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ABSTRACT 18 

 19 

Obesity is a world-wide pandemic which can be fatal for the most extremely 20 

affected individuals. Lifestyle interventions such as diet and exercise are largely 21 

ineffective, and current anti-obesity medications offer little in the way of 22 

significant or sustained weight loss. Bariatric surgery is effective, but largely 23 

restricted to only a small subset of extremely obese patients. While the hormonal 24 

factors mediating sustained weight loss and remission of diabetes by bariatric 25 

surgery remain elusive, a new class of polypharmacological drugs shows 26 

potential to shrink the gap in efficacy between a surgery and pharmacology. In 27 

essence, this new class of drugs combines the beneficial effects of several 28 

independent hormones into a single entity, thereby combining their metabolic 29 

efficacy to improve systems metabolism. Such unimolecular drugs include single 30 

molecules with agonism at the receptors for glucagon, glucagon-like peptide 1 31 

(GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). In 32 

preclinical studies, these specially tailored multiagonists outperform both their 33 

mono-agonist components and current best in class anti-obesity medications. 34 

While clinical trials and vigorous safety analyses are ongoing, these drugs are 35 

poised to have a transformative effect in anti-obesity therapy and might 36 

hopefully lead the way to a new era in weight-loss pharmacology. 37 

 38 
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 2

INTRODUCTION 39 

 40 

Obesity is a devastating condition of pandemic dimensions. In 2015, there were 41 

107.7 million obese children and 603.7 million obese adults worldwide [1], and 42 

this number is expected to rise. Overweight and obesity are associated with a 43 

number of comorbidities, most importantly type 2 diabetes (T2DM), 44 

cardiovascular disease, hypertension, dyslipedimia and several kinds of cancer, 45 

predominantly gastrointestinal. In 2015, around 4 million deaths were attributed 46 

to overweight and obesity [1]. 47 

 48 

Hypothetical speaking, obesity could be prevented simply by reducing food 49 

intake and increasing physical activity. However, adherence to lifestyle 50 

interventions such as regular exercise is poor. A number of psychological and 51 

economic factors are involved in such compliance, and humans might be 52 

evolutionarily predisposed to a positive energy balance [2]. Furthermore, once 53 

excess weight has been gained, human metabolism intrinsically defends against 54 

its loss [3].  55 

 56 

Since lifestyle interventions have so far proven insufficient to combat our obesity 57 

pandemic, other interventions are needed. To date, the most effective and long 58 

lasting intervention is bariatric surgery. Of the various types of bariatric 59 

surgeries available, Roux-en-Y gastric bypass and biliopancreatic 60 

diversion/duodenal switch surgeries are the most common and successful, with 61 

reported initial excess weight reduction of up to 68-70%, where excess weight is 62 

defined as the difference between total preoperative weight and ideal weight [4, 63 

5]. Despite unquestionable effectiveness, bariatric surgery is typically only 64 

available to a small subset of individuals, with inclusion criteria being a body 65 

mass index (BMI) greater than 40 or greater than 35 with a comorbidity such as 66 

diabetes or heart disease [6]. In addition, the surgery itself is costly and not 67 

without risk [7]. 68 

 69 

Notably, improvement of glycemic control by bariatric surgery is rapid and is 70 

often observed even before a clinically relevant weight loss [8-10]. Despite 71 
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intense scientific investigation, changes in metabolic rate or intestinal nutrients 72 

absorption do not seem to explain the efficacy and sustainability in weight 73 

reduction [11-15]. Changes in food intake are frequently reported after bariatric 74 

surgery and are commonly considered a causal factor for the weight loss [15-18]. 75 

Notably, such differences in food intake do not seem to rely on physical 76 

limitations of the gastrointestinal (GI)-tract [19], but rather result from changes 77 

in food preference, taste perception and modifications in the central food reward 78 

system [20-25]. It seems fair to hypothesize that such changes are likely 79 

mediated via neuronal and/or humoral factors [26]. For example, following 80 

Roux-en-Y gastric bypass, gastric banding, or sleeve gastronomy, there is an 81 

increase in the secretion of glucagon-like peptide 1 (GLP-1) [26-28], which is 82 

known not only for its beneficial effects on glycemia but also for its ability to 83 

decrease body weight via CNS-induced inhibition of food intake [29].  84 

 85 

GLP-1 is secreted by the intestinal L-cells in response to nutrient stimuli. GLP-1 86 

directly acts on the β-cells to increase glucose-stimulated insulin secretion and 87 

also through the central nervous system to decrease food intake (Figure 1)[30]. 88 

