.1

79
.6

79
.2

81
.2

Ex
on

Sp
73
.3

88
.6

91
.9

87
.6

81
.7

83
.2

71
.4

81
.7

92
.0

92
.6

Th
e
ta
rg
et

sp
ec
ie
s
ar
e
gi
ve
n
in
m
ul
ti-
co
lu
m
n
ro
w
s.
Th

e
sa
m
e
re
fe
re
nc
e
sp
ec
ie
s,
w
hi
ch

is
gi
ve
n
in
br
ac
ke
ts
,i
s
us
ed

fo
ra
ll
to
ol
s
us
in
g
ho

m
ol
og

y-
ba

se
d
ge

ne
pr
ed

ic
tio

n
in
di
ca
te
d
by

pl
us
.T
he

as
te
ris
ks

in
di
ca
te
s
th
at
th
e
pe

rfo
rm

an
ce

of
BR

A
KE
R1
,M

A
KE
R2

an
d
C
od

in
gQ

ua
rr
y
is
gi
ve
n
as

re
po

rt
ed

in
[1
1]
.T
he

hi
gh

es
tv
al
ue

pe
rl
in
e
is
de

pi
ct
ed

in
bo

ld
-f
ac
e



Keilwagen et al. BMC Bioinformatics  (2018) 19:189 Page 6 of 12

Second, we additionally consider RNA-seq data.
MAKER2 does not allow for combining RNA-seq evi-
dence and homology-based predictions without using
any ab-initio gene predictor. In contrast, GeMoMa allows
for additionally using intron position conservation and
RNA-seq data. For this reason, we compare the perfor-
mance of GeMoMa with and without RNA-seq evidence
(Table 1). We find that sensitivity and specificity in
almost all cases increases by up to 13.9 with only two
exceptions for transcript specificity of A. thaliana and
D. melanogaster which decreases by at most 0.4. Hence,
we summarize that RNA-seq evidence improves the sen-
sitivity and specificity of GeMoMa and should be used if
available.
Third, we compare the performance of GeMoMa using

RNA-seq evidence to that of purely RNA-seq-based
pipelines, namely Cufflinks and StringTie (Table 1). We
find for all four species that GeMoMa using RNA-seq
evidence outperforms purely RNA-seq-based pipelines.
Interestingly, purely RNA-seq-based pipelines also yield
the worst gene/transcript sensitivity and specificity for
C. elegans. Comparing the results based on different
transcript assemblers, we find that the results based on
StringTie are better than those based on Cufflinks for
A. thaliana and C. elegans, while the opposite is true
for S. pombe. For D. melanogaster, both pipelines per-
form comparably. Additional RNA-seq reads increasing
the coverage might improve the performance of purely
RNA-seq-based pipelines but could also improve the per-
formance of GeMoMa.
Summarizing these three observations, we find that

GeMoMa performs better than purely homology-based
or purely RNA-seq-based pipelines and that including
RNA-seq data improves the performance of GeMoMa.

Hence, we compare GeMoMa to combined gene pre-
diction approaches. Specifically, we compare the perfor-
mance of GeMoMa using RNA-seq evidence to BRAKER1
in Fig. 2, which provides the best overall performance
in [11]. We find that GeMoMa performs better than
BRAKER1 for the categories gene and transcript with
the exception of gene and transcript sensitivity for
C. elegans. Interestingly, we find the biggest improvements
for D. melanogaster where gene/transcript sensitivity and
specificity increases between 18.2 and 27.7. For the exon
category, we find a less clear picture. In total, we observe
the worst results for C. elegans where the sensitivity for
all three categories decreases between 3.2 and 13.2, while
the specificity increases only between 2.2 and 8.6. Notably,
we generally find the worst gene/transcript sensitivity and
specificity for C. elegans compared with the other target
species considering the best performance of all tools.
In summary, we find that the gene predictors MAKER2,

BRAKER1, CodingQuarry and GeMoMa, and the tran-
script assemblers Cufflinks and StringTie often perform
quite well on exon level. The main difference becomes
evident on transcript and gene level, where exons need
to be combined correctly (Table 1) as reported earlier
[29, 30]. Homology-based gene predictors might benefit
from experimentally validated and manually curated ref-
erence transcripts guiding the prediction of transcripts in
the target organism.
Although GeMoMa performed well, it is not able to pre-

dict genes that do not show any homology to a protein
in the reference species, while ab-initio gene predictors
might fail in other cases. As both types of approaches have
their specific advantages, users will probably use combi-
nations of different gene predictors in practice to obtain a
comprehensive gene annotation.