Native GLP-1 is rapidly degraded by dipeptidyl peptidase IV (DPP-IV), which 89 

cleaves native GLP-1 at the N-terminal alanine at the second position, resulting in 90 

the generation of the inactive GLP-19–36amide or GLP-19–37 [31-33]. Native GLP-1 91 

accordingly has a circulating half-life of 1.5-5 minutes [34, 35]. Modifications to 92 

the native GLP-1 sequence have overcome this limitation. Common modifications 93 

include the substitution of a d-Serine or aminoisobutyric acid (Aib) residue at 94 

position 2 to increase resistance to peptidase degradation. Another common 95 

modification is extension of the peptide to include the 9 amino acid C-terminal 96 

extension (CEX) of exendin-4, which stabilizes the secondary structure and can 97 

(depending on the peptide) improve glucagon receptor agonism [36-40]. 98 

Additional modifications such as site-specific acylation or conjugation with large 99 

biomolecules has resulted in a series of commercially available GLP-1 analogs, 100 

with varying efficacies [41]. Despite the development of several iterations, these 101 

GLP-1 analogs only have modest weight lowering efficacy, which, depending on 102 

dose and duration of treatment, typically fall in the range of 1-5 kg [42-55]. Side 103 

effects such as nausea and gastrointestinal distress preclude higher doses to 104 
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drive greater weight loss. Therefore it is clear that while GLP-1 analogs are 105 

beneficial to improve glycemia, targeting solely the GLP-1 receptor for the 106 

purpose of lowering body weight has limitations.  107 

 108 

Serendipitously, native GLP-1 shows high sequence homology to glucagon and 109 

the glucose-dependent insulinotropic polypeptide (GIP). High sequence 110 

homology is also present in the receptors for GLP-1, glucagon and GIP, which 111 

together makes these peptides inherently prone to sequence hybridization for 112 

the purpose of simultaneously activating their receptors with only one molecule. 113 

Notably, glucagon can decrease body weight via inhibition of food intake and 114 

elevation of energy expenditure [30]. Consequently, it was believed that such a 115 

single molecule with dual agonism at the receptors for glucagon and GLP-1 116 

would lead to complementary (and ideally synergistic) pharmacological action, 117 

putatively driving greater weight loss and glycemic benefits through non-118 

redundant signaling pathways. Any observed beneficial action would naturally 119 

create hope for the possibility of lower dosing schemes, thus potentially reducing 120 

the possibility of side effects, such as those typically seen at high doses of GLP-1.  121 

 122 

The unimolecular formulation has several advantages compared to the loose 123 

adjunct administration of the single peptides. The key biological difference is 124 

that each independent peptide would have its specific and potentially unique 125 

pharmacokinetic profile. Accordingly, the peptides in such a loose combination 126 

would likely differ in their rates of absorption, distribution, metabolism, and 127 

clearance. In contrast, a unimolecular multi-agonist would have only one 128 

pharmacokinetic profile, which was hypothesized to result in superior metabolic 129 

benefits compared to a loose co-mixture of the single peptides. Furthermore, in 130 

terms of practicality, a single molecule polyagonist can more easily achieve 131 

regulatory approval.  132 

 133 

GLP-1/Glucagon Co-Agonism 134 

 135 

The combination of GLP-1R and glucagon receptor (GCGR) agonism into a single 136 

entity seems, at first glance, counter-intuitive. Glucagon raises blood glucose 137 