A. thaliana C. elegans D. melanogaster S. pombe
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Fig. 2 Benchmark results. The y-axis depicts the difference between the GeMoMa with RNA-seq data and the BRAKER1 performance
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In addition, we performed a small runtime study for the
two main time-consuming steps of the pipeline to demon-
strate that GeMoMa is reasonably fast (Additional file 1:
Table S7).

Combined gene prediction pipelines
Combined gene prediction pipelines, as for instance
MAKER2, use RNA-seq evidence, homology-based and
ab-initio methods for predicting final gene models.
MAKER2 uses exonerate by default for homology-based
gene prediction. However, MAKER2 also provides the
possibility to use other homology-based gene predictors
instead of exonerate (cf. parameter protein_gff ). For this
reason, we compare the performance of MAKER2 using
either exonerate or GeMoMa for homology based gene
prediction (Table 1). In addition, we use Augustus as ab-
initio gene prediction program and Trinity transcripts
in MAKER2. We find that MAKER2 using GeMoMa
performs better than MAKER2 using exonerate for all
species and all measure. The improvement varies between
0.3% and 6.8% with clearly the biggest improvement for
C. elegans.
In addition, we find that the MAKER2 performance is

substantially improved compared to the performance of
the the previously reported MAKER2 predictions, either
purely based on proteins (cf. Table 1, column MAKER2+
(exonerate)) or as reported in [11] (cf. Maker2∗). These
other predictions do not utilize all available sources of
information as they either ignore RNA-seq data and
ab-initio gene prediction or homology to proteins of
related species. Based on this observation, we agree
that combined gene prediction pipelines benefit from

the inclusion of all available evidence and that per-
formance is decreased if some important evidence is
missed [9].
Furthermore, we compare GeMoMa using RNA-

seq evidence with MAKER2 using RNA-seq evidence,
homology-based and ab-initio gene prediction. In some
cases, it is hard to compare these results as sensitivity
of one tool is higher than the sensitivity of the other
tool and the opposite is true for specificity. In machine
learning, recall, also known as sensitivity, and precision,
which is called specificity in the context of gene prediction
evaluation [31], are combined into a single scalar value
called F1 measure [32] that can be compared more easily.
We combined sensitivity and specificity resulting in an
F1 measure for each evaluation level gene, transcript
and exon (Additional file 1 – Table S4) We find that in
many cases GeMoMa using RNA-seq evidence outper-
forms MAKER2. The reason for this observation might
be that RNA-seq data and homology based gene predic-
tion is used inMAKER2 to train ab-initio gene predictors,
in this case Augustus. With the recommended parameter
setting, homology-based gene predictions are not directly
used for the final prediction and doing so might further
improve performance.

Influence of reference species
Utilizing different fly species from FlyBase [33], we scru-
tinize the influence of different or multiple reference
species on the performance of GeMoMa using RNA-seq
data (Additional file 1: Table S8). In Fig. 3, we depict gene
sensitivity and gene specificity for eight different reference
species indicated by points. We find that performance

Fig. 3 Gene sensitivity and specificity for D. melanogaster using different or multiple reference species in GeMoMa. The points correspond to the
eight reference species. In addition, the dashed line indicates the usage of multiple reference species. Using multiple reference species allows for
filtering identical predictions from several reference as indicated by the numbers
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varies with the reference species. In this specific case,
D. sechellia andD. persimilis yield the worst results for sin-
gle reference-based predictions. This observation might
be related to the fact that genome assembly of D. sechellia
andD. persimilis is of lower quality [34], while the genome
of D. simulans has been updated [35] later. Besides these
two outliers, the performance of the different fly species
as reference species for D. melanogaster in GeMoMa cor-
relates with their evolutionary distance [36]. Generally
speaking, the closer a reference species is related to the
target species D. melanogaster, the better is the perfor-
mance in terms of gene sensitivity and specificity. Hence,
we speculate that two requirements must be met to have
a good reference species. First, the evolutionary distance
between reference and target species should be small
and second, the genome assembly and annotation of the
reference species should be comprehensive and of high
quality.
The new GAF module of GeMoMa allows for com-