Page 4 of 24



 5

levels by stimulating gluconeogenesis and glycogenolysis (Figure 1)[30]. In an 138 

obese patient, for whom diabetes is a liability or comorbidity, raising blood 139 

glucose would obviously be undesirable. Glucagon has indeed been postulated to 140 

play a key role in the development of type 2 diabetes [56] and patients with 141 

T2DM are frequently reported to have postprandial hyperglucagonemia due to 142 

impaired glucose-inhibition of glucagon secretion [57-62]. However, glucagon 143 

also increases satiety after a meal, and increases energy expenditure in rodents 144 

and humans [30]. The logic behind a dual agonist targeting the receptors for 145 

GLP-1 and glucagon was thus that the insulinotropic effects of GLP-1 would 146 

buffer against any hyperglycemic liability of glucagon, while the anorectic effect 147 

of GLP-1 would synergize with glucagon’s anorectic and thermogenic effects to 148 

ultimately drive weight loss (Figure 2). One can argue that mother nature 149 

developed the first of such GLP-1/glucagon dual-agonists with oxyntomodulin 150 

(OXM). Notably, however, despite having activity at both cognate receptors, OXM 151 

greatly favors GLP-1R over GCGR [63].  152 

 153 

The first patented and preclinically evaluated GLP-1/glucagon dual-agonist was 154 

developed by the groups of Richard DiMarchi and Matthias Tschöp. The molecule 155 

is based on the glucagon sequence, with key GLP-1 residues introduced to impart 156 

GLP-1R agonism [64]. This dual agonist also includes an Aib residue at position 2 157 

to protect from DPP-IV cleavage. A 40kDa PEGylation was added on cysteine 24 158 

to prolong in vivo action and a lactam bridge between Glu16 and Lys20 was 159 

introduced to stabilize the secondary structure of the molecule and to boost 160 

GCGR activity [64]. In DIO mice monitored for 7 days, a single injection of 325 161 

nmol/kg resulted in a decrease in food intake and a body weight loss of 25%, 162 

primarily due to a loss of fat mass [64]. In a more chronic setting, weekly 163 

administration of 70 nmol/kg of the co-agonist for 1 month resulted in a 28% 164 

decrease in body weight, primarily fat mass, as well as an improvement in 165 

glucose tolerance, an increase in energy expenditure, and an increase in the 166 

utilization of lipids as energy substrates [64]. A 27 day study of the same dose 167 

revealed that the co-agonist decreases plasma triglycerides, LDL cholesterol, and 168 

total cholesterol, decreased circulating leptin, and normalized liver lipid content 169 

[64]. These preclinical results demonstrated the multifaceted “approach” of the 170 
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co-agonist, which robustly corrects obesity and improves multiple aspects of 171 

metabolism simultaneously. 172 

 173 

Another example of a GLP-1R/GCGR co-agonist was developed by the research 174 

group of Merck. This co-agonist was inspired by the native hormone OXM. In 175 

order to boost the activity and efficacy of OXM, d-Serine was substituted at 176 

position 2 and a cholesterol moiety was added to the C-terminus of the peptide 177 

[65]. The resulting DualAG peptide showed nearly balanced potency at the 178 

receptors for GLP-1 and glucagon [65]. In DIO mice, every-other-day 179 

subcutaneous injections of 1.9 umol/kg of DualAG for 14 days resulted in a 30% 180 

reduction in food intake and a 25% body weight loss, primarily due to a loss of 181 

fat mass [65]. In addition, DualAG induced significant improvements in glucose 182 

tolerance and normalized blood glucose levels, benefits that are likely secondary 183 

to the loss of body weight [65]. These effects were blunted in either GLP-1R-/- or 184 

GCGR-/- mice [65], demonstrating the contribution of both receptors to the 185 

metabolic effects and emphasizing the importance of dual agonism for 186 

synergistic effects. 187 

 188 

A third example of a GLP-1R/GCGR coagonist has been developed by Sanofi. This 189 

peptide is based on the exendin-4 sequence with additional glucagon residues 190 

introduced to enhance activity at the GCGR [66]. Like many of the other dual 191 

agonists, this peptide incorporated a d-Serine at position 2 to reduce peptidase 192 

degradation, and a palmitic acid at a Lys14 to extend the half-life, which was 193 

measured to be 3.2 hours in healthy mice [66]. In DIO mice, a twice daily 194 

subcutaneous injection of 50 ug/kg of this dual agonist over the course of 33 195 

days resulted in a 29.1% drop in body weight, greater than the 13.6% drop in 196 

body weight from a matched dose of liraglutide [66]. Similarly, in db/db mice, 197 