bining the predictions based on different reference
organisms. The combined predictions may be filtered by
number of reference species with perfect support (#evi-
dence), as indicated by the dashed line. We find that
combining multiple reference organisms improves predic-
tion performance and stability. Depending on the number
of supporting reference organisms required, gene speci-
ficity and gene sensitivity may be balanced according to
the needs of a specific application. We observe that (i)
gene sensitivity increases but specificity decreases when
requiring support from at least one reference organ-
ism, whereas (ii) gene specificity increases but sensitivity
decreases severely filtering for perfect support from all
eight reference species. In summary, the inclusion of mul-
tiple reference species may yield an improved prediction
performance for GeMoMa using the GAF module, where
we suggest to filter predictions for support by at least two
but not necessarily all reference species.
Furthermore, we check whether GeMoMa allows for

identifying new transcripts in D. melanogaster that do
not overlap with any annotated transcript but are sup-
ported by RNA-seq data. First, we check whether we
could identify transcripts based on the GeMoMa predic-
tions using D. simulans as reference organism. We find
35multi-coding-exon predictions that do not overlap with
any annotated transcript but have a tie of 1, i.e., all introns
are supported by split reads in the RNA-seq data (see
“Methods”). In addition, we find 15 single-coding-exon
predictions that do not overlap with any annotated tran-
script but have a tpc of 1, i.e., that are fully covered
by mapped RNA-seq reads. Second, we check whether
we could identify transcripts that are supported by at
least two of the eight reference species (cf. above). We
find 14 multi-coding-exon predictions that do not over-
lap with any annotated transcript, obtain a tie of 1 and are

supported by at least two of the eight reference species.
In addition, we find 9 single-coding-exon predictions that
do not overlap with any annotated transcript, have a tpc
of 1 and are supported by at least two of the five reference
species. In summary, those genes supported by multiple
reference organisms or additional RNA-seq data might be
promising candidates for extending the existing genome
annotation of D. melanogaster.

Analysis of nematode species
The relatively poor results for C. elegans in the bench-
mark study, might be due to insufficiencies in the current
C. briggsae annotation. Hence, we decided to scruti-
nize the Wormbase annotation of four nematode species
comprising C. brenneri, C. briggsae, C. japonica, and
C. remanei based on the model organism C. elegans.
We compare GeMoMa predictions with manually curated
CDS from Wormbase. Based on RNA-seq evidence, we
collect multi-coding-exon predictions of GeMoMa with
tie=1 and compare these to the annotation as depicted in
Fig. 4.
In summary, we find between 6 749 differences for

C. briggsae and 12 903 for C. brenneri (cf. Fig. 4). The
most interesting category are newmulti-coding-exon pre-
dictions, which vary between 53 for C. briggsae and 1 974
for C. brenneri. The largest category are GeMoMa pre-
dictions that missed exons compared to annotated CDSs,
which vary between 2 340 for C. japonica and 4 220 for
C. remanei.
We additionally filter the transcripts showing differ-

ences to obtain a smaller, more conservative set of high-
confidence predictions. First, we filter new multi-coding
exon GeMoMa predictions for tpc=1 obtaining between
39 and 996 for C. briggsae and C. brenneri, respectively.
Second, we filter GeMoMa predictions that have differ-
ent splice sites compared to highly overlapping annotated
transcripts, contain new exons, have missing exons, or
have new and missing exons for tie<1 of the overlapping
annotation. We obtain between 100 and 1 079 predic-
tions with different splice-site, between 42 and 786 predic-
tions containing new exons, between 548 and 1 431
predictions with missing exons, and between 284 and
1 191 predictions with new and missing exons. Finally,
for GeMoMa predictions that differ in the start codon
compared to the annotation, we filter for tpc=1 of the
GeMoMa prediction and tpc<1 for the annotation obtain-
ing between 14 and 149 for C. brenneri and C. remanei,
respectively. In summary, we obtain between 1 065 pre-
dictions differing from the annotation for C. briggsae and
4 735 predictions for C. brenneri, respectively (cf. Fig. 4)
using these strict criteria. Despite the overall reduction of
transcripts considered, GeMoMa predictions that missed
exons compared to annotated CDSs are the largest cate-
gory for all four nematode species.
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Fig. 4 Summary of difference for GeMoMa predictions with tie=1. The relaxed evaluation (left panel) depicts differences between GeMoMa
predictions and annotation without any filter on the annotation, while the conservative evaluation (right panel) applies additional filters for the
annotation (cf. main text). Predictions that do not overlap with any annotated CDS are depicted in yellow, predictions that differ from annotated
CDSs only in splice sites are depicted in green, predictions that have additional exons compared to annotated CDSs are depicted in turquoise,
predictions that missed some exons compared to annotated CDSs are depicted in blue, predictions with additional and missing exons compared to
annotated CDSs are depicted in pink, predictions that only differ in the start of the CDS compared to annotated CDS are depicted in red, and any
other category is depicted in gray

For both evaluations, we find that the predictions for
C. briggsae are in better accordance with the annotation
than the predictions of the remaining three nematode
species. One possible explanation might be that the anno-
tation of C. briggsae has recently been updated using
RNA-seq data (Gary Williams, personal communication),
while the annotation of C. japonica is based on Augustus
(Erich Schwartz, personal communication) and the anno-
tation of the other two nematodes are NGASP sets from
multiple ab-initio gene prediction programs [37]. For
C. japonica, we find the second best results, although
C. japonica is phylogenetically more distantly related to
C. elegans than the remaining two nematodes [38]. This is
additional evidence that the annotation pipeline employed
has a decisive influence on the quality and completeness
of the annotation.
In addition, we checked for C. brenneri whether the

GeMoMa predictions partially overlap with cDNAs or
ESTs mapped to the C. brenneri genome. In 472 cases,
the prediction overlaps with a cDNA or EST, but not
with the annotation. In 364 out of these 472 cases, the
prediction has tie=1. To evaluate the predictions, weman-
ually checked about 9% (43) of the predicted missing
genes with tie=1. Based on RNA-seq data, protein homol-
ogy, cDNA/ESTs and manual curation, 95% were genuine
new isoforms which have been missed in the original
C. brenneri gene set. This shows that GeMoMa is valuable

in finding isoforms missed by traditional prediction
methods.

Analysis of barley
Complementary to the studies in animals in the last sub-
section, we used GeMoMa to predict the annotation of
protein-coding genes in barley (Hordeum vulgare). Based
on the benchmark results for D. melanogaster, we used
several reference organisms to predict the gene annota-
tion using GeMoMa and GAF and finally obtain 75 484
transcript predictions. Most of the predictions showed
a good overlap with the annotation (F1 ≥ 0.8). Never-
theless, 27 204 out of these 75 484 predictions had little
(F1 <0.8) or no overlap with high or low confidence
gene annotations. However, thousands of the transcripts
contained in the official annotation do not have start or
stop codons [14], which renders an exact comparison of
predictions with perfect or at least very good overlap
unreasonable.
Hence, we focus on 19 619 predictions with no overlap

with any annotated transcript (Table 2). Scrutinizing these
predictions, we find 1 729 single-coding-exon predictions
that are completely covered by RNA-seq reads (tpc=1) but
that are not contained in the annotation. Out of these, 367
are partially supported by best BLAT matches of ESTs to
the genome. In addition, we analyzed multi-coding-exon
predictions and find 2 821 predictions that obtain tie=1,
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Table 2 Predictions that do not overlap with any high or low
confidence annotation

a) Single-coding-exon predictions

#evidence tpc = 0 0 < tpc < 1 tpc = 1

1 1 971 (11) 878 (14) 1 005 (137)

2 204 (19) 158 (8) 299 (55)

3 200 (16) 126 (5) 257 (92)

4 91 (17) 43 (9) 168 (83)
∑

2 466 (63) 1 205 (36) 1 729 (367)

b) Multi-coding-exon predictions

#evidence tie = 0 0 < tie < 1 tie = 1

1 9 671 (287) 942 (211) 1 681 (775)

2 283 (36) 86 (32) 456 (196)

3 155 (31) 64 (43) 382 (223)

4 142 (57) 55 (37) 302 (196)
∑

10 251 (411) 1 147 (323) 2 821 (1 390)

The numbers in parenthesis depict those predictions that are partially supported by
any best BLAT hit of ESTs

stating that each predicted intron is supported by at least
one split read from mapped RNA-seq data. Out of these,
1 390 are partially supported by best BLAT matches of
ESTs to the genome.
Besides predictions that are well supported by RNA-seq

data, we also observe thousands of predictions that are not
(tpc = 0 or tie = 0) or only partially (0 < tpc < 1 or 0 <

tie < 1) supported by RNA-seq. Despite no or only partial
RNA-seq support, we find that 833 are partially supported
by best BLAT matches of ESTs to the genome.
Alternatively, we can utilize the number of reference

organisms that support a prediction (#evidence) to fil-
ter the predictions as noted for D. melanogaster. This
approach will decrease sensitivity, but increase specificity
obtaining predictions with a high confidence. Although,
we find the most predictions with #evidence = 1, we also
find about 3 500 predictions with #evidence > 1, more
than 1 100 of these predictions are additionally supported
by RNA-seq data or ESTs.