twice daily subcutaneous injections of 50 ug/kg of the dual agonist over the 198 

course of 32 days resulted in lower HBA1c levels than control animals [66]. 199 

 200 

A fourth GLP-1/GCGR coagonist (MEDI0382) is under development by 201 

MedImmune. This peptide has balanced activity at both receptors and increased 202 

stability against peptide degradation [67]. The half-life of this dual-agonist is 203 
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further enhanced by palmitoylation at Lys10, which promotes binding to serum 204 

albumin. In DIO mice, acute administration of 10 nmol/kg suppresses food intake 205 

and improves glucose tolerance, although these effects are absent in GLP-1R 206 

knock out mice [67]. In a more chronic setting, a daily dose of 30 nmol/kg of 207 

MEDI0382 results in a 30% decrease in body weight and suppression of food 208 

intake over the course of 4 weeks [67]. In a separate study, 3 weeks of 10 209 

nmol/kg resulted in a greater weight loss than pair fed controls, and an increase 210 

in oxygen consumption and decrease in the respiration exchange ratio (RER) 211 

compared to vehicle controls, all without a difference in locomotor activity [67], 212 

suggesting an energy expenditure component to the observed weight loss. 213 

Importantly, the weight loss effects of MEDI0382 translate into cynomolgus 214 

monkeys. In a 29 day study with doses between 8-27 nmol/kg MEDI0382, 215 

cynomolgus monkeys dose dependently lost between 5-13% of their body 216 

weight [67]. This weight loss was accompanied by a reduction in food intake 217 

[67]. After treatment cessation, monkeys which had been treated with 218 

MEDI0382 stabilized at a lower body weight than the control monkeys [67], 219 

perhaps indicating that MEDI0382 induced a lower “set point” for body weight 220 

maintenance. In a separate study, 29 days of administration of 4-27 nmol/kg in 221 

cynomolgus monkeys did not affect blood glucose [67].  222 

 223 

These are just some of the GLP-1R/GCGR coagonists currently in development, 224 

and several of these peptides have progressed to Phase I and Phase II clinical 225 

testing (Table 1). Undoubtedly, more information on the clinical effects of these 226 

drugs will be available soon. 227 

 228 

 229 

GLP-1/GIP Co-Agonism 230 

 231 

Glucose-dependent insulinotropic peptide (GIP) is a 42 amino acid protein 232 

secreted by the enteroendocrine K-cells of the proximal small intestine in 233 

response to nutrient intake [68]. As an incretin hormone, the primary role of GIP 234 

is to stimulate insulin secretion. (Figure 1). Treatment with GIP is reported to 235 

normalize blood glucose and to improve glucose tolerance [69-71], although its 236 
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insulinotropic effects are blunted in some individuals with type 2 diabetes [72]. 237 

Despite its glycemic benefits, GIP was dismissed as a potential anti-obesity target 238 

due to some reports testifying GIP is obesogenic in nature in mice and certain 239 

cell lines [73-79] However, more recent studies demonstrate that chronic 240 

treatment with GIP can decrease body weight in rodents [79]. Mice 241 

overexpressing GIP show improved glycemic control and resistance to diet-242 

induced obesity [71]. Chronic GIPR agonism further improves glucose 243 

metabolism in DIO mice without signs of excess weight gain [80]. Transgenic pigs 244 

expressing a dominant negative GIP receptor in the pancreas also show impaired 245 

glucose tolerance due to delayed insulin secretion, impaired insulinotropic 246 

action of GIP, roughly 60% reduced β-cell proliferation and reduced islet mass of 247 

up to 58% at the age of 1 year [81].  248 

 249 

The rationale to combine the pharmacology of GLP-1 and GIP in a single entity 250 

was based on the hypothesis that such a dual incretin hormone action would 251 

maximize the glycemic benefits while the anorexigenic effect of GLP-1 would 252 

restrain any obesogenic potential of GIP (Figure 3). In support of this hypothesis, 253 

co-administration of GLP-1 and GIP in mice was a priori confirmed to improve 254 

glycemia and body weight loss in DIO mice [39].  255 

 256 

Two unimolecular dual incretin (“twincretin”) hormones were subsequently 257 

created based on the primary glucagon sequence. The dual-agonists 258 

incorporated key GLP-1 and GIP residues such that the peptide activated both 259 

the GLP-1R and GIPR with equal potency in vitro [39]. Other modifications 260 

included an Aib residue at position 2 to increase resistance to DPP-IV cleavage. 261 

This peptide was either acylated with a C16:0 fatty acid (acylated version) at 262 

Lys40 or PEGylated with 40kDa PEG at Cys24 (PEGylated version) to prolong in 263 

vivo action. The C-terminal ends of the peptides were further modified to carry 264 

the CEX tail from exendin-4. Daily administration of 30 nmol/kg of the 265 

unacylated version of the dual agonist in DIO mice over the course of 7 days 266 

resulted in a 14% drop in body weight, greater than a comparable dose of 267 

exendin-4 [39]. A single 30 nmol/kg dose of the 16-carbon acylated version of 268 

the peptide resulted in an 18.8% body weight drop [39]. Both versions of the 269 
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peptide decreased food intake, lowered body weight primarily through the loss 270 

of fat mass, and decreased blood glucose levels [39].  The PEGylated version of 271 

the peptide yielded similar results with less frequent dosing [39]. Like the GLP-272 

1R/GCGR co-agonist, this GLP-1R/GIPR co-agonist has the potential to be an 273 

effective weight loss drug.  274 

 275 

The acylated GLP-1R/GIPR coagonist was also investigated in cynomolgus 276 

monkeys. Monkeys were given a single 10 nmol/kg injection of the acylated co-277 

agonist, and 24 hours later a dextrose infusion, during which blood glucose and 278 

insulin were measured. The co-agonist lowered blood glucose and increased 279 

insulin, both to a greater extent than a matched dose of liraglutide [39]. 280 

 281 

The PEGylated coagonist has even been investigated in humans. In a cohort of 282 

healthy, non-diabetic human subjects, a single injection of 4, 8, or 16 mg of the 283 

PEGylated coagonist was followed by a dextrose infusion 72 hours later. The co-284 

agonist decreased blood glucose and increased plasma insulin concentration 285 

[39]. In more a chronic study, 53 patients with type 2 diabetes were given 286 

weekly injections of 4, 12, 20, and 30 mg of the PEGylated coagonist, for 6 weeks. 287 

The co-agonist lowered HbA1c in a dose-dependent manner [39]. The co-agonist 288 

was well tolerated, with only mild to moderate side effects [39]. A further 13 289 

week Phase II study investigated this compound in patients with Type 2 290 

diabetes, with comparisons to placebo and liraglutide treatment. Compared to 291 

placebo, treatment with once daily subcutaneous injections of 1.8 mg of the 292 

acylated co-agonist resulted in significant decreases in plasma HBA1c, significant 293 

decreases in both fasting and self-reported plasma glucose, and a decrease in 294 

body weight that was significant at week 8 but not at week 12 [82].  295 

Furthermore, treatment with the acylated co-agonist resulted in a significant 296 

reduction in total cholesterol, along with a trend in reduction of LDL, 297 

triglycerides, free fatty acids and apoliporotein B [82]. In the same study, 298 

treatment with liraglutide did not result in a change in cholesterol [82]. 299 

Decreases in plasma leptin (22% relative to placebo) were also observed [82], 300 

suggesting an increase in leptin sensitivity. In a meal tolerance test, treatment 301 

with the compound significantly reduced 2 hour post-prandial glucose [82]. In 302 
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terms of safety, there were no serious adverse effects related to treatment. 303 

Reported adverse effects were mostly mild to moderate, and the majority were 304 

gastrointestinal related events [82]. In addition to these co-agonists, many other 305 

GLP-1R/GIPR coagonists are currently in development (Table 1).  Whether the 306 

promising preclinical results translate into clinical weight-loss benefits remains 307 

to be seen. 308 

 309 

 310 

GLP-1/GIP/glucagon Tri-agonist 311 

 312 

The preclinical results of the dual GLP-1-based agonists naturally suggest the 313 

combination of all three peptides as a potential unimolecular therapy. It was 314 

hypothesized that the dual insulinotropic effect of GLP-1 and GIP would 315 

optimally buffer against the diabetogenic liability of glucagon while combined 316 