Conclusions
Summarizing the methods and results, we present an
extension of GeMoMa that allows for the incorporation
of RNA-seq data into homology-based gene prediction
utilizing intron position conservation. Comparing the
performance of GeMoMa with and without RNA-seq evi-
dence, we demonstrate for all four organism included in
the benchmark that RNA-seq evidence improves the per-
formance of GeMoMa. GeMoMa performs equally well
or better than BRAKER1, MAKER2, CodingQuarry, and
purely RNA-seq-based pipelines on the benchmark data
sets including plants, animals and fungi.

We also find that the performance depends on the evo-
lutionary distance betwen reference and target organism.
However, prediction performance also depends on sev-
eral further aspects including i) the quality of the target
genome (assembly), ii) the number of reference organisms
available and iii) especially the quality of the reference
annotation(s) itself. Hence, we recommend to balance
between evolutionary distance and (expected) quality of
the reference annotation when selecting reference species
for GeMoMa.
The integration of RNA-seq data into GeMoMa might

help to overcome wrongly annotated splice sites in the
reference species in some cases. However, missing or
wrongly additional annotated exons in the reference anno-
tation might still lead to partially wrong gene model
predictions in the target species. The benefit of RNA-seq
data, however, also depends on the quality and amount
of sequenced reads, on the diversity (tissues, conditions)
of the sequenced samples, and on the library type, where
stranded libraries should be more informative than non-
stranded ones. In addition, GeMoMa uses RNA-seq data
currently only to refine homologous genes models and
not to identify transcribed gene models that do not show
any homology. Hence, GeMoMa should be used in com-
bination with other gene predictors allowing for purely
RNA-seq-based or ab-initio gene predcitions. Exemplar-
ily, we demonstrate that GeMoMa helps to improve the
performance of combined gene predictor pipelines as for
instance MAKER2.
Notably, model organisms have been used as target

organisms in this benchmark, whereas they would typi-
cally be used as reference organisms in real applications.
Hence, the performance of homology-based gene pre-
diction programs might be underestimated. In summary,
we recommend to use homology-based gene prediction
using RNA-seq data as implemented in GeMoMa when-
ever high-quality gene annotations of related species are
available.
Interestingly, we find that GeMoMa works especially

well for D. melanogaster in the benchmark study com-
pared to the performance of its competitors. One possible
reason could be that Flybase used homology and RNA-seq
data besides other evidence to infer the gene annotation
[19]. In contrast, we find the worst results in C. elegans in
the benchmark study, which might be related to the fact
that the C. elegans gene set contains many rare isoform
community submissions whereas C. briggsae was anno-
tated by a large scale gene predictions effort based on
RNA-seq.
Scrutinizing the annotation in Wormbase, we pre-

dicted protein-coding transcripts for four nematode
species based on the annotation of the model organism
C. elegans. We find that a substantial part of the GeMoMa
predictions is either missing, marked as modification
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of annotated transcripts or alternative transcripts. Espe-
cially for the three nematodes, C. brenneri, C. japonica
and C. remanei, that are annotated solely using ab-initio
gene prediction, we find a large part of the annotation
that is marked as questionable or missing. This may give
an indication, why homology-based gene prediction for
C. elegans shows less good performance in the benchmark
study. The GeMoMa predictions of the four nematodes
will be included in Wormbase in the upcoming releases.
Furthermore, GeMoMawill be included in theWormBase
gene curation process and trialled for strain annotation.
Furthermore, we predicted protein-coding transcripts

for barley using four reference species and find several
hundreds of predictions that are not included in the refer-
ence annotation but are supported by RNA-seq data, ESTs
or multiple reference species. Hence, we conclude that
these are valuable predictions harboring additional barley
genes. These predictions will be incorporated in the new
barley annotation.
GeMoMa provides a user-friendly documentation and

can be use as command line tool or through the Galaxy
workflow management system [39] providing its own
Galaxy integration (Fig. 1). GeMoMa is freely avail-
able under GNUGPL3 at http://www.jstacs.de/index.php/
GeMoMa.
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