agonism at the receptors for GLP-1 and glucagon would restrain any potential 317 

obesogenic effect of GIP. The ultimate result of such triple agonism was a 318 

profound ability to decrease body weight and to improve glycemic control 319 

(Figure 4).  320 

 321 

Beginning with a previously validated GLP-1/glucagon dual agonist sequence, 322 

GIP residues were introduced stepwise to create a peptide with equal in vitro 323 

potency at all three receptors and with superior potency relative to all three 324 

native peptides [40]. This peptide also included an Aib residue at position 2 to 325 

protect against DPP-IV cleavage and a C16:0 palmitic acid at the Lys10 position 326 

to prolong in vivo action [40]. In DIO mice, a 20 day study of daily subcutaneous 327 

injections of as little as 3 nmol/kg of the triple agonist resulted in a 26.6% body 328 

weight reduction, which was primarily the result of a loss of fat mass [40]. In 329 

addition, the triple agonist lowered ad libitum blood glucose, improved glucose 330 

tolerance, and lowered circulating insulin levels [40], suggesting improved 331 

insulin sensitivity. The triple agonist also lowered hepatic lipid content [40], 332 

which would be beneficial in a translational setting for patients with fatty liver 333 

disease and non-alcoholic steatohepatitis (NASH). Importantly, the metabolic 334 

benefits of the triple agonist are dependent on signaling at all three target 335 
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receptors [40], demonstrating that it is truly the triple agonism responsible for 336 

the observed benefits. The efficacy of the triple agonist has also been 337 

investigated in female mice. The triagonist was equally efficacious in lowering 338 

body weight in DIO female mice compared to fat-mass matched male mice [83]. 339 

In addition, with a daily dose of 10 nmol/kg for 27 days, the triagonist largely 340 

resolved the hepatosteatosis observed in the female mice [83]. Unsurprisingly, 341 

the triagonist had only mild effects on glucose tolerance in female mice, since 342 

female mice are inherently protected against the development of hyperglycemia 343 

and hyperinsulinemia. However, the triagonist did resolve the mild 344 

hyperinsulinemia observed in the female mice [83]. Taken together, these results 345 

suggest that the triagonist has translational potential in both sexes. 346 

 347 

Other triple GLP-1R/GCGR/GIPR agonists are in development (Table 1). Hamni 348 

Pharmaceuticals has developed a glucagon-based triple agonist, HM15211, with 349 

equal potency at all three receptors in vitro [84, 85]. This triple agonist lowers 350 

body weight in DIO mice to a greater extent than liraglutide alone, and also 351 

improves lipid metabolism and hepatic steatosis [84, 85]. 352 

 353 

A third example, Syn-GIP-ZP, is a triple agonist created by fusing a GLP-1R/GCGR 354 

dual agonist and a GIP analog to the heavy and light chains of Synagis, an 355 

antibody with low immunogenicity in humans [86]. This fusion peptide has 356 

agonism at all three receptors [86], and demonstrates that multiagonism is not 357 

necessarily limited to structurally related peptides, but can be achieved through 358 

fusion to larger biomolecules. Naturally, the advantages of this approach are the 359 

increased synthetic flexibility and enhanced pharmacokinetics, however, these 360 

molecules must be carefully engineered for stability, and carefully designed so 361 

that the ratio of agonism between components is metabolically beneficial. 362 

 363 

Are multiagonist peptides the golden pill for obesity? 364 

 365 

Until now, most anti-obesity drugs have been focused either on singular 366 

molecular targets or their loose combination in a co-mixture. Unfortunately, 367 

none of these strategies has so far led to satisfactory results. While most historic 368 
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pharmacotherapies are hampered by an unfavorable imbalance between efficacy 369 

and safety, this new class of multi-agonist drugs has emerged with candidates 370 

that may finally close the gap between the efficacy seen with bariatric surgery 371 

and pharmacology. Whereas these multiagonist peptides outperform available 372 

best in class drugs to treat obesity, only time will tell if they really represent an 373 

appreciable step forward. The available preclinical data are encouraging. 374 

However, whether the efficacy and tolerability that has been demonstrated in 375 

rodents and monkeys also translates to humans remains to be seen. More long-376 

term studies and outpatient trials are required to determine sustainability and 377 

safety. While a final judgment requires more long-term clinical studies, we can be 378 

carefully optimistic that this new class of specially engineered drugs is lighting 379 

the path to a new era in weight loss pharmacology.   380 
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Figure legends JOE-18-0264 

 

Figure 1: Schematic demonstrating the qualitative metabolic effects of GLP-1 (red arrows), glucagon 

(blue arrows), and GIP (green arrows) on systems metabolism, including key metabolic tissues. 

Arrows pointing upwards indicate an increase or improvement, while arrows pointing downwards 

indicate a decrease. 

 

Figure 2: Schematic demonstrating the working principle, metabolic effects, and key target tissues of 

the GLP-1/Glucagon dual-agonist, with the size of the text weighted to indicate the magnitude of the 

observed effect. Arrows pointing upwards indicate an increase or improvement, while arrows 

pointing downwards indicate a decrease. This dual agonist most prominently affects body weight. 

 

Figure 3: Schematic demonstrating the working principle, metabolic effects, and key target tissues of 

the GLP-1/GIP dual-agonist. Arrows pointing upwards indicate an increase or improvement, while 

arrows pointing downwards indicate a decrease.  The emphasis on glycemic control indicates the 

relative magnitude of the effect. 

 

Figure 4: Schematic demonstrating the working principle, metabolic effects, and key target tissues of 

the GLP-1/GIP/Glucagon triple agonist, with the size of the text weighted to indicate the magnitude 

of the observed effect. Arrows pointing upwards indicate an increase or improvement, while arrows 

pointing downwards indicate a decrease. The triagonist most predominately affects body weight, 

glycemic control, and liver cholesterol and hepatosteatosis. 
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Table 1: Multiagonists in development  
Target Receptors Drug Company Status 

GLP-1R/GCGR 

HM12525A Hamni Pharmaceuticals Phase II 

JNJ-54728518 Janssen Pharmaceuticals Phase I 

MEDI0382 MedImmune Phase II 

MK-8521 Merck Phase II 

NN9277 Novo Nordisk Phase I 

MOD-6030/1 Prolor/OPKO Biological Preclinical 

SAR425899 Sanofi Phase II 

VPD-107 Spitfire Pharma Preclinical 

TT-401 Transition Therapeutics 
Phase II/not 

advancing 

ZP2929 Zealand Phase I 

GLP-1R/GIPR 

CPD86 Eli Lilly Preclinical 

LY3298176 Eli Lilly Phase II 

NN9709/MAR709/RG769

7 
Novo Nordisk / Marcadia Phase II 

SAR438335 Sanofi Phase I 

ZP-I-98 Zealand Preclinical 

ZP-DI-70 Zealand Preclinical 

GLP-1R/GCGR/GIPR 
HM15211 Hamni Pharmaceuticals Preclinical 

MAR423 Novo Nordisk / Marcadia Phase I 
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Figure 1: Schematic demonstrating the qualitative metabolic effects of GLP-1 (red arrows), glucagon (blue 
arrows), and GIP (green arrows) on systems metabolism, including key metabolic tissues. Arrows pointing 

upwards indicate an increase or improvement, while arrows pointing downwards indicate a decrease.  
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Figure 2: Schematic demonstrating the working principle, metabolic effects, and key target tissues of the 
GLP-1/Glucagon dual-agonist, with the size of the text weighted to indicate the magnitude of the observed 
effect. Arrows pointing upwards indicate an increase or improvement, while arrows pointing downwards 

indicate a decrease. This dual agonist most prominently affects body weight.  
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Figure 3: Schematic demonstrating the working principle, metabolic effects, and key target tissues of the 
GLP-1/GIP dual-agonist. Arrows pointing upwards indicate an increase or improvement, while arrows 

pointing downwards indicate a decrease.  The emphasis on glycemic control indicates the relative magnitude 

of the effect.  
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Figure 4: Schematic demonstrating the working principle, metabolic effects, and key target tissues of the 
GLP-1/GIP/Glucagon triple agonist, with the size of the text weighted to indicate the magnitude of the 
observed effect. Arrows pointing upwards indicate an increase or improvement, while arrows pointing 

downwards indicate a decrease. The triagonist most predominately affects body weight, glycemic control, 
and liver cholesterol and hepatosteatosis.  
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